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Abstract
Predator–prey encounter and capture rates are key drivers of population dynamics of planktonic

organisms. Turbulent mixing gives rise to enhanced encounter rates, but high turbulence levels may

reduce capture rates. We present an estimate for the optimum turbulence level for a predator that is

characterized by a number of parameters, such as its range of interception. A limit at small spatial scales

is recovered where classical diffusion competes with turbulent motions. Particular attention is given to

the question of turbulence-induced noise signals, which a predator can misinterpret as indicators of

prey. Analytical expressions are obtained for the occurrence of these “error signals” in terms of the basic

parameters of the problem. The basic hypothesis rests on the assumption that if several such error

signals are received within a time needed for the predator to capture prey, then its capacity for cap-

turing prey is reduced or even made impossible. The aim of the study is to present closed general

analytical expressions for the capture rate in turbulent environments, where the results contain free

parameters that can be used for modeling selected species. Statistical descriptions of the velocity

fluctuations on spatial scales in the viscous subrange of turbulence are determined and placed in the

context of predator–prey encounter and capture rates. The relevant probability densities are obtained

by direct numerical solutions of the Navier–Stokes equation for turbulent conditions. The analysis is

given a compact formulation in terms of scaled dimensionless variables.

Keywords: inertial and viscous subranges of turbulence, signals and noise, numerical simulations, universal

scaling laws
Introduction

[1] Encounter and capture rates are key drivers

of growth, predation, and population dynamics

of planktonic organisms (Kiørboe 2008). For

aquatic organisms in the millimeter size range,

both processes are sensitive to random or tur-

bulent motions in ambient fluid (Rothschild

and Osborn 1988; MacKenzie et al. 1994;

Osborn 1996). A number of observations sup-

port the idea that turbulence has a detectable

influence on the feeding rate of plankton
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(Sundby and Fossum 1990; Saiz and Alcaraz

1991, 1992a). Consequently, there has been a

continued interest in quantifying and modeling

the linkages between small-scale turbulence

in the ocean and ecosystem structure or pro-

ductivity of commercial species and their food

sources (Barange et al. 2010).

[2] Encounter and capture processes

depend on organism-specific traits and proper-

ties, such as sensory abilities and modes, behav-

iors, and adaptive trade-offs (Fiksen et al. 1998;
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Kiørboe et al. 2010; Kiørboe 2011). Models therefore

need to be flexible and include the relevant biological

and physical parameters. Another issue is to define the

scale at which active propulsion and behavior diminish

the role of turbulence, for instance, the size of larval fish

(Kiørboe and MacKenzie 1995; MacKenzie and Kiørboe

1995), and in the other end, the scale where viscosity

takes over and diffusion is the main driver of particle

flux at the size of the largest phytoplankton (Karp-Boss

et al. 1996; Jumars et al. 2009).

[3] Many models of turbulence and interactions

with the plankton have been developed (Rothschild and

Osborn 1988; MacKenzie et al. 1994; Osborn 1996).

Here we first review and extend some of our own results

(Mann et al. 2005; Pécseli and Trulsen 2007; Pécseli et al.

2012) to arrive at analytical models and test their

predictive ability with explicit numerical simulations

and experiments. The correspondence between the

data and the models is strong, adding confidence to

the analytical formulations.

[4] Then we proceed to analyze another issue in

how turbulence challenges aquatic organisms. Many

plankton use hydrodynamic signals and deformation

rates generated by moving prey for detecting their

presence and exact location for capture (Visser 2001).

These signals can be blurred by turbulence, since

turbulent velocity differences may be difficult to separate

from those generated by moving prey, such that prey

capture success decreases at high turbulence (Saiz and

Kiørboe 1995). Consequently, turbulence increases prey

encounter rates but decreases capture success, and the

total benefit of turbulence is therefore believed to be

“dome shaped,” with an optimum at intermediate levels

(MacKenzie et al. 1994; MacKenzie and Kiørboe 2000).

In the field this is believed to result in active habitat

selection by plankton organisms, most often moving

to a deeper location at stronger wind and mixing levels

to maintain optimum levels of turbulence (Incze et al.

2001; Visser et al. 2001). Other explanations exist for

this phenomenon, such as passive mixing (Heath et al.

1988) and a turbulence-related trade-off between

foraging and predation risk (Visser et al. 2009).
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[5] Earlier treatments of the “downside of turbu-

lence” have included an assumption that the predator

will have to respond to a well-defined disturbance

induced by prey, with a single threshold value as a detec-

tion criterion (Kiørboe and Saiz 1995). We consider

these types of models in detail and find that a proper

description of the turbulent velocity variations over the

antennae of a predator requires a more detailed analysis,

leading to results that cannot readily be expressed in

terms of a simple threshold for detection.

[6] The analysis is formulated in terms of a few

characteristic parameters, combined into scaled dimen-

sionless variables. Flow (i.e., the water) is characterized

by its kinematic viscosity n, turbulence by the specific

energy dissipation rate 3, and plankton by its capture

range R and opening angle q in its field of reception. An

illustration of the present definition of q is given by

Pécseli and Trulsen (2007). Predators and prey can

have a self-induced motion. The minimum time needed

for capturing prey is given as a time constant Dt. Several

studies show that on detecting a potential prey organism

in their vicinity, both fish larvae and large copepods

initiate what can be termed a pursuit-attack phase

(Caparroy et al. 2000; Kiørboe 2013). The pursuit con-

sists of swimming or jumping rapidly (sometimes with

speeds exceeding Ujz30 mm sL1) toward the prey

until they get close enough to initiate an attack by either

sucking it into their jaws or grabbing it with their

appendages. If the range of detecting prey is R, we can

estimate a minimum time as Uj=R. Taking as an example

Rz10 mm and the velocity estimate quoted before, we

have for this case a minimum time of 0.3 s for capture.

To estimate Dt, we add time to identify prey and to

change orientation prior to attack, and we expect Dt

of 0.5–1 s to be representative.

[7] With information on Dt, possibly with added

characteristic velocities for predator and for prey,

we can predict an encounter rate and a capture prob-

ability in terms of known constants and an empirically

determined analytical expression for the probability

density of transit times. In particular, an optimum

turbulence level can be predicted. Considering
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individual capture processes, several other parameters

can be important (relative orientations of predator

and prey, etc.), but the selected parameters considered

in the models are universal and relevant for all plankton.

The results are presented in the form of figures where

parameters relevant for a particular problem can be

used. The applicability of these results is facilitated

by the use of normalized units that combine several

parameters. The results are expressed in terms of

normalized (or “scaled”) dimensionless combinations

of variables. This choice allows compact analytical

expressions and facilitates simple representations of

figures.

[8] Our analysis gives particular attention to

analytical models that can account for the time variabil-

ity of signals detected by predators. Signals originating

from moving prey and from random motions in the

surrounding water are in principle indistinguishable,

and differences need to be described and characterized

in terms of probabilities for magnitudes of the

perturbations and their time durations. The results

thus provide some useful tools in characterizing

turbulent fluctuations as they are observed by plankton

on the relevant small scales in the viscous subrange.

Our results indicate that the viscous subrange is

particularly important for aquatic microorganisms.

This subrange has not been studied in the same detail

as the inertial subrange of turbulence.

Model Description

[9] Considering planktonic predator-prey encounter

and capture rates in turbulent aquatic environments,

we take the capture rate, that is, the part of the total

flux being captured, to be the product of prey encounter

rate JN and capture probability PcðcÞ:
Jcap Z JNPcðcÞ; ð1Þ

where PcðcÞ measures the fraction of successful encoun-

ters. All quantities entering are to be understood as

averages. The seemingly simple result in Eq. 1 implies

that the average of the product of encounter and ensu-

ing capture is taken to be a product of the two averages.

This can be correct only if encounter and capture are
q 2014 by the Association for the Sciences of Limnology and Oceanography,
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independent. This is, strictly speaking, not the case:

encounter probabilities are proportional to local prey

density. Since capture influences prey density, the stated

independence cannot strictly be argued, but we found

by numerical simulations that Eq. 1 serves as a good

approximation. One reason for this is that the

Kolmogorov constant CK , which serves as the basic

parameter for all studies related to turbulence in the

inertial subrange, is known only with some uncertainty.

In particular, CK enters analytical results for JN. It turns

out that the uncertainty on CK dominates possible

uncertainties in the approximations inherent in taking

the product in Eq. 1.

[10] From the capture probability we can derive a

simple result for the prey escape probability as 1KPcðcÞ;
thus, the probability for passively moving prey to escape

capture is solely due to turbulent motions in the flow.

[11] The independence assumption in Eq. 1 has

the consequence that encounter and capture rates can be

analyzed independently. We use a combination of ana-

lytical and numerical methods. When formulated for

individual ranges of the turbulence scales, the problems

contain only a few parameters, and we found that

dimensional reasoning in terms of the Buckingham

P-theorem (Buckingham 1914) offers a valuable tool

for obtaining the proper scaling of the results in terms

of the relevant parameters. The numerical results are

based on data from direct solutions of the Navier–Stokes

equation (Biferale et al. 2004, 2005, 2006).

[12] We begin with a review of previous results

together with a number of figures that illustrate their

basic features. A basic assumption of the analysis is

that a range of interception R of a predator can be

uniquely defined. We then discuss limitations in this

assumption and analytical methods for quantifying

disturbances from the turbulent environment that a

predator can interpret as a false signal of the presence

of prey. Similarly, prey can interpret such disturbances

as false evidence of a predator. In the first case, a pred-

ator can attack even in absence of prey, while in the

latter case, prey can be seen to perform escape responses

in the absence of a predator.
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Fig. 1 Numerically obtained asymptotic prey fluxes to a predator with a conical
field of view with opening angle q. The view directions with respect to the local
flow velocity vector are uniformly distributed over 4p. The solid red line gives the
model fit for the spherical case covering both Eqs. 2 and 3. The results are shown
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Results

[13] The results from the analysis are separated into two

parts, encounter and capture. Both depend on the range

of interception R characterizing the predator, as well as

other parameters to be specified. We can have R in the

inertial range or in the viscous subrange of turbulence.

In addition we also identify a “Brownian subrange”

where thermal fluctuations have a role: this limit can

be relevant for organisms in the 100-mm size range. Pre-

vious results are presented as a review and to serve as a

frame of reference for new results.

Summary of Results for Different Subranges

[14] The separation between the inertial and viscous

subranges is defined as the length scale h0, where the

longitudinal second-order velocity structure function

for the viscous subrange equals the corresponding

Kolmogorov–Obukhov structure function for the

inertial subrange (Davidson 2004). In terms of the

Kolmogorov length scale hh ðn3=3Þ1=4, we find

h0h ð15CK Þ3=4ðn3=3Þ1=4z13h, where the numerical

constant is derived from the empirically obtained

Kolmogorov constant CKZ2:1K2:5 and the corre-

sponding coefficient CnZ1=15 for the viscous subrange

that is known from analysis. The difference between h

and h0 is not trivial. The Kolmogorov time scale is

defined as tK h
ffiffiffiffiffiffi
n=3

p
.

Encounters: Inertial Subrange

[15] First, ignoring self-induced motions of predators

and prey, the encounter rate due to turbulent motions

in the flow for spherical interception volumes (with

radii R in the inertial subrange, ROh0) is

JðiÞN

n0
ZCMR

7=331=3; ð2Þ

where n0 is the reference prey concentration in an

unperturbed environment, and CMz6 is a universal

constant obtained empirically. By the superscript (i)

we indicate the inertial subrange of the turbulence.

The scaling law Eq. 2 for the inertial subrange can be

found by solving a model diffusion equation (Roth-

schild and Osborn 1988; Osborn 1996), but the result

can also be obtained by dimensional reasoning without
q 2014 by the Association for the Sciences of Limnology and Oceanography,
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reference to any model equation (Mann et al. 2005;

Pécseli and Trulsen 2007). Results from laboratory exper-

iments (Mann et al. 2005) and numerical simulations

(Pécseli and Trulsen 2007) provide support for Eq. 2.

Encounters: Viscous Subrange

[16] For R!h0 we find

JðvÞN

n0
ZCVR

3
ffiffiffiffiffiffi
3=n

p
; ð3Þ

where CV z1:1 is a universal constant obtained empir-

ically, while n0 is the reference prey concentration

from Eq. 2. By the superscript (v) on JN we indicate

the viscous subrange of the turbulence. Numerical

results covering both the inertial and viscous subranges

are shown in Fig. 1, where symbols refer to different

opening angles q in a conical volume of interception.

The agreement is satisfactory.

Encounters: Brownian Diffusion Range

[17] It has been argued that turbulent motions can

be effective even for scales as small as 10–100 mm

(Barton et al. 2013). The smallest scale recognized by

the classical analysis of turbulence in incompressible

neutral fluids is the Kolmogorov microscale h. For

very small scales (much smaller than h), the result
for varying range of interception, R:
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Eq. 3 indicates that the encounter rate vanishes at R3,

implying that there should be no detectable relative

motion on scales much less than h. In reality, however,

there will always be some fluctuations due to finite tem-

perature; for instance, for aerosols in the atmosphere

these motions contribute to the coagulation of small

particles into larger ones.

[18] The question obviously arises, then, at what

size turbulent transport is more important than mo-

lecular, or Brownian, diffusion. The answer can readily

be found by comparing the turbulent flux to an absorb-

ing surface with what is found for molecular Brownian

diffusion. We obtain the nutrient flux JðBÞ due to Brown-
ian motion to a spherical absorbing surface with radius

R by solving the diffusion equation in spherical geome-

try with a constant diffusion coefficient D. The spherical

surface with radius R here models the organism. The

diffusion coefficient D is related to the thermal motions

by the fluctuation dissipation theorem (Chandrasekhar

1954; Pécseli 2000). With the given simplified symmetry,

the V2 operator can be expressed in a convenient form

(Chandrasekhar 1954) to give

vðrnÞ
vt

ZD
v2ðrnÞ
vr2

; ð4Þ

where n is the nutrient concentration and r is the

radial distance variable. We impose the fast absorbing

boundary condition nðrZRÞZ0 for tO0, while

nðr/NÞZn0. This problem has an exact analytical sol-

ution, where only the time asymptotic limit is relevant

here (Chandrasekhar 1954; Pécseli 2000). The net diffu-

sion flux to the spherical surface is then JðBÞZ4pDRn0,

where it is implicitly assumed that the absorbing surface

is large and at rest, so that it does not itself participate

in the Brownian motion. With n representing the con-

centration of nutrition or prey, then JðBÞ represents the
predators encounter rate with prey for the case where

the motion is solely Brownian.

[19] For the length scales relevant here, we use the

result for the turbulent flux in the viscous subrange

J0zCVn0R
3

ffiffiffiffiffiffi
3=n

p
. The limiting length scale Rℓ where
q 2014 by the Association for the Sciences of Limnology and Oceanography,
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the Brownian flux equals the turbulent flux is then

Rℓz
16p2

C2
V

� �1=4
D2n

3

� �1=4

z3:4
hffiffiffiffiffi
Sc

p ; ð5Þ

in terms of the Schmidt number Schn=D, where h=
ffiffiffiffiffi
Sc

p
is known as the “Batchelor scale” (Batchelor 1959). The

flux due to Brownian motion will dominate if R!Rℓ.

This result will apply for turbulent incompressible flows,

in particular, and also for turbulent transport in the

atmosphere when the conditions can be taken to be

locally homogeneous and isotropic. It is not obvious

which value of the diffusion coefficient D applies here.

In the case of finite-sized particles arriving at the absorb-

ing surface, the classical expression for the diffusion

coefficient is DzkT=ð6pamÞ for a particle with radius

a at a temperature T, where the dynamic viscosity is m

and k is Boltzmann’s constant (Chandrasekhar 1954).

Here we use the molecular diffusion values for estimates,

which can serve as approximations for nutrients dis-

solved in the water (Schroeder 2000). At room tempera-

ture in water we have Dz10K5K10K4 mm2 sK1, while

typical values for air can be Dz10 mm2 sK1. For water

(with kinematic viscosity nZ0:89 mm2 sK1), for

instance, we then have Rℓz10K33K1=4 mm when 3 is

inserted in units of millimeters squared per second

cubed, giving Rℓz5!10K2 mm for 3z1 mm2 sK3.

The turbulence level chosen here is found in nature in

turbulent coastal zones (Granata and Dickey 1991), so

we can argue that turbulence can be important in nature

also for scales down to 100 mm, at least compared with

Brownian motion. For the general case, the proper value

of the relevant diffusion coefficient is to be inserted into

the analytical expression for Rℓ.

[20] Below we will give results allowing estimates

of relative velocity variations due to turbulence on the

smallest scales; see “Capture with Varying Turbulence

Intensity”. Table 1 summarizes turbulence parameters

found in nature. Fluid dynamics in the limit where

Brownian motions are important on the same level as

turbulent diffusion is poorly understood, in general.
Inc. / e-ISSN 2157-3689
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Table 1 Typical turbulence parameters encountered in natural turbulent flows [Granata and Dickey 1991; Kiørbe and Saiz 1995]. The kinematic viscosity of water is taken
to be nZ0:89 mm2 sK1.

Location Specific energy dissipation rate, 3 Modified Kolmogorov

length, h0

Kolmogorov time, tK h
ffiffiffiffiffiffi
n=3

p

Open ocean w10–4 to 1 mm2 s–3 w130–13 mm w100–1 s

Shelf w10–1 to 1 mm2 s–3 w26–13 mm w3.0–1 s

Coastal zone w10–1 to 102 mm2 s–3 w26–2.6 mm w3.0–0.1 s

Tidal front w10 mm2 s–3 w6.5 mm w0.3 s
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Self-Induced Motions

[21] The foregoing results were obtained by ignoring

self-induced motions of plankton. Some experiments

have demonstrated that the observed encounter rates

could best be explained by including self-induced pred-

ator motions (Zilman et al. 2013). Numerical simu-

lations (Pécseli et al. 2010) have demonstrated that the

encounter rate given as

JNZ n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Jði;vÞN

�2
C ðpR2UcÞ2

r
ð6Þ

serves as a good or even excellent approximation for a

predator moving with a constant self-induced velocity

Uc with respect to the local fluid element. The result can

be used for both inertial and viscous subranges with the

proper expressions for JðiÞN or JðvÞN inserted. For cruising as

well as spiraling motions (Visser and Kiørboe 2006), we

can apply Eq. 6 with good accuracy: because of the dis-

turbance of trajectories caused by the turbulent

motions, the difference between cruising and spiraling

motions is not significant. A correction for the opening

angle of the field of view of the predator can be included

as well (Pécseli et al. 2010): as it stands, the expression in

Eq. 6 assumes spherical views.

[22] As mentioned, Eq. 6 is conditional in the

sense that it takes the predator velocity to be constant.

For cases where Uc is statistically distributed, it makes a

nontrivial difference whether we average JN as given by

Eq. 6 or average J2N and then take the square root for

estimating the average encounter rate.

[23] The result Eq. 6 can be generalized by allow-

ing for random motions of both predators and prey

(Rothschild and Osborn 1988). By denoting the average

of these predator/prey motions by an overbar, we find a
q 2014 by the Association for the Sciences of Limnology and Oceanography,
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somewhat more general result:

ffiffiffiffiffi
J2N

q
Z n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Jði;vÞN

�2
C ðpR2Þ2ðU2

c CU2
p Þ

r
; ð7Þ

where the velocity Uc refers to the predator motions,

and Up to prey motions. The angles between the vector

directions of Uc and Up are assumed to be uniformly

distributed over 4p. The average is to be interpreted as

an ensemble average at asymptotic times after release. A

more detailed discussion is given by Evans (1989). Com-

pared with the results of, for instance, Rothschild and

Osborn (1988), Eq. 7 gives the correct encounter rate

caused by turbulent mixing when both predator and

prey are at rest in the local fluid volume. Numerical

tests of Eq. 6 (Pécseli et al. 2010) can be interpreted as

also relevant for Eq. 7, where either U2
c or U2

p is set to

zero. Trajectory distortions by turbulent motions

implied only small changes in the encounter rate for

different strategies of motion (corresponding to linear

or spiraling motion with respect to the local flow

element), as long as Uc% JN=R
2. Also, the effects of chang-

es in orientation have been analyzed (Mann et al. 2006).

The reference and realistic case is one where the

predator is oriented randomly with respect to the local

flow velocity vector. The encounter rate could be

increased by up to 20% if the predator had an ability

to orient itself with respect to the local flow, although no

optimum strategy could be prescribed. Travel-pause

predators were also studied (Pécseli et al. 2010), result-

ing in estimates for some optimum strategies.
Captures

[24] While turbulence can be an advantage by increasing

encounter rates, it might also have adverse effects by
Inc. / e-ISSN 2157-3689
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one universal curve.
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reducing the capture rates (MacKenzie et al. 1994). In

some cases the latter effects might even be anticipated

to dominate for all turbulence levels (Urtizberea and

Fiksen 2013). Irrespective of the other merits of the

pioneering paper by MacKenzie et al. (1994), it contains

a basic error by stating that the separation between two

points moving in a turbulent flow increases linearly with

time. It is not so: it is the well-known problem of relative

motion (Richardson 1926), with the particle separation

proportional to 3t3, where 3 is the specific energy

dissipation of the turbulence. We solve the problem in

terms of transit times with an experimentally estimated

universal transit time probability density.

[25] Returning to Eq. 1, we discuss the capture

rate given an encounter. The fraction of successful

encounters, PcðcÞ, depends on a number of physical

parameters. The time t available for capture, given an

encounter, is a universal parameter (MacKenzie et al.

1994; Pécseli et al. 2012), and we concentrate on this.

The prey transit time through the volume of intercep-

tion is statistically distributed, with distributions that

can be obtained experimentally (Mann et al. 2003) or

numerically (Pécseli and Trulsen 2010). The simplest

model for capture assumes that the predator needs

some finite time Dt for capturing prey. If the time

available is less than this, there will be no capture; if

the time is greater, we assume capture with certainty.

More detailed models with more adjustable parameters

have been suggested (Pécseli et al. 2012), but given the

uncertainties in experimental data, we assume that the

simple model outlined here will suffice. We thus assume

that the probability of capture for given transit time

t is a unit step function SðcjtÞZHðtKDtÞ, where H
is Heaviside’s unit step function. The result will demon-

strate the trend, while a more detailed model can be

implemented for specific organisms.

[26] Given estimates for transit time probability

densities PtðtÞ, we have PcðcÞZ
ÐN
0 SðcjtÞ PtðtÞdtZÐN

Dt PtðtÞdt. With the present simple model, we

thus find that the capture probability is given simply

as 1 minus the cumulative probability distributionÐ Dt
0 PtðtÞdt of transit times t.

[27] We distinguish two subranges for the distri-

bution of transit times: inertial and viscous. The two

relevant probability densities will have different forms,
q 2014 by the Association for the Sciences of Limnology and Oceanography,
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involving different scalings of the relevant variables. The

scaling in terms of the parameters of the problem can be

determined analytically by dimensional arguments,

while the universal functional form is established by

fitting analytical expressions with a number of free pa-

rameters to data obtained by numerical or laboratory

experimental results.

Capture Probabilities: Inertial Subrange

[28] By dimensional arguments we find that the prob-

ability density for transit times through a given volume

must have the form

PtðtÞZ 31=3

R2=3
F1 t

31=3

R2=3

� �
; ð8Þ

with F1 being a dimensionless function of one dimen-

sionless scaled variable. The universal functional form

F1 can be obtained by a fit to experimentally or numeri-

cally obtained data. R is here a characteristic length scale

determining the volume, for instance, the radius of a

spherical capture volume. Fig. 2 shows results for the
Inc. / e-ISSN 2157-3689
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presentation for varying parameters, where Dt is the minimum time needed
for capture, R is the capture range, 3 is the specific energy dissipation rate of the
turbulence (dissipated energy per mass unit), and n0 is the reference prey con-
centration at large distances from the predator. The result is obtained by Eq. 10.
The present model assumes a hemispherical capture volume with a radius R in the
inertial turbulence subrange. For small values of Dt31=3=R2=3 the captured flux
increases due to turbulence-induced encounter rates, whereas for large values the
flux decreases due to short times available for capture, that is, short transit times
through the volume of interception, which reduces capture rates. The figure also
illustrates the advantage of using dimensionless normalized variables: had we
presented Jcap as a function of, for example, Dt alone, we would need separate
curves for each value of R and 3. To use the present form we combine the actual
values of the parameters to give Dt31=3=R2=3 and then use the red curve to obtain
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transit time probability density, as well as the cumulative

probability density, relevant for R in the inertial sub-

range of turbulence.

Capture Probabilities: Viscous Subrange

[29] Again by dimensional arguments, we found a scal-

ing for the transit time probability density appropriate

for the viscous subrange in the form

PtðtÞZ
ffiffiffi
3

n

r
F2 t

ffiffiffi
3

n

r� �
ð9Þ

that is independent of R. Here we have another dimen-

sionless function F2 that, like F1, is also determined by

fitting data from numerical simulations (Pécseli et al.

2012). The fits for the cumulative probability have

the analytical form 1K1=ð1Ca½1�xCa½2�x2Ca½3�x3C
a½4�x4Þ, where we obtain different sets of coefficients

a½ j�, jZ1; 2; 3; 4, for the viscous as well as for the iner-

tial subranges. The coefficients depend also on the form

of the capture volume. These coefficients are universal

for the conditions specified.

Results for Inertial and Viscous Subranges

[30] With the simple capture probability model

discussed before, assuming no capture for t!Dt and

capture with certainty for tRDt, we find the closed

expression for the capture rates for R in the inertial

subrange in the form

Jcap Z
CMn03

1=3R7=3cðqÞ
1C

X4

jZ1
a½ j�ðDt31=3=R2=3Þ j

: ð10Þ

Note that Eq. 10 can be described in terms of one scaled

variable Dt31=3=R2=3 with the capture range normalized

as JcapDt=ðn0R3Þ. For the viscous subrange we find

similarly that

Jcap Z
CVn0R

3cðqÞ ffiffiffiffiffiffi
3=n

p

1C
X4

jZ1
b½ j �ðDt ffiffiffiffiffiffi

3=n
p Þ j

; ð11Þ

where all numerical coefficients a½ j� and b½ j � for jZ1;

2; 3; 4 are obtained as discussed before, with tables

given elsewhere (Pécseli et al. 2012). A correction factor

cðqÞ is introduced in both Eqs. 10 and 11 to account for

different opening angles of a conical field of view
q 2014 by the Association for the Sciences of Limnology and Oceanography,
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(Pécseli et al. 2012). Also, the coefficients a½ j � and

b½ j � have to be chosen accordingly. The use of

dimensionless variables allows a particularly compact

formulation of the results in Eqs. 10 and 11.

[31] Results for Jcap with R in the inertial subrange

as in Eq. 10 are summarized in Fig. 3 for a hemispherical

shape for the capture volume (i.e., qZ90∘). This par-

ticular opening angle has been suggested as particularly

relevant (Lewis and Pedley 2001; Lewis 2003; Lewis and

Bala 2006). We find a characteristic dome-shaped cap-

ture rate as illustrated in Fig. 3, with an optimum tur-

bulence level (MacKenzie et al. 1994), in our case at

3z0:35R2=Dt3, for a predator characterized by a hemi-

spherical volume of interception. Taking as an example

a passively moving predator with RZ10 mm and

DtZ2 s, we have the optimum at 3z4 mm2 sK1, a

value often found in the coastal zones (Granata and

Dickey 1991; Kiørboe and Saiz 1995). Stronger
the corresponding Jcap value.
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Fig. 4 Diagram for the velocity perturbation near a predator due to relative prey
motions (after Visser 2001). The prey is indicated by its size a. It moves with a
velocity U at an impact parameter p with respect to the predator, inducing
velocity disturbances u0 and ub at the two ends of the predator’s antennae
with length b . For many cases we find that b!h0, where h0 is the Kolmogorov
length. The flow dynamics on this scale should be described by expressions relevant
for the viscous subrange.
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turbulence, as found in the tidal front, will be disadvan-

tageous for a predator with these characteristics.

[32] The model illustrated in Fig. 3 is simple yet

useful for an estimate. A more generally applicable result

contains two time scales that can be adjusted for differ-

ent species (Pécseli et al. 2012) and allows for modeling

a gradually varying capture probability, replacing the

simple step model used in Fig. 3.

[33] As they stand, Eqs. 10 and 11 have R and 3 as

independent parameters. Models where the capture

range depends on the turbulence level are discussed

further below. Given the form of the analytical results,

we note that such a modification is easy to implement

(Pécseli et al. 2012). For visual predators with an

interception range R that is given for the actual species

and local conditions (Aksnes and Giske 1993; Aksnes

and Utne 1997; Urtizberea and Fiksen 2013), Eq. 7

presents a closed expression that is applicable when

the turbulence conditions are known.

[34] As in other studies (Rothschild and Osborn

1988; MacKenzie et al. 1994; Osborn 1996) our analysis

so far assumes that the volume and range of interception

are independent of the intensity of the turbulence. The

range R and the specific energy dissipation 3 are then

independent parameters for the problem. It is possible

to extend the analysis to include the case where the cap-

ture range RZRð3Þ varies with the intensity of the tur-

bulence. The number of independent parameters is then

reduced by one. If RZRð3Þ is known, the generalization
is simple and obtained by insertion in expressions such

as Eqs. 10 and 11. We find, however, that the problem of

turbulence-dependent range requires a more detailed

analysis of the detection problem, as summarized in

the next section.

Capture with Varying Turbulence Intensity

[35] The problem of prey or predator detection in a

turbulent environment involves two issues: (1) the

detection of disturbances induced by moving plankton

and (2) the detection of disturbances caused by the tur-

bulent flow variations. We distinguish detected signals

originating from moving prey as yprey and signals orig-

inating from the turbulent motions as y.

[36] Assume first that the flow around a predator

is disturbed by prey moving in its vicinity, as illustrated
q 2014 by the Association for the Sciences of Limnology and Oceanography,
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in Fig. 4. The motions in the surrounding flow are per-

ceived by the predator along its sensory organs (Jiang

and Paffenhöfer 2008). Sensitivity seems here to be

associated with velocity differences (rather than, e.g.,

acceleration) between the tip and the base of the anten-

nae (Yen et al. 1992; Visser 2001; Kiørboe 2013). Little is

known concerning details in the response of sensory

organs of plankton to perturbations from different ve-

locity components. When estimating probability den-

sities for velocity differences in the following (see also

Fig. 5B), we use the velocity difference us0Kusb as rep-

resentative for the dominant contribution to the velocity

signal experienced by the copepod. The predator

receives signal at all setae along the antennae, but with

reference to the velocity structure function (the Kolmo-

gorov–Obukhov law in the inertial range) it is argued

that, on average, the largest velocity differences will be

found at the largest separations, that is, the base and the

tip of the antennae. The perpendicular component (as

in Fig. 5A) will merely give rise to a local translation or

rotation, and this is of little relevance here. We use the
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Fig. 5 Velocity components entering the construction of the velocity difference
yðtÞ, where a case corresponding to A has one of the velocity vectors pointing out
of the page (not shown).
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velocity difference at the largest separation b (see Fig. 4),

since smaller separations will, on average, give smaller

differences. The signal defined here can take both signs,

but little is known concerning the ability of plankton to

distinguish the sign. For generality, we retain both signs

rather than taking the absolute value.

[37] The prey-generated disturbance at the pred-

ator position diminishes with the separation between

predator and prey (Kiørboe and Visser 1999; Kiørboe

et al. 1999), but the velocity perturbation experienced in

the surroundings of moving prey depends on a number

of other parameters as well (Visser 2001): the distance r0
between predator and prey, the impact parameter p

(both defined in Fig. 4), the relative orientation, and

so forth. For the present analysis the distance depen-

dence of the strength of the perturbation is most

important, so we focus on this. Depending on details

in the prey propulsion (Visser 2001), we find that the

strength of the velocity perturbation scales as AV
*
=rm,

with distance r, for motion at low Reynolds numbers,

where V
*
is the prey velocity relative to the surrounding

fluid. The exponent m characterizes the organism, while

A is a dimensional parameter depending, for instance,

on the size and shape of the organism; typically we have

mZ1; 2; 3. With the given simple model, we estimate

the detected velocity perturbation as

ypreyðtÞzAV
*

1

rm0 ðtÞ
K

1

rmb ðtÞ
� �

(see Fig. 4), where it is assumed that the predator is at

rest with respect to the local fluid, at least during the

time of interaction. An approximate expression for yprey
represents an average over all relative angles, where

a numerical factor is included in the constant A.

A characteristic time duration of the perturbation can

be estimated as p=V
*
, apart from a numerical constant
q 2014 by the Association for the Sciences of Limnology and Oceanography,
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that depends on
ffiffiffiffi
m

p
. The impact parameter p deter-

mines the closest distance between predator and prey

with the given motion. For order-of-magnitude

estimates we can use

ymaxw
mbAV

*

pmC1 ð12Þ

for the peak value of the velocity disturbance and

tpreyw
p

V
*

ð13Þ

for its time duration, where we implicitly assume that

r0;bObOa (see Fig. 4). The results for ymax and tprey

will be compared with the magnitude and the duration

of excursions in detected velocity signals that originate

from the turbulent motions.

[38] Existing models for plankton moving in

turbulent environments (Kiørboe and Saiz 1995; Saiz

and Kiørboe 1995; Visser 2001) assume that prey

moving with some velocity V
*
is recognized by a preda-

tor if it generates a disturbance in the detected signal

exceeding a certain threshold U
*
with respect to the

root-mean-square fluctuation level of the turbulence

(although it is not clear how this level was defined). In

a calm or nonturbulent environment, the threshold

value of the velocity disturbance defines the reference

detection range as the minimum distance needed for

the perturbation to exceed the threshold level for a

particular organism (Kiørboe and Saiz 1995; Kiørboe

and Visser 1999). The actual value of the threshold

U
*
depends on the species considered, as well as other

parameters, but in general we expect representative

values in the range of U
*
2f0:01K0:1g mm sK1 for the

velocity difference between base and tip of the antennae

(Saiz and Kiørboe 1995; Visser 2001). In a turbulent

environment the noise originating from the surround-

ing flow perturbations will mask disturbances originat-

ing from prey, so it is expected that only enhanced prey

signals will allow detection. To generate larger-velocity

perturbations, the predator–prey separations have to

be reduced, as indicated also by Eq. 12. Basically, this

assumption implies that the range of interception

depends on the turbulence level, that is, that we have

to use RZRð3Þ in Eqs. 10 and 11 and not R and 3 as

independent parameters. A simple model was suggested
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by Kiørboe and Saiz (1995) requiring ypreyRU
*
Cs for

detection, where in our models sz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CK ð3bÞ1=3

p
for cap-

ture ranges in the inertial subrange and szb
ffiffiffiffiffiffiffiffiffiffiffiffi
CV3=n

p
for

b in the viscous subrange, with b defined in Fig. 4. Given

a model for the prey-induced disturbance, this argu-

ment gives an expression of the form RZRð3Þ, which
can be directly incorporated in our models.

[39] The simple argument outlined here is, how-

ever, problematic in at least one respect: it implicitly

assumes that the contribution to the signal originating

from the turbulence is confined to a levelGs as per-

ceived by the predator, so that any excess signal is easily

recognized, that is, that a large signal can unambigu-

ously be associated with the presence of prey. This is

not correct, not even for a Gaussian random signal,

where we might find arbitrarily large signal excursions

with varying probabilities. A representative model signal

is shown in Fig. 6. To examine this problem in more

detail, we obtain estimates of relevant probability den-

sities from direct numerical solutions of the Navier–

Stokes equation for turbulent conditions and analyze

the frequency with which the velocity differences at the

base and tip of the antennae exceeds some selected level.

Also, an average of the time duration of such a velocity

excess is relevant, and this is estimated as well.

Average Frequencies of Level Crossings

[40] A detailed description of signal excursions and

their time duration due to turbulent velocity variations

turns out to be somewhat complicated. For locally
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Fig. 6 Model of a signal yðtÞ as a function of time t as induced by prey motions
(red line), with additive random Gaussian noise (black line).
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homogeneous isotropic turbulence we have analytical

expressions (Davidson 2004) for the relations between

second-order structure functions hðut0KutbÞ2i and

hðus0KusbÞ2i. The relevant statistical information is

thus contained in the latter structure function. We will

consequently consider only the parallel velocity com-

ponents, writing hy2iZ hðus0KusbÞ2i.
[41] As it turns out, we will also need time deriva-

tives of yðtÞ. These can be obtained from direct numeri-

cal solutions of particle trajectories in fully developed

turbulence described by the Navier–Stokes equation.

To obtain dyðtÞ=dt we thus select two simulation par-

ticles representing the base and tip of an antenna at

positions rZ0 and rZb, with a particle separation b

(see Fig. 4). The local volume element of the flow at the

two positions has velocities uðr; tÞ taken at rZ0 and

rZb, respectively. The time variability of the velocity

signal, as detected by plankton in response to the vari-

ation of flow velocities, depends on unknown details in

the interaction between the sensory organs and the local

motions in the flow. Here we approximate

dyðtÞ=dtzv
�
uðr0ðtÞ; tÞKuðrbðtÞ; tÞ

�
$b̂=vt, obtained by

following two particles passing rZ0 and rZb at time

t, respectively. The scalar multiplication with the unit

vector b̂ in the direction of b ensures that the parallel

velocity components are selected (see Fig. 5B). The

relation between the partial derivative used here and

the acceleration u$Vu entering the absolute derivative

has been discussed elsewhere (Tsinober et al. 2001;

Liberzon et al. 2012). To simplify the notation in the

following, we write _y for the time derivative dyðtÞ=dt.
[42] The velocity difference yðtÞ, as well as dyðtÞ=dt,

can take both positive and negative values, depending

on the directions of the relevant velocity vectors.

For locally homogeneous and isotropic turbulence, we

have hyðtÞiZ0 and dhyðtÞi=dtZ0. The probability

densities of yðtÞ and dyðtÞ=dt are slightly skewed due to

intermittency effects. The signal ypreyðtÞ induced by a

passing prey can take both positive and negative values

with the present definitions. It is likely that predators

can distinguish the sign of these relative velocity pertur-

bations (Kiørboe 2013), but we do not emphasize this in

the present study.

[43] To obtain analytical expressions for the

amplitudes discussed above, we analyze the problem in
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Fig. 7 Normalized probability densities for the longitudinal velocity differences
yðtÞ (see Fig. 5B) for the viscous and inertial subranges of turbulence. Spatial
separations are in computational units 0.01, 0.015, 0.02, 0.025, and 0.03 for the
viscous subrange in A and 0.25, 0.30, 0.35, 0.40, 0.45, and 0.50 for the inertial
subrange in B. For comparison, we have the length scale h0z0:07 in compu-
tational units to separate the viscous and inertial subranges. In the variables on
axes we insert rZb for the predator in Fig. 4. We have the specific energy
dissipation 3Z0:810878 as determined by the numerical energy input, while the
kinematic viscosity used (for water) is nZ8:8!10K4 in computational units. The
horizontal velocity axis in A is normalized by the root-mean-square velocity
ðr23=nÞ1=2 obtained for the viscous subrange at separations r!h0. For the
inertial subrange in B we normalize by ðr3Þ1=3, where rOh0. Dashed lines
give the best Gaussian fit in both cases. The skewness of the probability densities
is an indicator for intermittency effects (Castaing et al. 1990).
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terms of results from studies of noise in electronic

circuits (Rice 1945; Bendat 1958). Note first that the

time it takes for the signal yðtÞ to cross a small interval

dy is given as dy= _y. The fraction of time spent by the

signal in an interval dt around a set of amplitudes and

time derivatives fy; _yg within a narrow interval dyd _y is

Pðy; _yÞdyd _ydt in terms of the joint probability density

Pðy; _yÞ. The number of crossings of some signal level y

within dt is then (Bendat 1958)

Pðy; _yÞdyd _ydt
dy=_y

Z _yPðy; _yÞd _ydt: ð14Þ

[44] The average number hN i of upward crossings

of the level yZU
*
as a function of time duration t is

then obtained by integration with respect to time (which

becomes simple since Pðy; _yÞ is independent of time),

and then with respect to all positive values of _y. The

result is

hN ðU
*
ÞiZ t

ðN
0
_yPðU

*
; _yÞd _y; ð15Þ

directly proportional to time t.

[45] The average level crossing frequency

dhN ðU
*
Þi=dt measures how often a signal exceeds the

reference level U
*
. By Eq. 15 we find this frequency to

be constant. The fluctuating velocity difference over the

antennae and the associated level crossings is interpreted

as an error signal in the sense that it does not represent

the presence of prey. The energy dissipation 3 enters

implicitly through PðU
*
; _yÞ, as demonstrated further

below; in particular, it is not correct simply to assume

the error signal to be proportional to 3.

[46] The analysis of the probability densities for

time derivatives is related to acceleration statistics that

has mostly been analyzed for absolute motion of single

particles (Tsinober et al. 2001; Bec et al. 2006; Liberzon

et al. 2012). The present problem concerns relative accel-

erations. Figs. 7 and 8 present results obtained by ana-

lyzing numerically obtained data from simulations of

incompressible fluid turbulence. We have PðyÞ with yh
usð0; tÞKusðr; tÞ in Fig. 7 for both the inertial and vis-

cous subranges. Two universal scaling laws are obtained,

where velocities are normalized by
ffiffiffiffiffiffiffiffiffiffi
r23=n

p
in the viscous

subrange and by ðr3Þ1=3 in the inertial subrange. The

results are obtained for normalized separations r=h0Z
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0:143; 0:214; 0:285; 0:356; 0:428 for the viscous sub-

range and r=h0Z3:56; 4:27; 4:99; 5:70; 6:41; 7:12 for the

inertial subrange. The two subranges have significantly

different universal scalings, the inertial scaling being

independent of viscosity n. Intermittency effects give

rise to a skewness of the probability density in the
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by the energy input in the numerical simulations. The kinematic viscosity is nZ
8:8!10K4 in computational units. The velocity derivative is normalized by ðr3=nÞ
as relevant for the viscous subrange. Analysis of another data set (Pécseli and
Trulsen 2007) with different parameters 3 and n gives essentially identical results.

10

1

P
(υ

 (r
2 ε 

/ n
)–1

/2
, d

υ/
dt

 (
rε

/n
)–1

)

0.4
0.2

0.0
–0.2

–0.4

dυ/dt (rε/n) –1 –0.4
–0.2

0.0
0.2

0.4

υ (r
2 ε/n)–1/2

Fig. 9 Normalized joint probability density P
�
y

ffiffiffiffiffiffiffiffiffi
r23=n

p
; _yðr3=nÞ

�
for the

normalized longitudinal velocity differences yðtÞhus0ðtÞKusbðtÞ (see
Fig. 5B) and their time derivative dyðtÞ=dth _y, for separations r in the viscous
subrange of turbulence. We have the specific energy dissipation 3Z0:810878 in
the numerical simulations, whereas the kinematic viscosity used is nZ8:8!10K4

in computational units. The projections of the probability densities for y and
dy=dth _y are those shown in Figs. 7 and 8. Velocities and velocity derivatives
are normalized as appropriate for the viscous subrange, just as in Figs. 7 and 8.
Selected levels of constant probability are shown in red.
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inertial limit. We find interesting indications of this

skewness remaining also in the viscous limit, although

not as pronounced as for the inertial range (Tennekes

1968, 1973).

[47] As an example we consider the smallest scales

addressed above (see “Encounters: Brownian diffusion

range”), where we have spatial separations of the order

of 100 mm. According to Fig. 7A for the viscous sub-

range, we require y/b=tK to find large probabilities for

velocity differences. The conditions for significant ve-

locity variations over an organism on these small scales

are then found by taking bz100 mm. Parameters found

in the coastal zones (see Table 1) give tKw0:1K3:0 s,

implying that y/0:3K1:0 mm sK1 for these smallest

Brownian scales. According to Fig. 7 there is a significant

probability of finding velocities in a range around

yw0:1 mm sK1 for these conditions. Although small,

these velocity differences can still contribute to turbulent

transport. The arguments ignored motions produced by

the organisms themselves. Even small motions of the

appendices of organisms on the 10- to 100-mm scales

can induce velocities larger than those caused by turbu-

lent motions on these same scales. Previously, we found

that thermal motions can also become important for
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these smallest scales when the turbulence level is small,

as in the open ocean (see Table 1).

[48] Fig. 8 shows the probability density for the

normalized Pð_yÞ, here only for the viscous subrange.

A universal scaling law with a velocity derivative

normalization r3=n is fulfilled. The analysis has been

extended to include a different numerical simulation

where the numerical dissipation rate was 3Z0:8853

and where the numerical viscosity was changed from

nZ8:8!10K4 to nZ2:05!10K3, giving the same excel-

lent agreement with the proposed scaling (with 3 and n

in numerical dimensionless units). It is interesting to

note that Pð_yÞ can be well approximated by a so-called

k-distribution. Such distributions seem to result from

random increments governed by Levy flight probability

distributions (Collier 1993).

[49] While we find that a Gaussian model might

be useful as an approximation for PðyÞ (see Fig. 7), it

fails completely for Pð_yÞ. Figs. 7 and 8 show the marginal

probability densities PðyÞ and Pð_yÞ in normalized form.

Fig. 9 shows the full joint probability density Pðy; _yÞ
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from which the marginal probability densities (or pro-

jections) given in Figs. 7 and 8 can be derived. The sig-

nals yðtÞ and _yðtÞ are uncorrelated since hyðtÞdyðtÞ=dtiZ
1
2dhy2ðtÞi=dtZ0 for time-stationary processes, but they

are not independent; that is, Pðy; _yÞsPðyÞPð_yÞ. Using
the results in Fig. 9, we find the average level crossing

frequency dhN ðU
*
Þi=dt as shown in Fig. 10. The number

of level crossings per time unit is expressed in terms

of the Kolmogorov time tK h
ffiffiffiffiffiffi
n=3

p
. The number of

level crossings is of the order 10 within a Kolmogorov

time tK for U
*
z0. Recall here that we consider the

viscous subrange where the variations are on length

scales comparable to or shorter than h0.

[50] For illustration of these results, we consider a

Gaussian reference case. This model has limited accu-

racy, but it retains the correct parameter scalings (Roll-

efson 1978; Pécseli et al. 2012) and can give the correct

orders of magnitude, an advantage of the model being a

closed and simple analytical form. Ignoring intermitten-

cy effects and taking 3 to be a deterministic constant,

we thus assume that the probability density for the
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t

–1.0 –0.5 0.0 0.5 1.0

U * (r
2ε /n)–1/2

Fig. 10 Frequency dhN ðU
*
Þi=dt of the crossings with positive time derivative

of a normalized level U
*
=ðr23=nÞ1=2 of the signal defined as yðtÞhus0ðtÞK

usbðtÞ for the turbulent velocity component differences. The frequency of such
level crossings is measured in units of the inverse Kolmogorov time tK1

K h
ffiffiffiffiffiffi
3=n

p
.

This frequency can be used to measure how frequently a predator perceives a large-
velocity variation along its antennae. Large-amplitude excursions in the velocity (as
determined by U

*
) will have smaller frequencies, that is, occur rarely. The result is

obtained by the integral in Eq. 15 and is shown by the red line for varying levels of
U
*
. We use Pðy; _yÞ obtained from the numerical simulations (see Fig. 9). The

dashed line gives the result from a Gaussian random process with the same
standard deviations as for y and _y. (The dashed line is not obtained by fitting a
Gaussian to the solid curve.)
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signal yðtÞ is

PðyÞZ 1

s
ffiffiffiffiffiffi
2p

p eK
1
2y

2=s2 ; ð16Þ

where s2Z hy2iZCVb
23=n in terms of the separation b

defined in Fig. 4. For stationary processes, y and _y are

uncorrelated. For this special Gaussian model, the signal

y and its time derivative _y are also statistically indepen-

dent (since they are uncorrelated Gaussian processes), so

that Pðy; _yÞZPðyÞPð_yÞ. Thus,
dhN ðU

*
Þi

dt
Z

1

2p

s0

s
eK

1
2U

2
*
=s2 ; ð17Þ

where s0Z
ffiffiffiffiffiffiffi
h_32i

p
is the standard deviation for _y. By

dimensional arguments we can estimate the ratio s0=s.
Dimensionally we have the ratio s=s0 to be a character-

istic time scale. For the viscous subrange we have

s0=sz
ffiffiffiffiffiffi
3=n

p
. This ratio is independent of b, but if large

antennae with bOh0 were considered, a b-dependence

would appear. The dependence on b is found in the

exponent of Eq. 17.

[51] Eq. 17 can be used to measure the time vari-

ability of the velocity signal obtained by the antennae of

plankton. In this case we have a good measure in the

number of upward zero crossings per time unit for

U
*
Z0,

dhN ðU
*
Z 0Þi

dt
z

1

2p

ffiffiffi
3

n

r
; ð18Þ

for b!h0. The factor 1=2p has a basis in the analysis, but

other numerical coefficients in Eq. 18 are uncertain and

therefore omitted. Small b makes the antennae less

sensitive to turbulent noise, but at the same time also

less sensitive to velocity variations induced by moving

prey, because for small spatial separations the velocity

differences are also small.

[52] The reference Gaussian case is given by a

dashed line in Fig. 10. We find that this nonintermittent

limit has limited applicability for the present problem,

but it contains the correct scaling with parameters b, 3,

and n and can serve as an order-of-magnitude estimate.

While the Gaussian approximation gives a level crossing

frequency that falls off as eKðU
*
tK =rÞ2 for large U

*
tK =r, we

find that the results in Fig. 10 are best described by a

level crossing frequency scaling as eKjU
*
tK =rj for large
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Fig. 11 Average duration hT i of the time intervals spent above a selected signal
level U

*
(red line). This result, obtained by Eq. 19, can be used to measure the

average duration of pulsations in the velocity variations along the predator’s
antennae, where different amplitudes in the velocity variations (given by U

*
)

will have different durations. The time durations are given in units of the Kolmo-
gorov time tK (see Table 1). Taking a large negative value of the threshold level
U
*
, we find that almost all of the signal is above this reference level, and hT i=tK

diverges as U
*
/KN. A dashed line gives the reference Gaussian result.
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U
*
tK =r. For values of jU

*
jO0:5b=tK , the Gaussian

result thus gives level crossing frequencies that are too

small.

Average Duration of Level Crossings

[53] The analysis outlined so far has addressed the

problem of the frequency of excess signals detected

by organisms perceiving velocity differences. Such sig-

nals compete with signals indicating the presence of

prey. However, the argument addressed only the fre-

quency of excursions in the signal. To complete the

argument we also need an indicator of the duration

of excesses: if these are significantly different for prey

and noise, then it is possible for the predator to avoid

confusion. For the duration of the prey-induced veloc-

ity perturbation we have, apart from a numerical

factor, tpreywp=V
*
for a given prey velocity V

*
with

respect to the local flow at an impact parameter p (see

Fig. 4). The impact parameter that gives rise to a

selected peak value U
*

of the velocity difference

perturbation ypreyðtÞ was found by Eq. 12 to be

p
*
zðmbAV

*
=U

*
Þ1=ðmC1Þ, giving a corresponding

time duration tpreywðmbAV
*
=U

*
Þ1=ðmC1Þ=V

*
Z

ðmbA=U
*
Þ1=ðmC1Þ=Vm=ðmC1Þ

*
Compared with slower

prey, rapidly moving prey with the same impact par-

ameter p induces a relative velocity disturbance with a

shorter duration as observed by the predator. By these

foregoing expressions we have relations that express the

peak value of the detected velocity signal ymax and the

time duration of the detected signal by Eq. 13, all

expressed in terms of the prey velocity V
*
and the

selected velocity difference threshold level U
*
.

[54] For random noise we can generally argue (see

Kristensen et al. 1991) that an average time hT i between
an upward and a downward crossing of a level U

*
is

estimated (although not an exact analytical result) by

the average time spent above a reference level divided

by the number of upward crossings; that is,

hT ðU
*
ÞiZ

ÐN
U

*
PðyÞdyÐN

0 _yPðU
*
; _yÞd _y : ð19Þ

The result obtained for the present problem is shown in

Fig. 11. We find by inspection of the figure that the

average duration of positive excursions of the velocity
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difference yðtÞ between base and tip of the antennae of a

copepod is 7tK or less. For large negative U
*
, all of the

time is spent above the reference level, so hT ðU
*
Þi is

diverging for U
*
/KN.

[55] The presentation in Fig. 11 concerns only the

case of the average duration from an upward crossing of

a reference level to the first downward crossing of the

same level. The analysis of the average time duration

from a downward crossing to the first upward crossing

of the same level can be analyzed by precisely the same

arguments as used above. The results are not strictly

symmetric to those in Fig. 11 because of intermittency

effects that imply a slight skewness of the relative ve-

locity signal. We can, however, still use Fig. 11 as illustra-

tive by letting only the part with U
*
r

ffiffiffiffiffiffi
3=n

p
R0 represent

jU
*
j.
[56] Again, we can give the result that would be

obtained from a Gaussian random process (Kristensen

et al. 1991),

hT ðU
*
ÞiZp

s

s0 e
1
2U

2
*
=s2 ! erfc

1ffiffiffi
2

p U
*
=s

� �
; ð20Þ

where erfcðxÞh ð2= ffiffiffi
p

p Þ ÐNx eKx2dx is the complementary
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error function. For large U
*
the Gaussian limit has the

simple result hT ðU
*
/NÞiZ ffiffiffiffiffiffi

2p
p ðs2=s0Þ=U

*
. Inspection

of Fig. 11 indicates that for large U
*
the 1=U

*
variation

of the Gaussian model is in acceptable agreement with

the results, albeit with a modified numerical coefficient.

Note that the statistical uncertainties due to the finite

data set when estimating Pðy; _yÞ become noticeable for

large U
*
in Fig. 11.

Discussion

[57] We have summarized analytical results for plank-

tonic predator–prey encounter and capture rates. Some

of the results are known from the literature (Rothschild

and Osborn 1988; Osborn 1996; Mann et al. 2005) and,

in particular, also from numerical simulations (Pécseli

and Trulsen 2007; Pécseli et al. 2012) but are here pre-

sented in a simplified version amenable for comparison

with observations. The range of validity of the results is

generalized to the smallest scales (identified as the

Batchelor scale), where Brownian motions also become

of importance, and we argued that this limit can be

relevant for organisms on 100-mm scales. The analysis

is formulated in terms of as few parameters as possible.

The flow (i.e., water) is characterized by its kinematic

viscosity n, turbulence by the specific dissipation rate 3,

and plankton by its encounter or capture range R, an

opening angle q of its field of perception, and a time Dt

needed for capturing prey. With this information, and

possibly added characteristic velocities for predator and

prey, we can predict encounter rates and capture prob-

abilities in terms of some constants and an empirically

obtained universal probability density for transit times.

Results are presented in terms of statistical averages and

do not directly apply to individual observations. We find

a characteristic dome-shaped average capture rate (Mac-

Kenzie et al. 1994), as illustrated in Fig. 3, with an opti-

mum turbulence level given as 3z0:35R2=Dt3. The

results agree with observations in nature (MacKenzie

and Kiørboe 2000). Considering individual species and

different capture processes, other parameters may also

be of importance (relative orientations of predator and

prey, etc.), but the parameters selected here are universal

and relevant for all plankton.

[58] The capture range, or range of interception R,

can depend on many local parameters, such as light
q 2014 by the Association for the Sciences of Limnology and Oceanography,
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conditions (Fiksen et al. 1998). The basic results from

our previous studies apply as long as R can be consid-

ered constant, that is, when these local conditions are

unchanged. For visual predators (Aksnes and Giske

1993; Aksnes and Utne 1997) we can argue that this

assumption of a fixed value for R is justified. Ideas for

letting the interception distance R vary with the turbu-

lence level have been suggested: basically, in a turbulent

environment prey has to be closer to a predator for its

motions to be detected compared with quiet conditions

(Saiz and Kiørboe 1995). Such modifications are readily

included in our models by letting RZRð3Þ, rather than
having R and 3 be independent variables. Such a model

relies on the assumption that disturbance from prey can

be unambiguously distinguished from turbulent fluctu-

ation. We argued, however, that a clear distinction of the

origin of perturbations detected by the antennae of a

copepod is not logically possible. To have a simple yet

realistic model for a comparison of prey-induced signals

and turbulent noise, we introduce two simple models

(Eqs. 12 and 13) for the strength and duration of a signal

generated by prey in the vicinity of a predator. Typical

perturbations induced by moving prey scale as mbAV
*
=

pmC1 in terms of prey velocity V
*
and impact parameter

p (see Fig. 4), with mZ1; 2; 3 for relevant cases (Visser

2001). Rapidly moving prey can be recognized as giving

a large-amplitude signal. There may be good reasons for

prey to move rapidly, because this reduces the time

available for capture and thus the capture probability,

but this advantage is thus not without drawbacks.

Slowly moving prey induce velocity variations in the

flow around the predator with slowly varying disturb-

ances (with a duration wb=V
*
) that can be mistaken

for turbulence-induced perturbations, whereas rapid

motion gives a signal that can be distinguished from

the turbulence.

[59] To quantify the probabilities of observing a

certain amplitude level of turbulence-induced signals,

we use the average frequency for the velocity difference

between base and tip of a copepod’s antennae to cross a

selected threshold level, say, U
*
. Analytical expressions

for this frequency require the joint probability density

Pðy; _yÞ of the signal yðtÞ and it time derivative _yðtÞ to be

known. We obtain Pðy; _yÞ by analyzing numerical solu-

tions of the Navier-Stokes equation obtained for
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turbulent conditions. The result is shown in Fig. 8, and

the average frequency for yðtÞ to exceed some threshold

level U
*
is shown in Fig. 10. We normalized U

*
with

r
ffiffiffiffiffiffi
3=n

p
h r=tK , where for R we insert the relevant value

for b. Times are measured in units of the Kolmogorov

time tK . We inserted a dashed line in Fig. 10 for the

Gaussian reference case. Although this Gaussian model

retains the correct dimensionless scaled variables, we

find that it serves best as a guide for orders of magnitude

only. In the coastal zones used for reference above, we

have tKw0:1K3:0 s. Taking, for instance, tKZ3 s,

the results in Fig. 10 imply that the velocity difference

between base and tip of a 3-mm antenna of a copepod

exceeds 0.5 mm s–1 on average every 150 s. We can con-

sider one more example by noting that studies of Labi-

docera (Yen et al. 1992) demonstrated that their large

spike receptor may be considered a relative velocity

detector, requiring only a 20 mm s–1 velocity difference

of fluid across the antenna to trigger a neural response.

For this case we will have U
*
b=tk/1 for most realistic

parameters. This velocity level will correspond to values

near the origin of the abscissa in Fig. 10 and will be

exceeded due to turbulent motions on average once in

w10 Kolmogorov times tK , that is, on average every 30 s

for the coastal zone conditions mentioned above.

Related studies (Yen et al. 1992; Svensen and Kiørboe

2000; Kiørboe 2013) indicate that velocities less than

100 mm s–1 can elicit attack, although these values

depend on orientation, light conditions, and so on.

Again, we can use Fig. 10 to estimate the frequency of

occurrence of velocity differences yw100 mm sK1 and

find, again using bZ3 mm and tKZ3 s, that this level

is exceeded on average once every 35 s.

[60] We also argued that the time duration of the

velocity perturbation can serve to distinguish prey from

turbulence-induced noise. If the time scale for the vel-

ocity variations due to turbulence are long compared

with the duration of the passage of prey, we expect the

prey signal with duration tpreywp=V
*
to appear as a

localized or narrow “spike” that is readily recognizable,

even if the long time variations of the turbulent signal

can have a large amplitude. This effect will be most con-

spicuous in the open ocean, where small values of 3

imply variations with a long time scale of yðtÞ (see

Table 1). In the other extreme, where the turbulent
q 2014 by the Association for the Sciences of Limnology and Oceanography,
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motions are very rapid, for instance, at the tidal front

with large 3 (see Table 1), a comparatively slow velocity

perturbation due to prey motion can modulate the tur-

bulence signal (see Fig. 6), and if the amplitude in this

modulation is sufficiently strong, it can again be recog-

nizable. Fig. 6 illustrates such a case. For this latter scen-

ario to become effective, within the time duration tprey

(given in Eq. 13) of the perturbation induced by the

predator there should be a negligible probability for

the turbulent relative velocity fluctuations yhusð0; tÞK
usðb; tÞ to exceed the perturbations induced by the prey,

whose velocity amplitude is ymaxwmbAV
*
=pmC1. We

can take this problem as a case for illustrating the use

of Figs. 10 and 11. Measuring tprey in units of tK , we can

use Fig. 11 to estimate the normalized magnitude U
*
=ffiffiffiffiffiffiffiffiffiffi

b23=n
p

ZU
*
tK =b of the perturbation that gives rise to a

velocity excursion of that selected duration. Having

obtained a characteristic turbulent velocity this way,

we can then use Fig. 10 to estimate how often it occurs

within a Kolmogorov time tK . As a numerical example,

we take conditions for the shelf or the coastal zone (see

Table 1), with tKZ3 s, and consider a predator with

antennae where bZ5 mm, which is amply within the

viscous subrange here. Depending on the other relevant

predator characteristics, these parameters can be close to

those giving the optimum conditions in Fig. 3. Given an

impact parameter of, say, pZ5 mm and a velocity

V
*
Z2 mm sK1, the duration of the velocity pertur-

bation induced by moving prey is of the order of

1K2 tK . Turbulence-created perturbations with a simi-

lar duration have U
*
tK =bz0:25 according to Fig. 11.

Using Fig. 10, we find that this happens on average once

every 10–15 tK . With a prey concentration of, for

instance, 50 L–1, then according to Eq. 2 the turbulence

will give an encounter rate of 0.1 s–1, corresponding here

to once every 5K10 tK on average. This value refers to

a predator moving passively with the flow. For predators

with self-induced motions, the encounter rate will be

larger (see Eq. 7). For the selected parameters, the pre-

dator will receive more “true” signals from prey than

“false” signals from the turbulent motions. For this

case we can thus use a fixed value for the range of inter-

ception R, and the results summarized in the “Results”

section apply. Figs. 10 and 11 serve as tools

for describing how a copepod perceives a turbulent
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environment. The figures are based on a few essential

parameters only but are easy to apply in practice.

[61] The arguments concerning the turbulence-

induced false signals can be applied for prey as well:

turbulent motions can incorrectly be interpreted as

evidence for a nearby predator. It is thus interesting

that there are observations of the copepod Acartia clausi

increasing the number of escape reflexes, apparently

directly in response to enhanced turbulence levels

(Saiz and Alcaraz 1992b). MacKenzie and Kiørboe

(1995) observed the feeding and swimming behavior

of freely swimming cod (Gadus morhua) and herring

(Clupea harengus) larvae in calm and turbulent

(3w7:4!10K8 mm2 sK3) laboratory environments at

limiting and satiating abundances of Acartia tonsa.

They observed that attack position rates were signifi-

cantly higher in turbulent than in calm water at low

food abundances for the two size groups of cod. The

difference in cod attack position rate between calm

and turbulent water was much less when prey were

more abundant. Attack position rates of herring larvae

were higher in turbulent water than in calm water;

however, the difference was less significant.

[62] The discussion of the encounter rate JN in the

present study referred to predator-prey encounters but

will apply equally well to a related analysis of mating of

plankton by estimating an average number of male-

female encounters per time unit.

Significance to Aquatic Environments

[63] Turbulence presents the most effective mixing

mechanism available in nature. It affects flow motions

on a variety of scales, from global circulation patterns

down to the Batchelor scale, where classical thermal

diffusion begins to have a role. Turbulence will, in

particular, have a role in the feeding rate of plankton.

The analytical expressions describing these effects take

different forms depending on the scale sizes they

describe. The present work concentrates on the viscous

and the inertial subranges for conditions where locally

homogeneous and isotropic turbulence can be assumed.

The results are presented in terms of statistical averages.

Information about the motion of individual organisms

is thus lost. Analytical approximations are given as func-

tions of scaled variables expressed in terms of basic
q 2014 by the Association for the Sciences of Limnology and Oceanography,
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parameters of the problem. The water is characterized

by its kinematic viscosity n, and turbulence, by the

specific energy dissipation 3. The volume where plank-

ton observes and captures prey is modeled as conical

form with radius R and an opening angle q, where

hemispheres with qZ90∘ and spheres with qZ180∘

are special cases. Motion of plankton is characterized

by a velocity and a time Dt needed for capturing prey.

It is an advantage to use dimensionless scaled variables

so that compact expressions can be obtained in terms of,

for instance, R3
ffiffiffiffiffiffi
3=n

p
, as in Eq. 3, instead of using R, 3,

and n individually, thus greatly simplifying experimental

or numerical testing of the expressions.

[64] While turbulence enhances encounter rates,

it can also have adverse effects for a predator by reducing

capture rates. We argued that there can be two different

reasons for this: reducing the time available for capture,

and generating noise in the signals detected by the

antennae of predators. Describing the latter problem,

we need the joint probability density of velocity differ-

ence across the predator’s antennae, as well as the time

derivative of this signal. These probability densities were

obtained empirically by using data from numerical

simulations. The present analysis provides tools for esti-

mating the frequency of occurrence of the magnitude of

the fluctuations in velocity differences over antenna

lengths and allows estimates of the average durations

of such velocity perturbations. For low turbulence

levels, the velocity variations yðtÞ have long time scales

and small amplitudes; thus, the turbulence contributes

to the predator–prey encounter rate without causing

disturbing noise.

[65] Several of the results summarized in the first

part of the present work have already been tested by

observations of plankton, by laboratory experiments,

or by numerical simulations. The results that follow

have the advantage of clearly separating turbulent sub-

ranges. The results presented for Brownian diffusion

range address the smallest scales where thermal motions

compete with turbulent motions. The importance of

this range has been speculated but not studied in greater

detail. Current numerical simulations will be of little use

here, since they (usually) do not include thermal

motions. Calculations of plankton response to turbulent

motions in the surroundings are open for direct
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laboratory tests: plankton can be exposed to a turbulent

environment in a laboratory where the specific energy

dissipation 3 can be controlled. It is then possible to

directly observe the frequency of escape or attack reac-

tions that are induced solely by turbulent motions.
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Liberzon, A., B. Lüthi, M. Holzner, S. Ott, J. Berg, and J. Mann. 2012.

On the structure of acceleration in turbulence. Physica D 241:

208–215. doi:10.1016/j.physd.2011.07.008.

MacKenzie, B. R., and T. Kiørboe. 1995. Encounter rates and swim-

ming behavior of pause-travel and cruise larval fish predators

in calm and turbulent laboratory environments. Limnol.

Oceanogr. 40: 1278–1289. doi:10.4319/lo.1995.40.7.1278.

MacKenzie, B. R., and T. Kiørboe. 2000. Larval fish feeding and tur-

bulence: A case for the downside. Limnol. Oceanogr. 45: 1–10.

doi:10.4319/lo.2000.45.1.0001.

MacKenzie, B. R., T. J. Miller, S. Cyr, and W. C. Leggett. 1994. Evi-

dence for a dome-shaped relationship between turbulence and

larval fish ingestion rates. Limnol. Oceanogr. 39: 1790–1799.

doi:10.4319/lo.1994.39.8.1790.

Mann, J., S. Ott, H. L. Pécseli, and J. Trulsen. 2003. Experimental

studies of occupation times in turbulent flows. Phys. Rev. E 67,

056307. doi:10.1103/PhysRevE.67.056307.
q 2014 by the Association for the Sciences of Limnology and Oceanography,

Downloaded at ASLO 
Mann, J., S. Ott, H. L. Pécseli, and J. Trulsen. 2005. Turbulent particle

flux to a perfectly absorbing surface. J. Fluid Mech. 534: 1–21.

doi:10.1017/S0022112005004672.

Mann, J., S. Ott, H. L. Pécseli, and J. Trulsen. 2006. Laboratory studies

of predator-prey encounters in turbulent environments:

Effects of changes in orientation and field of view. J. Plankton

Res. 28: 509–522. doi:10.1093/plankt/fbi136.

Osborn, T. 1996. The role of turbulent diffusion for copepods with

feeding currents. J. Plankton Res. 18: 185–195. doi:10.1093

/plankt/18.2.185.

Pécseli, H. L. 2000. Fluctuations in Physical Systems. Cambridge

Univ. Press.

Pécseli, H. L., and J. Trulsen. 2007. Turbulent particle fluxes to per-

fectly absorbing surfaces: A numerical study. J. Turbul. 8, N42.

doi:10.1080/14685240701615986.

Pécseli, H. L., and J. Trulsen. 2010. Transit times in turbulent flows.

Phys. Rev. E 81, 046310. doi:10.1103/PhysRevE.81.046310.

Pécseli, H. L., J. Trulsen, and Ø. Fiksen. 2010. Predator-prey encoun-

ter rates in turbulent water: Analytical models and numerical

tests. Prog. Oceanogr. 85: 171–179. doi:10.1016/j.pocean.2010

.01.002.

Pécseli, H. L., J. Trulsen, and Ø. Fiksen. 2012. Predator-prey encoun-

ter and capture rates for plankton in turbulent environments.

Prog. Oceanogr. 101: 14–32. doi:10.1016/j.pocean.2011.12

.001.

Rice, S. O. 1945. Mathematical analysis of random noise, II. Bell

System Tech. J. 24–25: Pp. 1–162. Reprinted in N. Wax [ed.],

Selected Papers on Noise and Stochastic Processes. Pp. 133–

294. Dover, 1954.

Richardson, L. F. 1926. Atmospheric diffusion shown on a distance-

neighbour graph. Proc. R. Soc. Lond. A 110: 709–737. doi:10

.1098/rspa.1926.0043.

Rollefson, J. P. 1978. On Kolmogorov’s theory of turbulence and

intermittency. Can. J. Phys. 56: 1426–1441. doi:10.1139/p78

-190.

Rothschild, B. J., and T. R. Osborn. 1988. Small-scale turbulence and

plankton contact rates. J. Plankton Res. 10: 465–474. doi:10

.1093/plankt/10.3.465.

Saiz, E., and M. Alcaraz. 1991. Effects of small-scale turbulence

on development time and growth of Acartia grani (Copepoda:

Calanoida). J. Plankton Res. 13: 873–883. doi:10.1093

/plankt/13.4.873.

Saiz, E., and M. Alcaraz. 1992a. Enhanced excretion rates induced by

small-scale turbulence in Acartia (Copepoda: Calanoida). J.

Plankton Res. 14: 681–689. doi:10.1093/plankt/14.5.681.

Saiz, E., and M. Alcaraz. 1992b. Free-swimming behaviour of Acartia

clausi (Copepoda: Calanoida) under turbulent water move-

ment. Mar. Ecol. Prog. Ser. 80: 229–236. doi:10.3354

/meps080229.

Saiz, E., and T. Kiørboe. 1995. Predatory and suspension-feeding

of the copepod Acartia-tonsa in turbulent environments.

Mar. Ecol. Prog. Ser. 122: 147–158. doi:10.3354/meps122147.
Inc. / e-ISSN 2157-3689

on August 13, 2014



105 † Predator–prey encounter and capture rates † Pécseli et al.
Schroeder, D. V. 2000. An Introduction to Thermal Physics. Addison

Wesley Longman.

Sundby, S., and P. Fossum. 1990. Feeding conditions of arcto-

Norwegian cod larvae compared with the Rothschild-Osborn

theory on small-scale turbulence and plankton contact rates.

J. Plankton Res. 12: 1153–1162. doi:10.1093/plankt/12.6.1153.

Svensen, C., and T. Kiørboe. 2000. Remote prey detection in Oithona

similis: Hydromechanical versus chemical cues. J. Plankton

Res. 22: 1155–1166. doi:10.1093/plankt/22.6.1155.

Tennekes, H. 1968. Simple model for the small-scale structure of

turbulence. Phys. Fluids 11: 669–671. doi:10.1063/1.1691966.

Tennekes, H. 1973. Intermittency of the small-scale structure of

atmospheric turbulence. Boundary-Layer Meteorol. 4:

241–250. doi:10.1007/BF02265235.

Tsinober, A., P. Vedula, and P. K. Yeung. 2001. Random Taylor

hypothesis and the behavior of local and convective accelera-

tions in isotropic turbulence. Phys. Fluids 13: 1974–1984.

doi:10.1063/1.1375143.

Urtizberea, A., and Ø. Fiksen. 2013. Effects of prey size structure and

turbulence on feeding and growth of anchovy larvae. Environ.

Biol. Fishes 96: 1045–1063. doi:10.1007/s10641-012-0102-6.

Visser, A. W. 2001. Hydromechanical signals in the plankton. Mar.

Ecol. Prog. Ser. 222: 1–24. doi:10.3354/meps222001.
q 2014 by the Association for the Sciences of Limnology and Oceanography,

Downloaded at ASLO 
Visser, A. W., and T. Kiørboe. 2006. Plankton motility patterns and

encounter rates. Oecologia 148: 538–546. doi:10.1007/s00442

-006-0385-4.

Visser, A. W., P. Mariani, and S. Pigolotti. 2009. Swimming in turbu-

lence: Zooplankton fitness in terms of foraging efficiency and

predation risk. J. Plankton Res. 31: 121–133. doi:10.1093

/plankt/fbn109.

Visser, A. W., H. Saito, E. Saiz, and T. Kiørboe. 2001. Observations of

copepod feeding and vertical distribution under natural tur-

bulent conditions in the North Sea. Mar. Biol. 138: 1011–1019.

doi:10.1007/s002270000520.

Yen, J., P. H. Lenz, D. V. Gassie, and D. K. Hartline. 1992. Mechan-

oreception in marine copepods: Electrophysiological studies

on the first antennae. J. Plankton Res. 14: 495–512. doi:10

.1093/plankt/14.4.495.

Zilman, G., J. Novak, A. Liberzon, S. Perkol-Finkel, and Y. Benayahu.

2013. The hydrodynamics of contact of a marine larva, Bugula

neritina, with a cylinder. J. Exp. Biol. 216: 2789–2797. doi:10

.1242/jeb.083352.

Received: 9 July 2013

Amended: 19 February 2014

Accepted: 10 April 2014
Inc. / e-ISSN 2157-3689

on August 13, 2014


	Outline placeholder
	Introduction
	Model Description
	Results
	Summary of Results for Different Subranges
	Self-Induced Motions
	Captures
	Capture with Varying Turbulence Intensity
	Average Frequencies of Level Crossings
	Average Duration of Level Crossings

	Discussion
	Significance to Aquatic Environments


