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Life-history traits such as spawning migrations and timing of reproduction

are adaptations to specific environmental constraints and seasonal cycles

in many organisms’ annual routines. In this study we analyse how offspring

fitness constrains spawning phenology in a large migratory apex predator,

the Atlantic bluefin tuna. The reproductive schedule of Atlantic bluefin

tuna varies between spawning sites, suggesting plasticity to local environ-

mental conditions. Generally, temperature is considered to be the main

constraint on tuna spawning phenology. We combine evidence from long-

term field data, temperature-controlled rearing experiments on eggs and

larvae, and a model of egg fitness, and show that Atlantic bluefin tuna

do not spawn to optimize egg and larval temperature exposure. The timing

of spawning leads to temperature exposure considerably lower than optimal

at all spawning grounds across the Atlantic Ocean. The early spawning is

constrained by thermal inhibition of egg hatching and larval growth

rates, but some other factors must prevent later spawning. Matching

offspring with ocean productivity and the prey peak might be an important

driver for bluefin tuna spawning phenology. This finding is important for

predictions of reproductive timing in future climate warming scenarios for

bluefin tuna.
1. Introduction
Annual cycles in productivity and temperature are important for timing of

reproduction [1], and the importance of spatial and temporal match between

egg hatching and environmental conditions for offspring survival and recruit-

ment of strong year classes is well known [2,3]. However, the effects of

seasonality and environmental variability on the phenology and the annual

routines of migratory marine apex predator species are poorly understood.

Atlantic bluefin tuna, Thunnus thynnus, is categorized as a near threatened

species according to the IUCN Red List criteria [4]. Like other bluefin tuna

species, the Atlantic bluefin tuna is a long-distance migrant with a narrow

environmental window for spawning [5,6], suggesting that spawning con-

ditions are suitable for offspring only during a short period of time and in

areas with specific environmental characteristics.
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The evolutionary drivers of differences in reproductive

phenology across the western (Gulf of Mexico, Slope Sea)

and eastern (Mediterranean) Atlantic stocks managed by

the International Commission for the Conservation of Atlan-

tic Tunas (ICCAT) are still unknown. Atlantic bluefin tuna of

the eastern stock migrate more than 10 000 km in May–June

to reach warm confined areas of the Mediterranean Sea to

spawn, and then return to their foraging grounds in the

North Atlantic during July–August [7,8]. Reproductive sche-

dules are not synchronized between spawning areas within

the Mediterranean Sea, and bluefin tuna begin reproduction

2–4 weeks earlier in the Eastern Mediterranean than the Cen-

tral and Western spawning areas [9]. Western Atlantic bluefin

tuna travel from foraging areas to spawning grounds in the

Gulf of Mexico in April–June, returning back to feeding

grounds during the summer [10]. Recently, another spawning

area for the western stock has been reported in the Slope Sea

where spawning occurs two months later than in the Gulf of

Mexico [11].

This variability in seasonal timing of reproduction may be

due to physiological thermal tolerance limits of early life

stages, since bluefin tuna larvae generally inhabit a narrower

and warmer range of temperatures than adults [5,7,12,13],

and consequently all tuna species, temperate and tropical,

spawn in warm waters. A correlation between the occurrence

of larvae and temperature from scientific survey data

[5,14,15] suggests that the confined spawning season could

be linked to a physiological tolerance range for larval develop-

ment. However, the ecological and physiological drivers of this

relationship are unknown, and it is difficult to infer exactly how

important these thermal constraints are for timing of spawn-

ing. Many fish species in temperate areas (0–258C) tend to

spawn at temperatures close to, but slightly colder than those

that maximize probability of egg hatching success [16]. Our

aim here is to analyse the role of seasonality in temperature

for the phenology of bluefin tuna reproduction, and its relative

importance in the different spawning areas across the Atlantic

Ocean for both stocks. Our hypothesis is that breeding phenol-

ogy of Atlantic bluefin tuna is optimized to the water

temperature such that offspring survival is maximized. Egg

hatching success is only one element of egg fitness. In addition,

we include temperature-driven egg and larval stage duration

and mortality rates to model the consequences of spawning

at different times of the year in bluefin tuna.

An integrative approach combining laboratory exper-

iments and field surveys of different life stages of Atlantic

bluefin tuna is now possible. Regular spring and summer

monitoring cruises both in the spawning areas of the eastern

and western bluefin stocks provide time series of larval

occurrences. Commercial fisheries allow sampling of mature

gonads, and farming cages provide an observatory for

recording spontaneous spawning events in adult tuna. More-

over, successful rearing techniques now make laboratory and

mesocosm experiments possible [17]. In this study we take

advantage of this unique opportunity of combining exper-

iments and field sampling to evaluate the hypothesis that

breeding phenology of Atlantic bluefin tuna is optimized to

the seasonal cycle of water temperature. This question must

be answered to assess future effects of ocean warming on

migrant marine species such as tunas. We also consider

alternative potential drivers of the spawning phenology such

as the synchronization to seasonality in ocean productivity

and parental constraints.
2. Material and methods
(a) Field sampling of tuna eggs
Spontaneous spawning was recorded in Atlantic bluefin tuna

adults kept in captivity during four years during 2010–2012 and

2015 (electronic supplementary material, table S1). Adult tuna

were captured off Balearic Islands waters (western Mediterranean)

and moved to Caladeros del Mediterráneo SL fattening facilities.

One circular cage (25 m in diameter and 20 m in average depth)

with 37 adult bluefin tuna was monitored during 2010–2012.

Another circular cage (50 m in diameter and 16 m in average

depth) was monitored in 2015. The broodstocks in the cages

were fed to satiety once a day on a diet of raw fish. A PVC curtain

was installed around the perimeter of the two cages to capture any

visible floating eggs that would then be collected manually using

plankton nets from the surface of the water [18]. The cages were

monitored from the beginning of the spawning season to the

end. Spawning events occurred naturally around 02.00–04.00,

therefore egg collection was conducted during night time. After

collection the eggs were counted in the laboratory. The egg abun-

dance was a rough estimation of the total of eggs released since it

could not be ensured all the eggs were caught. These data were

only available for the Western Mediterranean Sea.
(b) Field sampling of tuna larvae
Field sampling of larvae was carried out on cruises during spring

and summer from 2001 to 2013 in the Western Mediterranean Sea

(electronic supplementary material, table S1). The sampling cov-

ered synoptically a wide geographical scale (180 � 220 miles)

with a 10-nautical-mile separation between stations. From 2001

to 2005, tuna larvae were collected using standard double-

oblique hauls down to 70 m depth, with Bongo nets with a

mouth diameter of 60 cm equipped with 333 mm meshes [19].

From 2006 to 2013, the larvae were collected using Bongo nets

with a mouth diameter of 90 cm equipped with 500 mm meshes

hauled throughout the mixed layer, down to approximately

30 m depth, coinciding with the thermocline as determined

from CTD profiles on board. One replicate was preserved in 4%

buffered formalin in seawater and the second replicate was pre-

served in ethanol. Once at the laboratory, fish larvae were sorted

from the 4% buffered formalin using a stereoscopic microscope,

identified and counted to the lowest taxonomic level using deter-

mination keys according to available descriptions for the area [20].

The number of Atlantic bluefin tuna larvae identified in each

sample was divided by the volume of water filtered to standardize

the catches. These data were not available for the Central and

Eastern Mediterranean Sea.

In the Gulf of Mexico, larval bluefin tuna samples have been

collected annually (except 1985) through the National Marine

Fisheries Service South East Area Monitoring and Assessment

Program (SEAMAP) [15] beginning around 20 April and extend-

ing through the end of May (electronic supplementary material,

table S1). Tuna larvae were collected using standard double-

oblique hauls down to 200 m depth, with Bongo nets with a

mouth diameter of 60 cm equipped with 333 mm meshes.

Larval samples were sorted and identified by the Polish Plankton

Sorting and Identification Center in Szczecin, Poland. Sample

identifications were validated by the Southeast Fisheries Science

Center in Miami, Florida, USA. The number of larvae in the

Slope Sea was obtained from the literature after cruises con-

ducted in 2013 from the beginning of June to the middle of

August [11].
(c) Field sampling of tuna females
A total of 724 female bluefin tuna were sampled in the three

main spawning areas of the Western, Central and Eastern

http://rspb.royalsocietypublishing.org/
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Mediterranean Sea (electronic supplementary material, table S1).

From those, 528 were sampled in the Western Mediterranean

over 11 years around the Strait of Gibraltar during the tuna

trap fishing season in late spring, and at the breeding grounds

southwest of the Balearic Islands in early summer. In the Strait

of Gibraltar area, the fish were caught by four traps during

their reproductive migration towards the Mediterranean Sea.

Later in the season, individuals were captured by the purse

seine and longline fleets operating off the Balearic Islands.

Female gonads from the Eastern and Central Mediterranean

spawning grounds were collected under the framework of the

project REPRODOTT [21]. During the purse seine fishing season

in the years 2003–2005, a total of 64 female bluefin tuna were

sampled in the Central Mediterranean and 132 were sampled in

the Eastern Mediterranean Sea.

Shortly after capture (within 1–3 h), the animals were

weighed to the nearest kilogram and the ovaries (stripped of

perivisceral fat) were weighed to the nearest gram. The gonado-

somatic index (GSI) for each female was calculated according to

the equation GSI ¼ (WG/W ) � 100, where WG represents the

gonad weight and W the total body weight. GSI values above

3 correspond to spawning females (electronic supplementary

material, figure S1).

(d) Annual temperature cycles
NOAA CoastWatch Program and NASA’s Goddard Space Flight

Center (https://coastwatch.pfeg.noaa.gov/erddap/index.html)

provided global SST data from NASA’s Aqua Spacecraft at

4 km spatial resolution for the Western, Central and Eastern

Mediterranean Sea. The data consisted of a composite of 8 days

measured by the Moderate Resolution Imaging Spectroradi-

ometer (data from August 2015 accessed on 10 October 2016).

The algorithm for retrieving the SST data is based on the bright-

ness temperature at 11 and 12 mm [22] (http://oceancolor.gsfc.

nasa.gov/cms/atbd/sst). The time series covering the period

from January 2003 to December 2015 were averaged yearly,

obtaining the mean and standard deviations within the specific

geographical limits of each Mediterranean study areas.

Temperature data for the Gulf of Mexico and the Slope Sea

were generated using data from the 1/258 HYCOM analysis/

reanalysis (depending on year) at a modelled water depth of

10 m. Average daily temperatures were calculated for the years

1993–2016. Temperature averages for the Gulf of Mexico were

calculated for the area surveyed by SEAMAP, the eastern por-

tion of the SEAMAP survey and the western portion of the

SEAMAP survey. The Gulf of Mexico was defined as waters

north of the Yucatan channel and west of the Straits of Florida.

The area surveyed by SEAMAP was defined as the perimeter of

the survey points from the spring plankton survey for all years.

The area for the Slope Sea was estimated from the larval survey

area [11].

(e) Annual chlorophyll values
Chlorophyll values for all of the areas were estimated using

NASA’s 9 km mapped monthly chlorophyll-a data product

[23], which is based on intercalibrated SeaWIFS and MODIS-A

satellite data. The area-based extractions were provided by the

Coastal and Oceanic Plankton Ecology, Production and Obser-

vation Database (COPEPOD; http://www.st.nmfs.noaa.gov/

copepod/), which is a global database of plankton survey data

hosted by the National Marine Fisheries Service (NMFS) of the

National Oceanic and Atmospheric Administration (NOAA).

( f ) Annual zooplankton abundance
Monthly changes in zooplankton abundance sampled in the

spawning area of the Western Mediterranean Sea were obtained
from samplings conducted every 10 days during 1994–2003

using double oblique hauls from 0–70 m depth with a Bongo

of 20 cm mouth diameter and mesh size of 250 mm [24]. No

time series was available for the bluefin tuna spawning areas

in the Central and Eastern Mediterranean Sea.

For the Gulf of Mexico and the Slope Sea, monthly averages of

biomass of the entire zooplankton community, measured as bio-

volume or average total sample displacement volume ml m– 3,

was provided by COPEPOD. For the Slope Sea, data summarizes

samplings collected by the NEFSC Ecosystem Monitoring

Program collecting zooplankton using a bongo net (60 cm diam-

eter, 333 mm mesh) towed obliquely from 200 m (or near the

bottom to the surface) since 1977 in the Mid-Atlantic Bay. For

the Gulf of Mexico, data from the 333 mm mesh Bongo nets

were obtained from plankton surveys throughout the Gulf of

Mexico since 1982 within the northwest and northeast off-shelf

regions of SEAMAP.
(g) Experiments on egg hatching success and duration
Fertilized bluefin tuna eggs were collected from spontaneous

spawning in captive populations placed in cages in 2013 and

2014. Eggs were collected and transported to the experimental

facilities, arriving around 1 h later, when the eggs were in the

4–16 cell phase. The eggs were acclimated at the incubation

water temperatures by increasing or decreasing the temperature

at catch at a rate of 18C every half hour to the target tempera-

ture. The eggs were then distributed among 250 ml flasks

with approximately 50 eggs each, at controlled incubation

temperatures between 18–338C, with 3 replicates for each 18C
interval, per temperature. The experiments were conducted in

a temperature-controlled room, set at 188C. Each tank was

equipped with a heater to warm the water, a thermostat to

maintain the desired temperature and aeration to homogenize

them within the tank. Temperatures remained constant

throughout the experiment and were monitored continuously

every 5 min. When the eggs began hatching, the flasks were

controlled hourly. When all the eggs were hatched, the larvae

were counted, identifying normal and abnormal larvae to calcu-

late the hatching rate (rate of normal larvae with regard to total

inoculated eggs).
(h) Experiments on larval growth rates
Fertilized bluefin tuna eggs were collected from spontaneous

spawning in the broodstock cages in 2012 and 2015. The eggs

were transferred to sixteen tanks of 1500 l volume with initial

larval stocking densities of 7 larvae l21 on average. Water salinity

in the tanks was natural in the area and dissolved oxygen

concentration was close to saturation. The photoperiod regime

was 14 h of light and 10 h of darkness, as observed in nature,

with a light intensity in the middle of the water column of

approximately 250 lux. Four replicates were conducted for each

temperature treatment with average temperatures (+s.d.)

throughout the experimental period of 22.9+ 0.9, 24.9+0.7,

27.3+0.6 and 27.7+0.48C.

The larvae were fed live prey supplied in excess two times

per day. The feeding schedule consisted of enriched rotifers

(Brachionus plicatilis) with densities within the tanks maintained

at 10 rotifers ml21. Twenty-seven recently hatched larvae were

sampled randomly, measured in length and dried at 608C to

obtain dry weight. The larvae in all the tanks were randomly

sampled throughout the duration of the experiment. The larvae

were sampled just before the lights were switched on to guaran-

tee their stomachs were empty. On the last day of the experiment,

all larvae were counted and 50 larvae were randomly sub-

sampled. One of the replicates for the 27.38C treatment was not

considered further in the analyses due to technical problems.

https://coastwatch.pfeg.noaa.gov/erddap/index.html
https://coastwatch.pfeg.noaa.gov/erddap/index.html
http://oceancolor.gsfc.nasa.gov/cms/atbd/sst
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http://www.st.nmfs.noaa.gov/copepod/
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Figure 1. Empirical models from temperature-controlled rearing experiments performed on Atlantic bluefin tuna eggs and larvae. (a) The daily probability of egg
hatching success (H, %) is temperature (T ) dependent ðH ¼ �1:27T 2 þ 63:78T � 727:98, r2 ¼ 0:92, p , 0:001Þ, and below 198C and above 328C all eggs
die. (b) After 22 – 60 h (DT, hours) depending on temperature ðDT ¼ 8787:5T�1:701, r2 ¼ 0:99, p , 0:001Þ, eggs hatch into 0.018 mg (+0.007, n ¼ 27) dry
weight larvae. (c) The larvae grow up to the postflexion stage (0.77+ 0.25 mg dry weight larvae, n ¼ 275) with a temperature-limited specific growth rate (SGR,
mg mg21 d21) assuming food satiation of ðSGR ¼ 0:0418T � 0:8355, r2 ¼ 0:84, p , 0:001Þ. (d ) The larvae are subjected to size-dependent natural
mortality [26] M ¼ 0:00022W�0:85. Experimental data are shown as blue dots. Lines indicate the fit. (Online version in colour.)
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To stun and kill the larvae, a small dose (40 ppm) of clove oil

(eugenol) was used.

The larvae were photographed live using a camera (Olympus

SC20) connected to a dissecting microscope (Olympus SZ61-TR)

and then frozen individually in cryotubes at 2808C for later

examination. From images we measured individual standard

length from the upper jaw tip to the notochord end using the

software IMAGE PRO 6.2. The frozen larvae were rinsed in distilled

water, dried at 608C over 24 h and weighed to estimate dry

weight [25]. From the total of 1640 bluefin tuna larvae weighed

and measured, 27 larvae corresponding to recently hatched

larvae were randomly measured and weighed to estimate the

initial larval dry weight (0.018+ 0.007 mg) and standard

length (3.82+ 0.25 mm); 275 larvae corresponding to larvae

in the flexion stage were used to estimate the dry weight at

flexion (0.77+0.25 mg) and the standard length at flexion

(7.54+ 0.46 mm). We fitted an exponential curve between age

(experimental day) and dry weight for each tank within treat-

ments and then used the estimated value for the slope in the

fit against temperature treatment to estimate the temperature-

dependent specific growth rate (electronic supplementary

material, table S2).

(i) Model of egg fitness
We used the probability of survival for eggs spawned at different

days of the year from hatching until larvae metamorphose and

become piscivorous (the postflexion stage) as a proxy to deter-

mine the optimal spawning window. We call this egg fitness,

and it integrates effects of temperature on hatching success and
development time for both eggs and larvae, including mortality

costs of longer development times. We developed empirical

models of hatching probability (figure 1a), egg development

time (figure 1b) and larval growth rate (figure 1c; electronic

supplementary material, table S2) based on data from the temp-

erature-controlled rearing experiments conducted with Atlantic

bluefin tuna eggs and larvae described above. These tempera-

ture-dependent functions for Atlantic bluefin tuna covered the

complete thermal range they can be exposed to, unlike earlier

laboratory studies in Atlantic or other bluefin tuna species (elec-

tronic supplementary material, S1, figures S2–S4). In addition to

egg-hatching success, we included the size-dependent mortality

rates during the larval stage from a review using data from

many species [26], also used in other studies for Atlantic bluefin

tuna [27,28]. We assume the daily mortality rate (M ) of larvae

(dry mass less than 0.77 mg) is size-dependent [26] (figure 1d ),

ranging from 2.3 day21 for eggs to 0.1 day21 for flexion larvae.

Field estimates of mortality rates in tuna species are inconsistent

across studies and species, ranging from 0.06 to 2.71 day21

[27,28]. In Atlantic bluefin tuna larvae (Western Mediterranean)

mortalities are around 0.86 day21 [29], but it is difficult to

estimate accurately.

Most of the mortality is likely to take place during the egg and

larval stages, and because temperature reduces stage duration, egg

and larval survival increase rapidly in warmer water (figure 2a). If

hatching success is the main (only) driver of timing for spawning,

the best temperature is about 25 degrees (figure 2b). When we add

size-dependent mortality, the integrated survival through egg

stage, hatching and larval stage is much higher in warmer water

(figure 2b). Lower mortality rates [30] reduce the difference in

http://rspb.royalsocietypublishing.org/
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survival chance over temperatures. We also tried an empirical mor-

tality function where mortality increases with temperature [31],

but the integrated survival remains higher in warmer water due

to reduced stage duration.
( j) Alternative drivers of reproductive timing
We tested the hypothesis that temperature alone can explain the

observed spawning phenology in the eastern and western

stocks. By combining the estimated temperature dependence

of egg development, hatching success and larval growth with

assumptions about size-dependent survival rates we can

model the overall survival probability (egg fitness) as a function

of spawning date from the annual temperature cycle in each

spawning area (electronic supplementary material, figure S5).

Then we used a model to assess how final body size, growth

and size dependence in mortality rates influenced the optimal

spawning time (electronic supplementary material, S2,

temperature-controlled rearing experiments, S3, sensitivity

simulations). We then compared actual observed spawning

dates, seasonal patterns of chlorophyll and zooplankton abun-

dance to see how well the ocean productivity cycle match

observed spawning phenology in both eastern and western

Atlantic bluefin tuna stocks (electronic supplementary material,

table S1).
3. Results and discussion
The optimal spawning window predicted from modelling

survival to the postflexion stage (egg fitness) as a function

of in situ temperatures occurs much later than the observed

spawning window (figures 3 and 4). If thermal effects on

early life stages were the only driver of egg fitness, then

the optimal spawning time in the Western and Central

Mediterranean would be mid-August instead of the

observed June–July (figure 3a,b), and July–September

instead of the observed May–June in the Eastern Mediter-

ranean and Gulf of Mexico (figures 3c and 4b,c). In the

Slope Sea, observed larval occurrences fitted relatively

well within the predicted optimal thermal window

(figure 4a). The field data show that in most areas spawn-

ing occurs approximately two months before the predicted

temperature-driven egg fitness peak and just after tempera-

tures exceed 208C, which allows eggs to hatch (figures 3

and 4) with some success. In the Gulf of Mexico, however,

temperatures are always above the minimum hatching

temperature (figure 4b,c).

The 208C limit can explain the delayed onset of spawning

from east to west in the Mediterranean Sea. It seems that

bluefin tuna spawning respond to the earlier increase in

temperature in the Eastern Mediterranean 208C first on 4,

25 and 29 May in the Eastern, Central and Western Mediter-

ranean respectively (figure 3). The delayed onset of spawning

in the Slope Sea relative to the Gulf of Mexico is also

explained by the occurrence of the 208C temperature limit

(figure 4). The predicted optimal spawning time is robust

to the annual variance of the average year-round temperature

(electronic supplementary material, table S3). Spawning

occurs before the temperature optimum for the offspring is

reached, independently of how mortality is parameterized

(electronic supplementary material, figure S5).

The large inconsistency in predicted temperature-

dependent egg fitness and observed spawning phenology

suggests that tuna spawn as early as possible but after

temperatures are above 208C (figures 2 and 3). If the seaso-

nal temperature follows a similar pattern every year, then

a simple heuristic for spawning tuna, considering only

temperature, is to spawn as temperatures pass approxi-

mately 208C. Another cue may be the continuous increase

in temperature, as seen in Gulf of Mexico (figure 4b,c). In

Mediterranean spawning grounds, rising surface tempera-

tures identify patterns in larval distribution better than

the absolute temperature values [32]. Our results show

Atlantic bluefin tuna spawn as early as possible, even if

this leads to suboptimal temperature exposure. An impor-

tant component to climate change studies is adult

acclimation to warmer temperatures that can result in

increased egg survival at the highest temperatures [33].

At the moment it is not feasible to control the temperatures

experienced by the adult bluefin tunas in captivity, but egg

hatching success could increase at higher temperatures.

Our results assume the egg and larval relationships with

temperature are the same for the different spawning

areas. However, spawning adults may have adapted to

local temperature regimes in each area.

The match and mismatch of early life stages to favourable

environmental conditions have implications for fish pro-

ductivity, but it is not trivial to know exactly which factors

are important. Clearly, the evolution of spawning dates in
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zooplankton abundance, no. m23) is shown as a dark blue dotted line was only available for the Western Mediterranean study area. Grey bar on x-axis indicates the
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Atlantic bluefin tuna is not driven only by thermal tolerance

or temperature exposure during early life stages. Instead,

there is selection for spawning as early as possible within

the viable period of the year. Other alternative drivers of

the early spawning could be (i) maximization of larval zoo-

plankton prey availability, (ii) size-dependent cannibalism

among larvae, (iii) survival benefits at the juvenile stage

of early hatching, (iv) energy constraints on parents or (v)

reducing the exposure to larval predators. First, higher temp-

eratures will increase growth and survival only if there is

sufficient food. If a trade-off between foraging and survival

exists, then higher food abundance always increases larval

survival, even beyond satiating prey densities [34]. Atlantic

bluefin tuna reproductive schedule may emerge from a

trade-off between releasing eggs in the optimal temperature

window and matching the larvae with high prey abundances

(figures 3 and 4). The spring bloom occurs much earlier than

bluefin tuna spawning in all areas, except in the Eastern Gulf

of Mexico, indicating chlorophyll may not be a direct cue for

spawning (figures 3 and 4) [6]. Second, tuna larvae are vora-

cious piscivores that consume other fish larvae—in many

cases other conspecific tuna larvae—and hence earlier

spawning would increase the likelihood that offspring are

predators rather than prey in trophic interactions [35]. Since

an early switch from planktivory to piscivory in the larval

stage yields growth and survival advantages [36], early

breeding may have evolved from the benefit of consuming

other fish larvae in an environment where zooplankton is

scarce. Third, juvenile tuna grow at their fastest rates

during summer and early autumn, with much slower

growth rates in winter [37]. Therefore, a significant survival

benefit from being large when winter begins could select

for earlier spawning [38]. However, we obtained a similar

seasonal egg fitness peak when the target size for fitness

assessment was extended to include the juveniles compared

to that obtained when the target size for fitness only included

the larval stage (electronic supplementary material, table S4),

suggesting survival during the juvenile phase is not enough

to explain the early spawning phenology. Increasing mor-

tality rates or changing target size for fitness assessment

(survival probability) shift the modelled optimal spawning

date up to three weeks later and do not eliminate the mis-

match with the data (electronic supplementary material,

table S4). Fourth, the parents’ reproductive energy invest-

ment, an average loss of 15–26% of body mass after

spawning [39], can limit the duration of reproductive activity

since the condition may influence the adults in their

migration back to Atlantic feeding grounds just after repro-

duction [8]. Given the oligotrophy of the spawning areas,

the scarcity of food for the parents during spawning could

explain the short duration of the reproductive window, but

not the timing. The thermal stress on adults, often hypoth-

esized to explain spawning times in the Gulf of Mexico for

the western bluefin stock [7], is not likely to set time con-

straints for reproduction for the eastern stock, since

maximum temperatures in the Mediterranean are never

above 308C (electronic supplementary material, figure S6), a

temperature beyond which cardiac activity impairment

occurs in big tunas [40]. Besides, water at depth may be

cooler than at the surface, providing a thermal refuge

to spawning adults. Elevated temperatures can have an

inhibitory effect on fish [41,42], but the upper limit of temp-

erature for heat-induced gonad degeneration in bluefin tuna
has not been accurately established [43]. Finally, the oligo-

trophic spawning grounds may also be relatively deprived

of potential predators on eggs and larvae, but we have few

data on the seasonal cycles of their abundance.

Our understanding of how endangered large migratory

marine species and top predators in the ocean adapt to

environmental change is limited, but it is necessary to assess

the synergistic consequences of climate variability and

harvesting [44]. Early life stages in Atlantic bluefin tuna may

tolerate a scenario of higher temperatures during egg and

larval development, but the spawning phenology also

suggests that larval fitness depends on seasonal ocean pro-

ductivity and a match with zooplankton prey. Consequently,

both changes in the seasonal production cycle and tempera-

ture are needed to forecast how global warming may affect

bluefin tuna recruitment success, spawning distribution and

migration.
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