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Abstract
Most mesopelagic fish are small planktivores that migrate up at nightfall to feed in the safety of darkness and

descend to depth at dawn to escape visual predators. However, the trophic roles can reverse since mesopelagic
fishes also predate eggs and larvae of their predators. We use the Atlantic bluefin tuna as a model species to test
the hypothesis that fishes in the open ocean synchronize spawning to moon-lit nights (when mesopelagic
fishes avoid near-surface waters) to increase offspring fitness. Our analysis over two decades of field observations
shows that tuna spawn most intensively the week before full moon. This fits predictions from a mechanistic
model where spawning around full moon increases offspring fitness by two orders of magnitude due to low pre-
dation from mesopelagic fishes. Circalunar patterns of food availability can also favor fitness of offspring
spawned the days before full moon. Our findings suggest that mesopelagic fishes may have an important impact
on pelagic fish through predation of early life stages and cause an evolutionary drive to synchronize spawning
to the lunar cycle.

The moon affects life on Earth through nighttime illumina-
tion and cyclic tides. This creates predictable conditions that
can be exploited by organisms to maximize fitness
(Fryer 1986; Kronfeld-Schor et al. 2013; Palmer et al. 2017).
For instance, some birds and mammals modify their foraging
behavior in moon-lit nights to increase feeding success (preda-
tors) or reduce predator encounters (prey) (Mougeot and
Bretagnolle 2000; Jetz et al. 2003; Prugh and Golden 2014).
Some reef invertebrates (Richmond and Hunter 1990; Žuljevi�c
et al. 2018; Neely and Butler 2020) and fishes (Takemura
et al. 2010; Shima et al. 2020) synchronize spawning
with the moon to increase fecundation, disperse offspring

with tidal currents, or minimize encounters with nocturnal
predators.

Previous studies (Hern�andez-Le�on 2008; Shima et al. 2021,
2022) hypothesized that some fishes whose larvae remain near
the sea surface day and night synchronize spawning
with lunar cycles to minimize offspring encounters with
diel vertical migrants such as mesopelagic fish predators
(e.g., lanternfishes). Mesopelagic fishes are the most abundant
vertebrates on the planet (Irigoien et al. 2014), they live in the
open ocean, and many of them migrate up and down in
the water column in synchrony with surface light intensities
(Benoit-Bird et al. 2009; Bianchi and Mislan 2016). This verti-
cal migration allows them to maintain a relatively stable ambi-
ent light environment (Langbehn et al. 2019). At dusk, when
it becomes too dark for their own predators to spot them, they
rise closer to surface waters to feed. At dawn, they migrate
back to depth. However, during full moon, surface light inten-
sities are around three orders of magnitude higher than during
new moon (starlit) nights (Kaartvedt et al. 2019). Therefore,
mesopelagic fish halt their upward migration at greater depth
during these periods, as it is no longer safe for them to migrate
to the surface (Benoit-Bird et al. 2009; Prihartato et al. 2016).
Although Shima’s hypothesis that some fishes synchronize
spawning with lunar cycles to minimize offspring encounters
with diel vertical predators is appealing, it lacks empirical sup-
port because previous studies (Shima et al. 2021, 2022) were
performed on coral reef fishes, whose synchrony with the
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moon may be masked by other processes driven by coastal
tides, settlement to reefs, and nocturnal reef predators
(Johannes 1978).

Changes in mesozooplankton biomass following the moon
cycle can also favor survival of larvae that match their critical
feeding period with the moon period when mesozooplankton
is most abundant. This can occur in systems where full moon
illumination pushes the night vertical position of large zoo-
plankton deeper, reducing top-down predation on the
mesozooplankton that remain near the surface (Pinot and
Jans�a 2001; Hern�andez-Le�on 2008).

Here, we evaluate if Atlantic bluefin tuna Thunnus thynnus
in the Mediterranean Sea synchronizes spawning with the
lunar stage to reduce predation by mesopelagic fish on their
offspring. Atlantic bluefin tuna (hereafter ABFT) is a large
pelagic fish that spawns in warm oligotrophic waters in both
sides of the Atlantic Ocean, in the Gulf of Mexico, Slope Sea,
and the Mediterranean Sea (Richardson et al. 2016; Muhling
et al. 2017). The environment at the spawning grounds facili-
tate a rapid development of their offspring in a low-predator
environment, at the cost of starvation risk due to low food
availability and high metabolic demands (Fiksen and
Reglero 2021; Ottmann et al. 2021b). Spawning in the western
Mediterranean Sea usually starts at the beginning of June and
lasts until mid-July (Alemany et al. 2010) (� 1.5 lunar cycles).
Adults spawn in open pelagic waters and eggs and larvae
always remain within or above the thermocline (top � 25 m).
This makes ABFT a good model species to test if spawning
around full moon reduces predation from mesopelagic fish,
because ABFT is unaffected by other processes driven by the
moon, such as coastal tides, settlement to a substrate, or reef
predators. Furthermore, there is no evidence that near-surface
zooplankton abundance varies with the moon cycle in this
oligotrophic area, as zooplankton dynamics are likely more
driven by bottom-up processes related to productivity
(Fern�andez de Puelles et al. 2007, 2014). As in other systems
elsewhere, the community of mesopelagic fish in the study
area conducts diel vertical migrations (Olivar et al. 2012), and
includes species whose vertical position in the water column
respond to ambient light intensity (Langbehn et al. 2019).

We apply two sets of mechanistic models to quantify how
moon phases affect fitness of ABFT early life stages via its
effect on predation intensity from mesopelagic fish. First, we
build on our recent models of larval ABFT fitness as a function
of water temperature, food availability, and invertebrate preda-
tors (Fiksen and Reglero 2021; Ottmann et al. 2021b), and sec-
ond, we use the local ambient light in combination with
other behavioral models (Langbehn et al. 2019; Ljungström
et al. 2021) to predict optimal migration and foraging of
mesopelagic fish. This lets us predict the effect of mesopelagic
fish preying on ABFT early life stages and predict optimal
spawning time in terms of survival from birth to a given body
size. We then combine these models to predict survival
chances of tuna eggs spawned at different times of the moon

cycle, each experiencing different combinations of encounter
rates and predator overlap as they hatch and grow larger.
Finally, we compare predictions from the mechanistic model
with long-term observations of tuna spawning to test if ABFT
spawning intensity is affected by the lunar cycle. The combi-
nation of both (statistical and mechanistic) approaches allows
us to suggest a causal nexus to statistical correlations observed
between spawning activity and the moon cycle.

Natural mortality rates in early life stages of fish are highly
variable and hard to measure. Thus, we do not expect to pre-
dict accurate values of survival (they may be wrong by several
orders of magnitude). Instead, our goal is to evaluate how tem-
poral cycles in larval fitness drive optimal spawning phenol-
ogy of fishes. Therefore, even if the predicted change in larval
fitness caused by mesopelagic fish is inaccurate, the direction
and relative shift of the effect remains consistent.

Methods
A mechanistic model of growth and survival of early life
stages in ABFT

Temporal variation in the environment affects feeding and
growth rates, as well as the predation risk of fish early life
stages. This creates cycles in expected fitness of eggs and
larvae born at different times, and thus optimal spawning
phenology. We define larval fitness FP (dimensionless) as the
probability that an ABFT egg released at a given date and hour
will hatch HE, grow, and survive during the time it takes to
develop from an egg to a larva of 7.5 mm standard length (SL;
Reglero et al. 2018; Fiksen and Reglero 2021). We model two
sources of mortality from which we have empirical and experi-
mental data—and find survival probabilities given densities of
mesopelagic fish SP,M, and seasonal invertebrate predators SP,I.
We include all other sources of size-dependent background
mortality (as survival probability SP,B) using McGurk’s (1986)
empirical model for fish eggs and larvae, adapted by Fiksen
and Reglero (2021) to ABFT early life stages in the Mediterra-
nean Sea (see details in Supplementary Methods SM2):

FP ¼HE �SP,I �SP,M �SP,B ð1Þ

At a body length of 7.5 mm, ABFT larvae complete the
notochordal flexion and become predominantly piscivorous
(Blanco et al. 2018). In the mechanistic individual-based
model (see details in Supplementary Methods SM1, SM2), we
release an egg every hour of the year to calculate fitness at any
potential spawning time as a direct function of the environ-
mental conditions. Then, we identify the spawning time that
maximizes fitness.

The environmental drivers include water temperature from
historical records, number of daylight hours and light inten-
sity from the sun and the moon obtained from the ESOP2 ver-
sion of the Miami Isopycnic Coordinate Ocean Model
(MICOM) and lunar irradiance estimates (Denton 1990;
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Drange and Simonsen 1996), and ABFT prey (nauplii and
Cladocera) and predator (mesopelagic fish and seasonal inver-
tebrates) densities resolved to an hourly scale over the annual
cycle (Fig. 1). All these variables are derived from empirical
observations and are detailed in Supplementary Methods SM1.
Light attenuation is calculated with local measurements of
light in the water column. Cladocera densities are interpolated
from monthly observations in a field station inshore of
the spawning grounds (Fern�andez de Puelles et al. 2007;
Atienza et al. 2016) and scaled for the depth distribution and
reduced concentrations with distance offshore (Fiksen and
Reglero 2021). Also, based on similar combinations of time-
series inshore and surveys in the spawning area the nauplii den-
sity is held constant through the season at 400 ind. m�3, as a
typical value. While we assume that the abundance of nauplii
is not affected by moon cycles in our study area, other studies
elsewhere have found that near-surface mesozooplankton abun-
dance follows circalunar patterns (Hern�andez-Le�on 2002). We
therefore add a sensitivity analysis comparing larval fitness in
conditions where nauplii abundance is constant vs. following
circalunar fluctuations (see Supplementary Methods SM1).

Growth and development of eggs and larvae is modeled
following Fiksen and Reglero (2021) and depends on water
temperature and daily feeding activity (larval ABFT only feed
during the day, as it is too dark at night for them to see
(Hilder et al. 2017, 2019). Further details and equations can be
found in Supplementary Methods SM2. We model ABFT feed-
ing as a visual predator with a type II functional response
using measured values of visual acuity (Hilder et al. 2019) and
swimming speeds (Reglero et al. 2015). Total mortality of
ABFT is the combined predation from invertebrates, mesope-
lagic fish, and all other sources. We model predation from sea-
sonal invertebrates as represented by the jellyfish Pelagia
noctiluca, which is considered the most important invertebrate
predator of ABFT eggs and larvae in the study region and have
seasonal changes in abundance (Gordoa et al. 2013; Ottmann
et al. 2021b). We model them as passive predators with
Holling type I functional response (see Ottmann et al. 2021b),
using local abundances of P. noctiluca metaephyrae from sur-
veys in the Balearic Seas (Supplementary Table S2) (Ottmann
et al. 2021a) and their clearance rate obtained in laboratory
experiments by Gordoa et al. (2013).

Fig. 1. Simulated environment over a 1-yr period (see “Methods” section) for offshore ABFT in the Balearic Islands spawning ground. (a) Sea-surface
water temperature (�C), and number of daylight hours where the combined irradiance of the sun and the moon enable ABFT larvae to feed effectively
(≥ 2.17 mW m�2 nm�1 at 486 nm); (b) ABFT prey density (individuals m�3); cladocerans and nauplii. Nauplii are held constant at 400 ind m�3; (c) Sea
surface irradiance (mW m�2 nm�1) at midday, midnight and 6 am/pm with clear sky. Lunar cycles, seen most strongly in the dark blue line, follow the
2022 calendar; (d) Density (individuals m�3) of ABFT invertebrate and mesopelagic fish predators. Nightly maxima of mesopelagic fish near the surface
(where ABFT larvae are found) are inversely related to the moon phase.
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Mesopelagic fish are modeled as Holling type II visual pred-
ators, and placed in their predicted light comfort zone
(Langbehn et al. 2019) driven by the sun and lunar cycle. We
parameterize the mesopelagic fish to resemble the myctophid
Bentosema glaciale. While the response of other mesopelagic
fish to ambient light is not as well characterized as for
B. glaciale, previous studies show that vertical positioning in
response to ambient light is widespread in scattering layers
containing mesopelagic fishes (Bianchi and Mislan 2016;
Aksnes et al. 2017; Kaartvedt et al. 2019) and that local species
conduct diel vertical migration (Olivar et al. 2012). We use
densities estimated in surveys for local mesopelagic fishes that
include fish larvae in their diet. Olivar et al. (2012) estimated
summer abundance of mesopelagic fishes in offshore (slope)
areas around the Balearic Islands by towing a mesopelagic
trawl at the deep scattering layer. Among the species that feed
on fish early life stages (Bernal et al. 2015), Benthosema glaciale,
Hygophum benoiti, Hygophum hygomii, Myctophum punctatum,
Ceratoscopelus maderensis, Lampanictus crocodilus, Lobianchia
dofleini, and Notoscopelus elegantus were the most abundant
and had an estimated combined density of 0.0061 ind m�3 in
the near-surface scattering layer. However, we increase this
value by one order of magnitude, because Kaartvedt et al.
(2012) showed that mesopelagic trawls underestimate real
abundances by about one order of magnitude.

Finally, we calculate the effect of other (less understood)
sources of mortality including other predators and diseases using
a statistical size-dependent mortality function (McGurk 1986)
scaled to ABFT early life stages in the Mediterranean Sea (Fiksen
and Reglero 2021).

Analysis of field observations to find ABFT spawning time
within the lunar cycle

We compare the model predictions with spawning inten-
sity in the western Mediterranean Sea using ABFT larvae from
1928 ichthyoplankton samples collected from 2001 to 2020
and the respective environmental and lunar data. We applied
a pre-developed larval index (Alvarez-Berastegui et al. 2020)
that reflects the spawning activity derived from larval abun-
dances in the spawning ground (see Supplementary Methods
SM3 for further details). The larval index is, in essence, a
bayesian hurdle-gamma generalized additive model (GAM)
that evaluates standardized larval presence (hurdle part of
the model) and abundance (positive part of the model) as a
function of environmental conditions. Water temperature
and salinity are key environmental variables for where and
when ABFT spawn (Ingram et al. 2017). As explanatory vari-
ables, we use geographic position Lon_lat, year as a factor
Year, normalized hour of the day Hour_norm, day of the year
Day, temperature residuals of the mixed layer Temp_res, salin-
ity anomaly of the mixed layer S_anom. We further include
lunar phase at the time of spawning as an additional variable
in the GAM to evaluate how moon phase affects spawning
intensity.

YL ¼ β0þYearþ s1 Lon_latð Þþ s2 Hour_normð Þþ s3 Dayð Þ
þ s4 Temp_resð Þþ s5 S_anomð Þþ s6 Moon_phaseð Þþε ð2Þ

Here, YL are captures per unit effort (standardized larvae
m�2), β0 is the intercept, s1-6 are each for the smoothing
parameters, and ε is the model error. The smoothing parame-
ter of environmental variables are restricted to three knots to
prevent overfitting the model. Temperature residuals are com-
puted for each year from the linear temperature increase over
the season, and salinity anomaly is standardized to the annual
mean salinity (see Alvarez-Berastegui et al. 2020 for further
details of the model). Lunar phase at the time of spawning is
back-calculated from mean larval size (corrected as in
Ottmann et al. 2022 for formalin shrinkage) applying
temperature-dependent equations for egg and larval develop-
ment rates (see Supplementary Methods SM3 for details and
limitations of this approach). This enables us to identify the
lunar phases when ABFT spawns most or least actively and
compare it with the model predictions of larval fitness.

Results
Predicted survival and optimal spawning times with moon
phases and mesopelagic predators

Figure 2 shows the modeled chance that an egg survives
from the time it is spawned until it hatches (egg survival;
Fig. 2b) and then until it becomes a larva of 7.5 mm SL (larval
fitness; Fig. 2c,d). The growth and development rates are func-
tions of habitat conditions at the spawning ground. If there is
no effect of mesopelagic fish predators (black line in Fig. 2c,d),
the model predicts that, in an average year, an egg is viable
between the beginning of June and the second week of July
(Fig. 2c). The onset of the spawning window is triggered by a
rise in water temperature, where 19�C is the minimum tem-
perature for eggs to hatch (Reglero et al. 2018). As the season
progresses, the water temperature keeps rising, accelerating
egg hatching and larval growth rate. At the beginning, faster
development increases larval fitness because it shortens the
time they are exposed to predators and other sources of mor-
tality. However, faster growth needs to be matched with suffi-
cient energy supply. When the temperature rises above a
certain threshold, larval metabolic demands exceed the energy
supplied by available food and larvae starve (abrupt drop of fit-
ness in Fig. 2c,d). As a result of this food-temperature tradeoff,
larval fitness increases asymptotically across the spawning
window until collapsing at the metabolic breakpoint around
04 July (Fig. 2c).

Model predictions show that predation by mesopelagic
fishes can disrupt the pattern described above and reduce lar-
val fitness by up to two orders of magnitude when spawning
coincides with new moon and mesopelagic fish migrate clos-
est to the surface (shown for 2 yr in Fig. 2c, blue and orange
lines). Highest predation by mesopelagic fish occurs at nights
around new moon, as illustrated by the drop in egg survival.
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However, the cumulative effect of predation on eggs, yolk-
sack, and pre-flexion larvae (Fig. 2c,d, blue and orange lines)
show that eggs released within the week before new moon
experience the greatest loss of fitness. Eggs released within the
week before full moon, however, experience minimal loss of
fitness. If moon phases shift across years and we assume all
other environmental variables remain the same, the optimal
spawning time varies from year to year because it fosters a dif-
ferent match with other variables like water temperature and
food availability (Fig. 2c blue and orange lines).

Within each day, eggs spawned at different times of the
day have different fitness depending on the combined effect
of mesopelagic fish predation and the time of day for first
feeding (Fig. 2d, small wiggles in the lines). Individuals
hatched at the beginning of the night experience greater

cumulative predation by mesopelagic fish, reducing their fit-
ness. Individuals that morph from yolk-sack to feeding larva
in the morning have an entire day to feed and grow, increas-
ing their fitness relative to individuals that morph later in the
day or at night. Both these effects are modulated by tempera-
ture and food availability, as they determine how fast eggs
and larvae develop. For instance, under the conditions simu-
lated for 2022, the optimal spawning time is 04 July at 08:00
local time. However, if we increase nauplii density from
400 to 500 nauplii m�3 and keep all other variables the same,
optimal spawning is postponed to the 12 July at 01:00 local
time (Supplementary Fig. S5c). This occurs because greater
food abundance will enable larvae to grow faster under the
higher temperatures later in the season before running into
metabolic meltdown.

Fig. 2. Modeled larval fitness (survival from egg to metamorphosis at a larva of 7.5 mm SL) over time in relation to the moon phase. (a) Moon phases
in 2022. Moon phases in 2021 (not shown) differed by 11 d. (b) Egg survival from spawning to the time of hatching; (c) larval fitness; (d) larval fitness
zoomed in the window of viable spawning. Solid lines indicate daily (b, c) and hourly (d) values; shading in (b) and (c) indicate daily variation; black
color shows the model output assuming there is no effect of mesopelagic fish predators; blue and orange colors show the model output with the lunar
calendars of 2021 and 2022, respectively, with all other environmental variables kept the same; red, dashed line is water temperature (�C); vertical lines
in (d) indicate full moon.
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Observed spawning times in relation to moon phases
The analysis of two decades of field data with the larval

index (GAM model) reveals that ABFT spawn throughout the
entire moon cycle, but they do so more actively during
the bright phase, peaking about 3 d before full moon and dip-
ping about 3 d before new moon (Fig. 3). The selected model
includes moon phase as an important variable for spawning
intensity (positive part of the model), but not for presence/
absence of spawning activity (hurdle part of the model). As
found previously (Alvarez-Berastegui et al. 2020), the model
also identifies other important variables affecting spawning
behavior. This includes water temperature, in both the posi-
tive and hurdle parts of the model, and day-of-year and salin-
ity anomaly in the hurdle part of the model (Supplementary
Figs. S10, S11).

Discussion
Mesopelagic fish are the most numerous vertebrates on

Earth, but their effect as predators of other fish eggs and larvae
is poorly understood. Our results suggest that synchronizing
spawning with the lunar cycle increases offspring fitness of a
pelagic fish, the Atlantic bluefin tuna, due to decreased preda-
tion by mesopelagic fish on eggs and larvae. The mechanistic
model predicts that mesopelagic fish predators can reduce

larval fitness of ABFT by up to two orders of magnitude
compared to a hypothetical scenario where mesopelagic fish
were absent. However, it is the match between lunar phases
with favorable conditions for growth and development that
ultimately determines the optimal time for spawning within
the viable window. Such match/mismatch conditions vary
across years because the moon phase shifts by almost 11 d for-
wards from year to year, while the environment during the
spawning window is more consistent from year to year
(Fig. 2c). We have contrasted our mechanistic model with a
long-term observational dataset that accommodates spatio-
temporal variability of the habitat and multiple lunar calen-
dars. Compared to other studies (Gordoa and Carreras 2014;
Shimose et al. 2018), such long-term dataset strengthens the
robustness of our statistical analysis. Results of this statistical
analysis show that spawning intensity match the optimal
spawning time predicted by the mechanistic model, lending
support to the hypothesis that predation by mesopelagic fish
is a driver of lunar synchrony in fish spawning.

The mechanistic model predicts that the best and worst
times for spawning are within the week before full moon or
new moon, respectively. This timing occurs because eggs
released within the week before full moon and new moon will
accumulate less and more time of exposure to mesopelagic
fish predation, respectively, before being able to evade them.
Among years with different lunar calendar, the exact day of
optimal spawning before full moon depends on the match/
mismatch of the optimal lunar phase with the other variables
that we assume follow the same seasonal pattern between
years (water temperature, hours of daylight, food availability
and abundance of invertebrate predators). The data analysis
supports the model predictions by showing a clear cyclic pat-
tern of spawning synchronized with the lunar cycle, where
spawning intensity peaks 3 d before full moon, and lowest 3 d
before new moon. These results are in line with previous
observations of egg production in captured individuals
(Gordoa and Carreras 2014) and match our model predictions.

Synchronized spawning activity with lunar cycles can be
explained by natural selection. Eggs released at times that
reduce predation by mesopelagic fish have a greater chance to
survive and carry genetic information to future generations,
propelling synchronous spawning with the moon to increase
larval fitness. Because mesopelagic fish are abundant and ubiq-
uitous in most pelagic systems (Irigoien et al. 2014; Proud
et al. 2017), the patterns observed here should in theory be a
widespread adaptation among fishes with pelagic eggs else-
where, including top predator fishes. This mechanism can be
further reinforced if fish eggs and larvae are preyed on by
other diel vertical migrants whose migratory behavior is
affected by lunar cycles (Pinot and Jans�a 2001; Last
et al. 2016). However, fishes can synchronize spawning with
the moon for several reasons (Hern�andez-Le�on 2008; Shima
et al. 2021). For reef fishes, spawning synchrony with the
moon has been proposed in relation to other lunar-related

Fig. 3. Smooth plot of the GAM model on the effect of moon phase on
ABFT spawning intensity, where 0 and 1 in the x-axis are new moon and
0.5 (dashed line) is full moon. Smoother values higher or lower than
0 (horizontal line) represent positive and negative effects of moon phase
on spawning intensity. The shaded area is the standard error around the
estimated smooth function.
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processes, such as tides or encounters with visual predators at
the time of settling to reefs (Demartini 1981; Sponaugle and
Cowen 1996; Rankin and Sponaugle 2014). These other pro-
cesses can potentially outweigh the effect of vertically migrant
predators on larval fitness, and spawning synchrony may dif-
fer from that predicted by our model (Claydon et al. 2014).
Circalunar fluctuations on the abundance of food availability
can have a similar effect on larval fitness as mesopelagic fish
predators, where offspring released the week before full moon
experience optimal fitness, while offspring released the
2 weeks after full moon experience the greatest loss of fitness
(Supplementary Fig. S6). In systems where mesozooplankton
abundance follows circalunar fluctuations, the converge of
both these processes can foster a stronger synchrony of fish
spawning towards the days before full moon (Hern�andez-
Le�on 2002, 2008).

Pelagic fishes may synchronize spawning with the moon to
reduce predation from mesopelagic fish and other diel vertical
migrants. However, the few studies that have investigated syn-
chronic spawning patterns of pelagic fish with moon phases
would often require longer datasets or stronger statistics to
obtain conclusive results (Farris 1963; Gordoa and
Carreras 2014; Shimose et al. 2018; Tanaka et al. 2020). Daily
measurements of spawning over 2 yr showed that yellowfin
tuna Thunnus albacares spawns most intensively the week
before full moon (Margulies et al. 2007), as predicted also in
our model. Post et al. (1997) found that sailfish larvae
Istiophorus platypterus were less abundant in the first quarter
moon, suggesting less spawning activity around new moon.
However, Schlenker et al. (2021) concluded that mahi-mahi
Coryphaena hyppurus spawned more actively around new
moon. Regarding nearshore pelagic fishes (less exposed to
mesopelagic predators than open ocean fishes), Spanish mack-
erel Scomberomorus maculatus spawns more actively around full
moon (Tobin et al. 2014) and jack mackerel Trachurus declivis
spawns more actively around full and new moon
(Jordan 1994). Several reasons may explain why other pelagic
species do not necessarily synchronize spawning with lunar
phases as described in this study: different vertical position of
eggs and larvae where they are exposed to mesopelagic fish
throughout all the moon cycle, presence of other predators
with smaller diel vertical migrations that permanently overlap
with the fish early lie stages, more turbid water that alter the
vertical preference of mesopelagic fishes, greater cloud cover-
age in spawning grounds elsewhere that increase stochasticity
of night time illumination, courtship behavior synchronized
with other environmental conditions that override lunar syn-
chrony of spawning, and so on. Further long-term field studies
are needed to identify predominant patterns of lunar
spawning synchrony of pelagic species.

Contrary to the cases mentioned above, eels Anguilla spp.
spawn during new moon and at depths that range 150–200 m
(Tsukamoto et al. 2011; Ayala and Munk 2018). The reason for
this remains unknown, but we suggest an analogous

hypothesis to our findings with ABFT. In nights around new
moon, mesopelagic fish migrate from depth to surface waters,
limiting predation to short periods of time in dusk and dawn,
when mesopelagic fish pass through the depth where eel early
life stages are. However, moon light around full moon pushes
mesopelagic fish down to depths where they overlap with eel
early life stages throughout the night. By spawning around
new moon and at depths deeper than 150 m (Tsukamoto
et al. 2011; Ayala and Munk 2018), eel can reduce spatial and
temporal overlap of its eggs with mesopelagic fish and increase
its fitness.

Adding cloud coverage as a variable in our statistical ana-
lyses could have improved its accuracy. However, clouds only
cover > 50% of the sky for 11%–18% of the time during the
spawning season of ABFT (Gelaro et al. 2017). Thus, we believe
cloud coverage would not have altered the main finding of
this study. The statistical model has produced a clear cir-
calunar pattern of spawning activity indicating that the sam-
ple size (1928 sampling stations across 17 spawning seasons)
was powerful enough to reveal a significant pattern despite
using averaged estimates of larval age (see Methods). Similarly,
the mechanistic model does not consider interannual or spa-
tial variation of the environment. Instead, it represents the
expected average fitness of tuna under a particular lunar calen-
dar. Thus, using such large database accommodates the habi-
tat variation of the spawning ground and enables to predict
the average spawning activity in relation to the moon phase.
Finally, a finer taxonomical resolution of mesopelagic fish
diets and vertical response to light intensity would improve
accuracy of our predictions and help identify major players
among ABFT predators.

We have identified a mechanism whereby predation from
mesopelagic fish may drive natural selection on other pelagic
fishes towards synchronizing spawning with bright moon
nights to reduce encounters of eggs and larvae with mesope-
lagic fish predators. This finding unveils a largely ignored mat-
ter, namely, the effect that the most abundant fish group on
earth has on phenological adaptations of other fishes. Given
the widespread abundance of mesopelagic fish in the global
oceans, future studies on spawning phenology and larval ecol-
ogy should consider mesopelagic fish as potentially important
predators.

Data availability statement
The data and R code supporting the results are archived in

GitHub: https://github.com/dottmann/moon_light and will
be stored in Zenodo upon acceptance.
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