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We study the consequences of cyberattack, defense, and recovery in systems for which a physical system is enabled by a cyber
system by extending previous applications of models from the population biology of disease to the cyber system and coupling the
state of the cyber system to the physical system, using the synchronous model for the electric grid. In analogy to disease models in
which individuals are susceptible, infected, or recovered, in the cyber system, components can be uncompromised and vulnerable
to attack, uncompromised and temporarily invulnerable to attack, compromised, or reset and thus not able to contribute to the
performance of the physical system. We model cyber defensive countermeasures in analogy to the adaptive immune system. We
link the physical and cyber systems through a metric of performance of the physical system that depends upon the state of the
cyber system using (i) a generic nonlinear relationship between the state of the cyber system and the performance of the physical
system and (ii) the synchronous motor model of an electric grid consisting of a utility with many customers whose smart meters
can become compromised, in which a steady state in the difference in rotor angles is the metric of performance. We use the
coupled models, both of which have emergent properties, to investigate two situations. First, when an attacker that relies on stealth
compromise is hidden until it is either detected during routine maintenance or an attack is initiated. %e probability that
compromise remains undetected declines with time and the level of compromise increases with time. Because of these dynamics,
an optimal time of attack emerges, and we explore how it varies with parameters of the cyber system. Second, we illustrate one of
the Electric Power Research Institute scenarios for the reverse engineering of Advanced Metering Infrastructure (AMI) by
coupling the synchronous motor equations for the generator and utility to the model of compromise. We derive a canonical
condition for grid failure that relates the level of compromise at the time of detection of compromise and the dissipation parameter
in the synchronous motor model. We conclude by discussing the innovative aspects of our methods, which include (i) a fraction of
decoy components in the cyber system, which are not connected to the rest of the cyber system or the physical system and thus do
not spread compromise but increase the probability of detection of compromise, (ii) allowing components of the cyber system to
return to the un-compromised state either temporarily invulnerable or immediately vulnerable, (iii) adaptive Defensive Counter
Measures that respond in a nonlinear fashion to attack and compromise (in analogy to killer Tcells of the immune system), (iv) a
generic metric of performance of the physical system that depends upon the state of the cyber system, and (v) coupling a model of
the electric grid to the model of compromise of the cyber system that leads to a condition for failure of the grid in terms of
parameters of both compromise and the synchronous motormodel, directions for future investigations, and connections to recent
studies on broadly the same topics. We include a pseudocode as an Appendix and indicate how to obtain R script for the models
from the first author.
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1. Introduction

A recent survey [1] of cyberattack in complex systems with
both physical and cyber components in which the cyber
system enables functionality of the physical system em-
phasizes the importance of improving our ability to un-
derstand this class of systems, and that it is critical to go
beyond the attack-defense dynamics in cyberspace, but to
include how changes in the cyber domain generate changes
in physical outcomes (and possibly vice versa). %at is, one
wishes to assure that the physical system remains in the
desired operating regime or out of undesired ones and needs
to discover methods to achieve this goal. Modern power and
communication systems are canonical examples of such
systems [2, 3] and in [1], the particular case of a smart grid
subject disruption and stabilization through a Distributed
Denial of Service (DDOS) or deception attacks that alters
sensor information [4, 5] is treated.

In this paper, we extend the ideas in [1] in a new direction
by explicitly coupling the models of attack dynamics and the
physical functional response of the system under attack. %is
allows us to analytically explore the system dynamics of the
coupled nonlinear systems, in particular how parameterized
attacks of certain types and behaviors result in effects ob-
served in performance and functionality of the resulting
system (in this case, a smart power grid). In doing so, we
develop a modeling approach that creates the ability for at-
tackers to optimize the timing and pace of their attacks, and
for defenders and designers to select defense strategies, deploy
defensive assets, and make architectural and design choices
tuned to the coupled cyber-physical system.

To do this, we build on existing nonlinear dynamic
models of compromise of cyber systems that import ideas
from the population biology of disease [6–11], characterize
performance using either a nonlinear metric for a generic
physical system (cf. [6–10]) or the nonlinear dynamics of an
electric grid, and introduce counter measures having non-
linear dynamics based on the immune systems [12, 13].

Our goal is to develop a systems dynamics model to
explore the roles of attack and maintenance rates, detection
capability, and other design parameters on the dynamics,
particularly how compromise of the cyber system propa-
gates, and performance of the linked physical system re-
sponds. Since our goal is to understand the important
variables and how they affect performance, we build a
heuristic model [14] that is not specific to any particular
situation but has commonalities with many complex sys-
tems. Using the model will help identify what to measure to
be able to assess vulnerability to cyberattack, the conse-
quences of attack on performance of the physical system,
and to identify design tradeoffs and routes to defense.

We link the physical and cyber systems through a metric
of performance of the physical system that depends upon the
state of the cyber system, using (i) a generic nonlinear re-
lationship between the state of the cyber system and the
performance of the physical system and (ii) the synchronous
motor model of an electric grid in which the load is a utility
having consumers that used Advanced Metering Infra-
structure (AMI; smart meters) that can be compromised.

In the next section, we develop the model for com-
promise of the cyber system, after which we introduce two
metrics of performance of the physical system. We then
illustrate the dynamics of the model for the cyber system,
after which we treat two examples. First we show how the
timing of attack when the attacker relies on stealth emerges
from the nonlinear nature of both compromise and per-
formance. We explore how performance of the physical
system depends on parameters of compromise and per-
formance and show how the optimal time of attack depends
upon the parameters of the physical system and rates of
external compromise and internal co-compromise.

Second, we explore compromise of Advanced Metering
Infrastructure (AMI) and failure of the electric grid. AMI is
an example of the Internet of %ings, which increases the
risk of cyber compromise because it increases the number of
points of access for attackers [14–19]. In this example, we
couple the model of compromise to the synchronous motor
model of an electric grid to illustrate Electric Power Research
Institute scenario AMI.27 [20] for reverse engineering of
AMI, and a specific case of how compromising smart meters
can lead to load-side failure of an electric grid. Because
power grids are now considered critical infrastructure, data
about them are often treated in a confidential manner
[21, 22]. By using a generally accessible model for the grid,
we are able to clearly see how compromise propagates and
interacts with performance of the grid.

2. Materials and Methods

We envision a complex system consisting of a physical
system that is enabled by a cyber system that takes com-
mands, exchanges information, and more generally interacts
with the external world. Attacks on the cyber system lead to
compromise of its components, which has an effect on the
physical system. Our goal is to provide a framework for
modeling compromise in the cyber system, linking the cyber
and physical systems (both generically and specifically [the
electric grid]), and use the model to explore the dynamics of
compromise, attack, and recovery of the cyber system and
the related performance of the physical system.

We first describe the conceptual framework for the
model of the cyber system (Section 2.1), after which we
derive the equations for the dynamics of compromise and
recovery (Section 2.2). We then show how the dynamics
simplify when the attacker relies on stealth (Section 2.3), in
which compromise is built until either it is discovered during
regular maintenance or an attack is executed. We consider
twometrics of performance (Section 2.4): (i) a generic metric
that depends upon the number of uncompromised cyber
components, the number of compromised cyber compo-
nents, and the level of Defensive Counter Measures (DCM)
and (ii) a synchronous motor model for the electric grid for
which the metric of performance is the stability of the grid.

2.1.ConceptualDescriptionof theCyberSubsystem. An attack
on a cyber system first requires external compromise:
gaining access to components that interface with the external

2 Complexity



world. Once “inside” the cyber system, the second stage of
internal co-compromise can commence, in which com-
promised components infect noncompromised compo-
nents. Compromised components may immediately reduce
the performance of the physical system or the adversary may
hide compromise until ready to execute the attack.

In many cases, cyber components that interface with
external world can be protected by external hardness [14] in
which case antimalware prevents attackers from entering the
cyber system. Cyber components that do not interface with
the external world can similarly be protected from co-
compromise by internal hardness [14]. External and internal
hardness rely on a variety of mechanisms [21, 23, 24] that we
do not model explicitly. However, it is now clear that ex-
ternal and internal hardness are necessary but not sufficient
for both a reliable and resilient cyber system [21] and that
resilience of the cyber system (and thus performance of the
physical system) requires some form of Defensive Counter
Measure (DCM) that returns the system to a state closer to
the one before the attack. Protection from external com-
promise and internal co-compromise may not be effective
(e.g., the installing antimalware does not defend) or may lose
its effectiveness over time (e.g., the attacker discovers a way
to circumvent the antimalware currently installed).

%us, at any time, the cyber system consists of five classes
of components (Figure 1): First, uncompromised and vul-
nerable components can be compromised either externally
or internally. We allow a fraction η of these components to
be decoys, with no functionality, but instrumented to detect
compromise with high probability. Second, uncompromised
cyber components that are currently invulnerable to either
external or internal compromise are temporarily protected
against malware, but as time progresses their antimalware
software ages and is no longer effective. %ird, compromised
cyber components are infected by malware. Fourth, once
compromised components are discovered, they are tem-
porarily removed from the cyber system to be restored or
reset later [21]. %ese components do not contribute to
performance of the physical system. After some amount of
time, components that are being reset return to the cyber
system temporarily invulnerable (effective antimalware in-
stalled) or still vulnerable (either no antimalware installed or
the installed antimalware is ineffective). Fifth, once com-
promise is detected, DCM are activated to discover and send
compromised components into the resetting phase. Since
DCM use cyber resources, we assume that their presence
reduces the functionality of the physical system.

2.2. 5e Dynamics of Compromise, Defense, and Detection

2.2.1. Dynamics of the Cyber System Components. We as-
sume that the cyber system has N components, with dy-
namics characterized by mass action in a mean field
approximation [25–29].

Uncompromised and vulnerable cyber components,
denoted by x1(t) transition to become compromised
components (i) because of external compromise at a
rate proportional to their numbers and (ii) because of

internal co-compromise by previously compromised
cyber components at a rate proportional to the num-
bers of both kinds of components, accounting for the
decoy cyber components. In addition, temporarily
invulnerable cyber components lose their protection
and compromised cyber components that are reset
without any protection increase the number of
uncompromised and vulnerable components. We as-
sume that the rate of these transitions is proportional to
their number. Hence the dynamics are

dx1

dt
� − c + cs(1 − η)y( 􏼁x1 + gx2 + f1 N − x1 − x2 − y( 􏼁.

(1)

On the right hand side of equation (1), η is dimen-
sionless; c is the rate of external compromise so that the
fraction of uncompromised cyber components sur-
viving external compromise from t to t + Δt is e− cΔt; cs

is the rate of co-compromise so that when there are y

compromised cyber components at time t, the fraction
of uncompromised cyber components surviving co-
compromise to t + Δt is e− cs(1− η)yΔt; g is the rate at
which temporarily invulnerable cyber components
become vulnerable; and f1 is the rate at which com-
promised components being reset return vulnerable to
compromise.
Uncompromised and temporarily invulnerable cyber
components, denoted by x2(t), transition to the
uncompromised and vulnerable state as they lose
protection. Compromised cyber components that reset
with temporary protection from external or internal
compromise transition to the uncompromised and
temporarily invulnerable states. We assume that the
rates of these transitions are proportional to the
number of components so that the dynamics are

dx2

dt
� − gx2 + f2 N1 − x1 − x2 − y( 􏼁. (2)

In this equation, f2 is the rate at which compromised
cyber components are reset and returned to the cyber
system temporarily invulnerable. If f1 ≠ 0 and f2 � 0,
then all cyber components that are reset return vul-
nerable to attack. On the other hand, if f1 � 0 and
f2 ≠ 0, then all cyber components return temporarily
invulnerable to attack. In the most general case, both f1
and f2 are nonzero, so that returned cyber components
have a mixture of vulnerabilities.
Compromised cyber components, denoted by y(t), in-
crease in number due to the processes in the first term
on the right hand side of equation (1). Compromised
cyber components transition to the resetting state due
to regular maintenance during which compromised
components may be discovered and when removed by
DCM, denoted by z(t). We assume that the rates of
these transitions are proportional to their number for
regular maintenance and to the their number and the
level of DCM when DCM are activated. We let
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IDCM(t) denote an indicator function that is 1 if DCM
are activated at time t and is 0 otherwise. %e dynamics
of compromised cyber components are then

dy

dt
� c + cs(1 − η)y( 􏼁x1 − μm + IDCM(t)μDCMz( 􏼁y,

(3)

where μm is the rate of transition of compromised cyber
components to resetting during regular maintenance
and μDCM is the rate of transition of compromised cyber
components to resetting by DCM.
Defensive Counter Measures are intensive malware
eradication efforts. We do not specify themechanism of
the DCM, since they are situation dependent [23].
DCM are active only after compromise is detected,
which may occur during regular maintenance, through
recognition of external compromise, or anomalous
performance of the physical system [30–32]. After
compromise is detected, we model the dynamics of
DCM, denoted by z(t), in analogy to T cells of the
immune system [12, 13].

dz

dt
�
α + cy

1 + βz
− Mz. (4)

If α � 0 in equation (4), DCM are active only when
compromised cyber components are present and in absence
of compromised cyber components, the only steady state is
z � 0. %is is the situation we assume for computations.
When α> 0, there is a positive steady-state level of DCM
even when there is no compromise in the system, providing
ready defense of the cyber system at the possible expense of
performance of the physical system (see below). %e pa-
rameter β controls the rate of increase of DCM; in particular,
when β> 0, the rate of increase of DCM declines as the level
of DCM increases.

Because cyber components are neither created nor
destroyed, the numbers of uncompromised and vulnerable,
uncompromised and temporarily invulnerable, compro-
mised, and resetting components sums to N. %is is cap-
tured by the second terms on the right hand sides of
equations (1) and (2).

2.2.2. 5e Detection of Compromise. A variety of methods
have been proposed for detecting compromise [30], but in
general the detection of compromise will be imperfect,
because regardless of the specific process (e.g., signal
matching or anomalous behavior) there will be both false
positives and false negatives [14]. We let U(t) denote the
probability that compromise remains undetected at time t.

We assume that the probability of discovering com-
promise in the nextΔt units of time when the rate of external
compromise is c and y cyber components are compromised
is ([ε1(1 − η) + ε2η]y + εcc)Δt + o(Δt) where ε1 and ε2 are
the rates of detection of compromised nondecoy and
compromised decoy cyber components, respectively, and εc

is the rate of detection of compromising activity when the
rate of external compromise is c. In general, we anticipate
that ε2 > ε1. For simplicity, for computations here we set
εc � 0.

Assuming that compromise is undetected at the start,
U(0) � 1; subsequently

dU

dt
� − ε1(1 − η) + ε2η􏼂 􏼃y + εcc( 􏼁U. (5)

Equation (5) generates a trajectory U(t) for the prob-
ability that compromise is not detected by time t. We use this
trajectory to characterize the stochastic process of detection.
%at is, from U(t), we generate realizations of the time at
which compromise is detected, and explore the conse-
quences of different times of detection on the performance
of the physical system.

Uncompromised
vulnerable

Attack

Uncompromised
hardened

Regular maintenance
Defensive Counter

Measures

ResettingCompromised

η

Figure 1: %e cyber system contains components that are uncompromised and vulnerable, uncompromised and currently invulnerable
(hardened), compromised, and resetting (and thus temporarily unavailable system; metaphorically “in the shop”). A fraction η of the cyber
components (shown only for uncompromised and vulnerable components) are decoys that do not contribute to functionality of the physical
system and are unable to co-compromise [20]. Dotted lines represent transitions from one stage to another and solid lines represent either
external compromise or co-compromise.
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2.2.3. Summary: a Mixed Deterministic-Stochastic Nonlinear
Model. %e full model for dynamics of the cyber system
consists of equations (1)–(5). Because of equations (1)–(4),
the model is inherently nonlinear. Because of equation (5), it
is stochastic, even though the rest of the dynamics are de-
terministic. We implement this mixed deterministic-sto-
chastic model by solving equations (1)–(5) withIDCM ≡ 0 to
generate the trajectory of U(t). Given this trajectory, we
generate K times of detection, denoted by td(k),

k � 1, 2, . . . , K by drawing uniformly distributed random
variables and comparing them with U(t). %en, for every
td(k), we solve equations (1)–(5) to determine the entire
trajectory of compromise, detection, and recovery from
compromise.

For the base case, we used these parameters:N � 100, c �

0.005, cs � 0.001g � 0.1, f1 � 0, f2 � 3, μm � 0.05, μDCM �

0.2, α � 0, c � 0.1, β � 1.0, M � 0.5, ε1 � 0.005, ε2 � 0.05,

εc � 0, η � 0. All computations were done in R Studio
Version 1.0.143 with underlying R version 3.6.1.

2.3. Simplification When the Attacker Relies on Stealth.
When an adversary relies on stealth, compromise is hidden
until the attack is executed. %at is, cyber compromise may
be ongoing for a long period of time and undetected [14, 21].
In general, the longer an attacker waits to initiate the attack,
the more likely it is that compromise will be detected and
removed [33–35], suggesting that an optimal time of attack
will emerge from the dynamics of compromise and
detection.

To model this situation, we assume that compromise
(both external and internal) increases until (i) it is detected
through regular maintenance or (ii) the attacker decides to
launch an attack at time tA. We assume that if compromise is
detected before the attack is launched, the value to the at-
tacker is 0. Otherwise, when the hidden compromise be-
comes active, assessing the value of the attack requires a
metric of utility for the attack, which we consider to be (1)
the number of compromised cyber components or (2) the
reduction in performance of the physical system.

2.3.1. Dynamics before Attack or Detection. For simplicity,
we assume all cyber components are initially vulnerable to
compromise. Since compromise is hidden until attack or
discovery, x2 � 0 always and no cyber components are being
reset. Consequently before attack or detection, only equa-
tions (1), (3), and (5) are relevant. %at is, cyber components
are either un-compromised and vulnerable or compromised,
but compromised cyber components are not recognized
until either detected or the attack is executed. We let x

denote the number of un-compromised and vulnerable
cyber components so that equations (1) and (3) reduce to

dx

dt
� − c + cs(1 − η)y( 􏼁x,

dy

dt
� c + cs(1 − η)y( 􏼁x.

(6)

Since y(t) � N − x(t)

dx

dt
� − c + cs(1 − η)(N − x)( 􏼁x, (7)

which has solution

x(t) �
1 − cs(1 − η)( 􏼁Ne

− c+cs(1− η)( )t
􏼒 􏼓

1 − cs(1 − η)e
− c+cs(1− η)( )t

, (8)

from which y(t) follows directly.

2.3.2. 5e Value of Attack. %e probability that compromise
remains hidden until the time of attack tA is U(tA), de-
termined by the solution of equation (5). %e value of an
attack requires that we introduce a utility function for the
attacker. We will consider two choices. First, the value of
attack may be measured in terms of the number of com-
promised cyber components at the time of attack. Second,
the value of attack may be measured in terms of reduced
performance of the physical system after the attack is
executed.

%e value of attack measured in terms of the expected
number of compromised cyber components is

VA1
tA( 􏼁 � y tA( 􏼁U tA( 􏼁. (9)

Since y(t) is an increasing function of time and U(t) is a
decreasing function of time, their product will have a peak,
leading to an optimal time of attack and times of attack
around that optimum that are “pretty” good, in the sense of
giving nearly the same value as the value at the optimal time
of attack.

Assessing the value of attack measured in reduced
performance of the physical system due to compromised
cyber components requires a metric ϕ(x, y, z) for the
performance of the physical system when the cyber system
has x uncompromised and y compromised components,
and level of DCM z. We describe such a performance
function in the next section.

Given ϕ(x, y, z), the value to the attacker is the differ-
ence between ϕ(N, 0, 0) – performance of the physical
system in the absence of compromised cyber components
and DCM–and ϕ(x(tA), y(tA), 0)–the performance of the
physical subsystem when there are x(tA) un-compromised
cyber components and y(tA) compromised cyber compo-
nents at the time of attack, and no active DCM.%e expected
value of this performance function is

VA2
tA( 􏼁 � U tA( 􏼁 ϕ(N, 0, 0) − ϕ x tA( 􏼁, y tA( 􏼁, 0( 􏼁􏼂 􏼃. (10)

Other choices of utility functions are possible, although
as will be seen in the next section, a generic metric of
performance of the physical system can capture a wide range
of utility functions, from threshold relationships to linear
ones. We also note that the value of attack to the adversary
may not be the same as the cost to the owner of the system.

2.4. Metrics of Performance of the Cyber Physical System.
In general, the cyber and physical systems are coupled
nonlinearly. We first consider a generic measure of
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performance in which performance of the physical system is
a function of the number of uncompromised cyber com-
ponents, the fraction of decoy cyber components, the
number of compromised cyber components, and the level of
DCM. Performance increases as the total number of
uncompromised, nondecoy cyber components increases,
and decreases as both the total number of compromised
cyber components y increases and the level of DCM
increases.

We then turn to the synchronous motor model of the
electric grid, with stability as the metric [21, 32], although we
will show that both reliability and resilience of the grid
emerge from the model.

2.4.1. A Generic Metric of Performance. We model perfor-
mance function of the physical system as follows. First, we
assume that performance of the physical system increases
with the number of uncompromised cyber components
according to

ϕ X|x50, σx( 􏼁 �
1

1 + e
x50− X( )/σx

, (11)

where x50 is the number of uncompromised cyber com-
ponents at which performance of the physical system is 50%
of its maximum value (set to 1 without loss of generality) and
σx captures the dispersal in performance of the physical
system (Figure 2).

Equation (11) can accommodate a variety of assump-
tions about performance of the physical system. For ex-
ample, if performance of the physical system is
approximately a linear function of the total number of
uncompromised cyber components, then parameters giv-
ing the dotted line in Figure 2(c) are appropriate and x50
can be chosen to give the 50% point of performance. On the
other hand, if the physical system is a communications
system and only one or a few cyber components need to be
uncompromised for a message to get through, then a small
value of x50 is appropriate. In communications systems,
performance will be determined by bandwidth, connec-
tivity, and message accuracy, all of which can be com-
promised; mission performance metrics are accuracy,
timeliness, and completeness of the information. Mapping
these onto the sigmoidal functions requires detailed
knowledge of the particular system and is thus beyond the
scope of this paper.

We use a similar kind of sigmoid to characterize the
reduction in performance due to compromise of the cyber
system and assume that DCM use computational band-
width, thus also reducing performance of the physical
system. We assume that when the level of DCM is z, per-
formance of the physical system is reduced by a factor e− ωz,
where ω> 0.

A generic metric of performance of the physical system
when a fraction η of the cyber components are decoys, and
there are X � x1 + x2 uncompromised cyber components, y

compromised cyber components, and the level of DCM is z,
is then

ϕ(X, y, z) �
1

1 + e
x50− (1− η)X( )/σx

·
1

1 + e
(1− η)y− y50( )/σy

􏼢 􏼣 · e
− ωz

.

(12)

If the attacker needs to compromise many cyber com-
ponents to degrade performance of the physical system, we
set y50 to a moderately large value. On the other hand, if the
attacker can shut down the physical system by compro-
mising a few cyber components, then y50 will be small. %e
1 − η terms in equation (12) capture that decoy components
in the cyber system are not part of the functionality of the
physical system.

For computations using this generic performance
function in the baseline case, we used x50 � 40, σx � 10,

y50 � 20, σy � 10, andω � 0.2.

2.4.2. 5e One Generator-One Load-Many Consumers
Electric Grid. One approach to modelling complex electric
grids is to use second-order oscillator equations derived
from Kirchoff’s laws that balance power at each node of the
grid [33–55]. %at is, a power grid is modeled as a system of
electrically coupled devices that deliver power from gen-
erators to machines/loads via transmission lines and a key
objective of management of electrical grids is that generators
and loads are properly synchronized. When a load is too
strong, loads are unevenly distributed, or a major disruption
occurs, and a generator or load may lose synchrony [20]. If
this is sufficiently strong, it may lead to grid failure [50–55].

In the synchronous motor model, the ith generator or
load is characterized by a power balance equation [53] of the
form Pi � Pi,diss + Pi,acc + Pi,transmitted where the terms on the
right hand side are, respectively, the rate at which the motor
dissipates energy, the rate at which it accumulates energy,
and the rate at which it transmits energy. %e state of each
generator or load is described by the rotor angle, measured
relative to a reference device rotating at a standardized
frequency, and satisfying the swing equation [50–54]

Ii

d2Θi

dt
2 + Di

dΘi

dt
� Pi,mech − Pi,elec, (13)

where Θi is the deviation of the ith rotor from the reference
frequency, Ii is the moment of inertia of the rotor times the
reference frequency, Di is the coefficient of damping/friction
as the rotor revolves, and Pi,mech and Pi,elec are, respectively,
the mechanical power generated and the net electrical power
transmitted through transmission lines.

A power grid is modeled as a coupled collection of
equations similar to equation (13); and the deviation from
the reference frequency for the ith generator or load, denoted
by θi, satisfies [53].

d2θi

dt
2 � Pi − δiθi + λ 􏽘

N

j≠ i

Aij sin θj − θi􏼐 􏼑, (14)

where δi is the dissipation occurring in the ith generator or
load, λ is the coupling strength of the transmission line, and
Aij is a matrix whose entries are 1 if generators/loads i and j

are connected, and 0 otherwise. Pi > 0 for generators and

6 Complexity



Pi < 0 for loads. %e power network will be in a steady state
when consumption and generation of energy balance, so that
if there are in total N generators and loads 􏽐

N
i�1 Pi � 0.

In order to focus on compromise in the demand-side
cyber subsystem, we use the simplest grid, as in [56],
consisting of a single generator (Pg � P0) and a single
load (Pl � − P0) (Figure 3) envisioned as a utility with
many customers having AMI. %e physical system con-
sists of generators, substations, transformers, and towers
and transmission lines; there are two cyber systems
coupled to it. %e first cyber system is the Supervisory
Control And Data Acquisition (SCADA) [2, 37–39]
system that collects measurements from substations and
sends out control signals to equipment, substation au-
tomation or protection systems, and energy management
systems. %e second is the cyber system of consumers
with AMI. To simplify the analysis, we focus on

compromise of the latter cyber system and how com-
promise in it can destabilize the grid.

We let θg and θl denote the phase deviations for the
generator and utility. In this case, Aij reduces to a single value;
we replace λAij by K, for simplicity set the dissipation pa-
rameters δg � δl � δ, replace Pi by P0 for the generator and
− P0 for the load, so that the equations for generator and load are

d2θg

dt
2 � P0 − δθg + K sin θl − θg􏼐 􏼑,

d2θl

dt
2 � − P0 − δθl + K sin θg − θl􏼐 􏼑.

(15)

Subtracting the second equation from the first equation, we
obtain a single second-order equation for the phase difference
ϕ(t) � θg(t) − θl(t), written as the first-order system
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Figure 2: (a)%e generic performance function 1/(1 + e(x50 − X)/σx ), which links the cyber and physical systems, depends on two parameters,
x50 and σx. When X � x50, the fraction is 0.5 so that x50 is the number of uncompromised cyber components at which performance of the
physical system is 50% of its maximum value.%e parameter σx captures the dispersal in performance. As σx declines, performance becomes
more knife-edged; in the limit that σx � 0 performance is a step function that is 0 for x<x50, 1/2 at X � x50, and 1 for X>x50. (b) Holding
σx � 10, we show the sigmoid for x50 � 5, 40, or 80 (dashed, solid, and dotted lines, respectively). (c) Holding x50 � 40, we show the sigmoid
for σx � 1, 10, or 30 (dashed, solid, and dotted lines, respectively).
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dϕ
dt

� v,

dv

dt
� 2P0 − δv − 2K sin(ϕ).

(16)

For this model, the transmitted power is
Ptrans∝K sin(ϕ) [53], and a natural metric of performance
of this grid model is that the transmitted power is in a steady
state. If P0 ≤K, this grid has a steady state at
v � 0, ϕ � arcsin(P0/K). If P0 >K, there is no steady state;
instead the solution cycles. However, when P0 <K but close
to K, if the dissipation coefficient is small enough, a periodic
solution (and therefore unstable operation of the grid) co-
exists with a steady state. In particular [57–59], for each
value of P0, there is a critical value of the dissipation co-
efficient, which we denote by δc(P0) so that if δ > δc(P0) then
there is no periodic solution and the grid will be globally
stable. However, when 0< δ < δc(P0), there is also a periodic
solution ([52], Figure 2) so that the operation of the grid will
be unstable; Rohden et al. [52] identify this situation with a
power outage. Major power grids are often operated in the
region in which K is on the order of P0 to reduce the cost of
overcapacity in transmission lines [53], which makes the
possibility of transition from a steady state to oscillatory or
chaotic behavior more likely.

For computations in the base case, we used
ϕ(0) � π/4, v(0) � 0, K � 0.4, and δ � 0.15.

3. Results and Discussion

We begin (Section 3.1) by illustrating the basic dynamics of
themodel and associated performance of the physical system
using the generic performance metric. %ese show that a
steady-state level of compromise is reached, even with active
defense, consistent with the observation that one should
assume that cyber systems have been penetrated and focus
on determining the consequences of the penetration [14].
Because of the mixed deterministic-stochastic nature of the
model of compromise, we report distributions for the time of
detection and level of compromise at the time of detection

and then show realizations of the dynamics. As a sensitivity
analysis (Section 3.2), we explore how the dynamics of
compromise and performance of the physical system de-
pends upon the fraction of decoy cyber components η. We
then (Section 3.3) show results when an attacker relies on
stealth, particularly how the optimal time of attack emerges
and how it depends upon parameters of the system and the
choice of metric for value to the attacker. We begin the
section on the grid model by briefly summarizing (Section
3.4.1) the dynamics of the one generator-one load grid in the
absence of compromise and then (Section 3.4.2) couple the
model of compromise to the model of the grid. We illustrate
EPRI scenario AMI.27 [20] for reverse engineering AMI by
showing how smart meters sending misleading signals about
power demand can lead to load-side failure of the electric
grid and derive a canonical condition for failure of the grid
in terms of the number of compromised components at the
time of detection and the dissipation parameter of the
synchronous motor model.

3.1. Dynamics of Compromise and Recovery. For these re-
sults, we set η � 0. Absent DCM, compromise is removed
only through regular maintenance. In Figure 4, we show the
dynamics of the number of cyber components (Figure 4(a)),
and performance of the physical system and the probability
that compromise is detected (Figure 4(b)). We use the
dynamics of the probability of detection to create stochastic
realizations of the time of detection (Figure 4(c)) and the
number of compromised cyber components at the time of
detection of compromise (Figure 4(d)).

%e cyber system reaches a steady state in which com-
promised cyber components co-exist with vulnerable and
temporarily invulnerable cyber components. Consequently,
performance of the physical system declines to a steady state.

Performance in Figure 4(b) can be compared directly
to Figure 3.14 in [21], showing the time course of the
fraction of the load delivered before, during, and after a
cyberattack or Figures 2.1–2.3 in [32] characterizing the
resilience of a system in response to a disruption/attack.
When DCM become active, although performance of the

Power
source

Turbine:
Flywheel

and
Dissipation

Load to
Use or

Distribute
Power

Load, θl

User Cyber
componentsPhysical components

Generator, θg

ϕ = θg – θl
n=N-1

n=2

...

n=1

n=N

Figure 3: An electric grid consisting of one generator (with rotor angle θg) and one load (with rotor angle θl), in this case envisioned as a
utility company that has N consumers, indexed by n � 1, 2, 3, . . . , N, with AMI. Our analysis focuses on the consequences of compromise of
the AMI rather than attacks on the cyber system of the power generating system.
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physical system may increase because of the removal of
compromise, performance of the physical system need not
return to its previous state following disruption/attack
(see below).

Conditioned on time of detection, the behavior of the full
system is captured by equations (1)–(5), which we illustrate
by choosing 8 times of detection that capture most of the
range in Figure 4(c).

%e cyber system recovers to more than 90% of its
initial state (left panels in Figure 5). %at is in the steady
state, and regardless of the time of detection of com-
promise, there are uncompromised and vulnerable,
uncompromised and currently hardened, and compro-
mised cyber components (with the remainder resetting).
Compromised components of the cyber system persist in
the steady state because both external attack and internal
co-compromise continue. %e number of compromised
components remains at a low level because DCM are
maintained at a nonzero level (Figure 5, right hand panels,
blue lines). %e cost of a nonzero steady state of DCM is
reduced performance. To illustrate this point, in Figure 6,
we plot performance for the same times of detection as in
Figure 5. Performance drops as compromise builds before

detection of compromise and the minimum level of
performance depends upon the time of detection of
compromise. However, in the steady state, performance
only returns to about 70% of its initial value.

3.2.5eRole ofDecoyCyberComponents. To explore the role
of decoy cyber components, we swept over eight values of η,
ranging from 0 to 0.25 (in the spirit of [60]). For each value
of η, we determined 300 times of detection. Conditioned on
both η and the time of detection, we computed the dynamics
of the cyber system and the performance of the physical
system.

Because of the formulation (Equations (1), (3), and (5))
as η increases, the probability of detecting compromise by a
given time will increase, and the number of compromised
cyber components at a given time will decline (Figures 7(a)
and 7(b)). What cannot be predicted is that the standard
deviation of both the time of detection and the number of
compromised components at the time of detection of
compromise decline as η increases.

In light of the results shown in Figures 5 and 6, we
anticipate once DCM are activated, the system will recover
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Figure 4: %e dynamics of compromise and performance with DCM inactive when there are no decoy cyber components. (a) %e numbers
of un-compromised and vulnerable, un-compromised and temporarily invulnerable, and compromised cyber components. (b) %e
performance of the physical system (black) and the probability that compromise will be detected (green). Using the probability of detection
curve in (b) we constructed 3000 realizations of (c) the time of detection of compromise and (d) the number of compromised cyber
components at the time of detection of compromise.
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Figure 5: Dynamics of the cyber system and performance of the physical systemwhen detection occurs at times drawn from the distribution
in Figure 4(c), chosen to span most of the range of this distribution. %e left hand column shows the number of uncompromised and
vulnerable (black), uncompromised and temporarily hardened (blue), and compromised (green) cyber components as a function of time.
%e time of detection is denoted by a vertical dashed line.%e right hand column shows performance of the physical system (black) and level
of DCM (blue) as a function of time. As on the left, the vertical dotted line shows the time of detection.
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and reach a steady state that is independent of both the time
at which compromise is detected (the stochastic component)
and varies in a deterministic way with η. %e consequence
(Figure 7(c)) is that although the mean of the steady-state
performance of the physical system declines with η, the
standard deviation of steady-state performance is virtually 0.

On the other hand, the minimum performance of the
physical system depends upon the time at which compro-
mise is detected (as in Figure 6), and thus on the value of η.
Minimum performance is determined both by the level of
compromise of cyber components at the time that com-
promise is detected and the response of DCM. In
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Figure 6: Performance of the physical system for the detection times in Figure 5. Although in all cases performance reaches the same steady
state (about 70% of performance before compromise and activation of DCM), minimum performance varies considerably according to the
time of detection of compromise.
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Figure 7: Sweeps over the fraction of decoy cyber components, η. (a) %e mean (solid line) and standard deviation of the time of detection
(dotted line) of the time at which compromise is detected. (b) %e mean (solid) and standard deviation (dotted line) number of com-
promised cyber components at the time that cyber compromise is detected. (c) %e steady-state performance of the physical system after
recovery. In this case, we only show the mean because the standard deviation is much smaller than the mean. (d) %e mean (solid line) and
standard deviation (dotted line) of the minimum performance over the course of compromise and recovery.
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Figure 7(d), we show the mean and standard deviation of the
minimum performance of the physical system. %e mean of
minimum performance is an increasing function of η and
the standard deviation of minimum performance is a de-
creasing function of η.

3.3. Stealth and the Optimal Time of Attack. When the at-
tacker relies on stealth, the results become deterministic be-
cause the value to the attacker is an expectation over the time of
detection In Figure 8(a), we show the time course of the two
value functions. An optimal time of attack clearly emerges from
these figures, as does a range of times of attack for which the
value of attack is “pretty good” [61]. Conditioned on the other
parameters, we predict the attack will occur earlier when value
to the attacker is measured in terms of loss of performance of
the physical system rather than the number of compromised
cyber components. In Figures 8(b) and 8(c) we show the
optimal time of attack across a range of values of c and cs.

3.4. LoadSideFailure of theOneGenerator-OneLoadGriddue
to Compromise in AMI. We begin by summarizing the
properties of the grid model in the absence of any com-
promise and then link it to the model of compromise.

3.4.1. Properties of the Grid Model in the Absence of
Compromise. In the absence of compromise, the parameters
K � 0.4, δ � 0.15, and P0 � 0.25K, 0.35K or 0.55K and ini-
tial conditions ϕ(0) � π/4 and v(0) � 0 lead to a steady state
for equation (16). After transient initial dynamics, the steady
state given by v � 0, ϕ � arcsin(P0/K) is reached. Since
transmitted power is Ptrans∝K sin(ϕ) and the steady-state
value of ϕ increases with P0, transmitted power also in-
creases with P0.

As discussed above, as P0 approaches K from below,
instability may occur. For example, with all other parameters
as above, for P0 equal to 0.94K or 0.95K, the grid reaches a
steady state, but for P0 � 0.96K an oscillatory solution
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Figure 8: %e value to an attacker when compromise is hidden until the time of attack. (a) %e expected number of compromised cyber
components (Equation (9)), upper panel, or expected loss in the performance of the physical system (Equation (10)), lower panel, as a
function of the time at which the attack is executed, for the rate of external compromise c � 0.05 and rate of co-compromise cs � 0.02. (b)
%e optimal time of attack across a range of values of c and cs if the expected number of compromised cyber components is the metric of
value to the attacker. (c)%e optimal time of attack across a range of values of c and cs when reduction in performance is the metric of value
to the attacker.
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develops. Conditioned on the other parameters, the critical
value for δ falls between 0.177 (oscillations) and 0.178
(steady state approached).

%ese results suggest that one route to the instability of
the electric grid (which we explore in detail below) is in-
creased demands of power. To illustrate the concept without
the complexity of the model for compromise and detection,
we solved equation (16) for δ � 0.15, K � 0.4 and
P0 � 0.5K(1 + εp) where εp � 0.75, 0.8, 0.85, 0.9, and 0.95
characterizes the increase in demanded power. In this case,
P0/K � 0.5(1 + εp)< 1 so that a steady state exists. However,
we expect instability before εp reaches 1. %is is indeed the
case–for a value of εp between 0.831 and 0.832, the grid loses
stability. Furthermore, increasing δ makes the system more
stable: when δ � 0.2, the value of εp leading to instability falls
between 0.8588 and 0.8589 and when δ � 0.25 the value of εp

leading to instability falls between 0.8844 and 0.8845. %is is
an example of criticality in physical systems as they operate
closer to their capacity and become more fragile to per-
turbations. One of the roles of models such as we develop
here is to help recognize and characterize potential modes of
failure of the physical system.

3.4.2. Load Side Failure of the One Generator-One Load Grid
due to Compromise of AMI. We couple the models for
compromise and its detection and for the electric grid by
replacing P0 by P0(1 + εdy(t)), where εd is how much one
compromised AMI increases the demand for power, and

y(t), computed from equation (3), is the number of com-
promised AMI at time t. We assumed εd � 0.04 for com-
putations. In Figure 9, we show transmitted power assuming
that the dynamics of compromise and times of detection are
the same as in shown in Figure 5.

%e grid shows a signal of compromise with a secular,
almost linear increase in the demand for power (the portion
of the trajectories before the time of detection represented by
the vertical dotted line). If detection occurs early enough (as
in the first six panels), DCM are activated, compromise is
reduced, and the grid returns to a stable steady state.
However, as shown in the bottom two panels, if detection
occurs too late, then the grid enters a region of instability
even after DCM are activated.

To compute the risk to the grid due to compromise of
AMI in the cyber system, we note that when power
demanded by the load is P0(1 + εdy(t)) and compromise
is detected at time td, the condition for instability of the
grid is

εdy td( 􏼁> εc(δ), (17)

which also can be written as

y td( 􏼁>
εc(δ)

εd

. (18)

Equation (18) is a canonical relationship linking com-
promise and load-side failure of the grid. Since detection of
compromise is a stochastic process, the time of detection and
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Figure 9: Transmitted power when themodel for the grid and compromise are connected by assuming thatP0 in equation (16) is replaced by
P0(1 + εdy(t)) with εd � 0.04 representing how much one compromised AMI increases the demand for power, and y(t) is the number of
compromised cyber components. %e dynamics of compromise and times of detection are the same as in shown in Figure 5–the vertical
dotted line denotes the time at which compromise is detected.
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level of compromise at the time of detection vary. Because
detection of compromise is a random process, the level of
compromise on the left-hand side of Equation (18) is a
random variable. %e risk of grid failure is the probability
that the level of compromise on the left-hand side of
Equation (18) exceeds the ratio on the right-hand side of that
equation. In Figure 10, we show risk to the grid as a function
of the per-compromised AMI increase in demanded power.
If the per-compromised AMI increase in demanded power
εd is small enough, the risk to the grid from compromise is
virtually 0. %ere is a range in which the risk to the grid is a
linear function of εd. For large enough values of εd, failure of
the grid is guaranteed.

%us, knowing the increase in demanded power by a
compromised cyber component can be useful for predicting
grid failure or not. For example, drawing a horizontal line in
Figure 10(a) or 10(b) at the level of risk to the grid that can be
tolerated and locating the value of εd at which the line in-
tersects the curve will provide information on the value of
per AMI increased demand in power that can be tolerated.
%e increase in demand is an anomalous operating condi-
tion, which may be used for detection of compromise ([21],
Recommendation 4.10, pg 92).

4. Conclusions

Our work involves coupling of a set of nonlinear differential
equations for the dynamics of compromise and defense of
the cyber system with either (i) a nonlinear generic per-
formance function to understand cyberattack via stealth or
(ii) the nonlinear rotor equations for an electric grid to
understand the role of load-side compromise on the stability
of the grid. Doing so allowed us to explore how an optimal
time of attack when using stealth emerges (Figures 8 and 9)
and to derive a canonical condition (Equation (17) or (18))
for stability of the electric grid in the face of load-side
compromise.

4.1. Novel Contributions of this Paper and Connection to
Recent OtherWork. %e innovations of our work include (i)
a fraction of decoy components in the cyber system, which

are not connected to the rest of the cyber system or the
physical system and thus do not spread compromise but
increase the probability of detection of compromise, (ii)
allowing components of the cyber system to return to the
un-compromised state either temporarily invulnerable or
immediately vulnerable, (iii) adaptive Defensive Counter
Measures that respond adaptively to attack and compromise,
(iv) a generic metric of performance of the physical system
that depends upon the state of the cyber system, and (v)
coupling a model of the electric grid to the model of
compromise of the cyber system that leads to a condition for
failure of the grid in terms of parameters of both com-
promise and the synchronous motor model.

4.2. Directions for FutureWork. We discuss future work that
is related to the model of cyber compromise and the generic
performance function, the model of cyber compromise and
the electric grid, and how the methods and results presented
in our paper relate to recent studies [1, 62] on the general
topic of security in systems with cyber and physical
components.

4.2.1. Related to Cyber Compromise and the Generic Per-
formance Function. Topics emerging from the model for
cyber compromise and generic performance function war-
ranting future investigation include: (i) %e dynamics of
compromise and recovery of the cyber system show that
there is an opportunity for further investigation of opera-
tional resilience by planning for degradation of the cyber
system when designing the linked physical system and (ii)
when the attacker relies on stealth, a natural extension of our
results is to explore how Figure 8 changes when the
probability of detection depends upon the rate of external
compromise, which sometimes generates a “wake” that is
detectable.

4.2.2. Related to Cyber Compromise and the Electric Grid.
We have shown how load-side compromise can destabilize
an electric grid. If the metric of performance for an electric
grid is the fraction of the load delivered, then equation (11)
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Figure 10: (a) Risk to the grid from compromise is determined by the increase in demanded power per-compromised AMI, εd, the critical
value εc(δ) at which the grid becomes unstable when demanded power is P0(1 + εc(δ)), and the level of compromise at the time of detection
of compromise. We show risk to the grid over a range of values of εd for εc(δ) � 0.8315, 0.85885, 0.88445 (solid, large dashed, and small
dashed lines, respectively) (b) Expansion of the lower corner of (a).
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does not need any kind of rescaling to capture performance
of the physical system, as can be seen by comparison of our
Figure 2 with Figure 3.14 in [21].

Although defending the grid by disconnecting the utility
from the generator is one route to defense, it is an extreme
solution. On the other hand, developing a mechanism to
recognize when individual consumers are demanding an
anomalous amount of power and then disconnecting those
consumers from the utility is a potential defense. Smart
meters report on regular schedule with a defined message
structure in a predictable way [21]. Signs of compromise or
malfunction could include another reporting structure, re-
ports at unusual times, or reported values that are outside of
the usual range [18]. An implication of these results is that it
is important to match the detection strategy to the will-
ingness to accept risk when the underlying demand for
power has a temporal pattern. %at is, at times of high
demand for power, compromise in the cyber components of
AMI may lead to instability of the grid, suggesting that the
strategy for detection of compromise should be adjusted to
the pattern of demands for power. Models such as we have
developed here can help in the allocation of resources for
detection. To make this idea fully operational, one would
include a detection model [30] with false positives (con-
sumers are not requesting additional power but are seen to
be doing so), false negatives (consumers with compromised
AMI are not detected), and an economic model to assess the
costs of power disruptions [2]. Doing so is beyond the scope
of this paper.

At the level of the utility, one defense is to have a
mechanism, via generalized governors or electric springs
[63], that increases the value of δ as the perceived demand
for power increases. In this case, the cost is that the utility
operates less efficiently as δ increases. As in the case of
disconnecting consumers, developing the requisite models is
feasible but beyond the scope of this paper.

Another future step is to expand the number of gen-
erators and loads. %e Zealand grid [53] is an excellent
candidate for such a next step. Alternatively, one of the
recommendations concerning resilience of electric grids is to
rely on various types of micro-grids [21]. By their very
structure, such grids will have many points of access that
interface with the external world [51], thus raising an en-
tirely new set of issues for which the models in this paper can
be applied. Similarly, the development of consumer-gen-
erated solar power that can be moved to the electric com-
pany (thus changing the historical one way distribution of
electricity from the power company to the consumer to bi-
directional transfer of power) raises issues for which the
models developed here can be adapted. Furthermore, as the
electric grid becomes more andmore dispersed, resistance to
and recovery from cyberattacks will increasingly depend
upon rapid or even real-time measurements and responses
[22].

4.2.3. Connections to Other Recent Work. We now briefly
discuss how the ideas in our paper link to [1] and an ad-
ditional recent survey [62] of filtering in networked

nonlinear systems. In [1], the authors describe approaches to
tolerate cyberattacks (based approaches such as game theory
or control theory); these can be explicitly modeled and tested
for functional effectiveness of the cyber system using our
approach. Our work complements that in [1] and in the
future, our work can be used to explore the impact of
cyberattack on a smart grid, examining the potential for
access-and-maneuver types of attacks to disrupt system
control and place the power system into ineffective and, in
some cases, destructive states.

%e survey in [62] raises a number of potential exten-
sions of our work and directions for future exploration
including.

(i) Our methods can be used for the analysis of par-
ticular communications and contract protocols,
investigating within the system context which
protocols are more or less resilient than others and
the performance and effectiveness of different
communications protocols/policies under different
network conditions.

(ii) Using our methods, one can directly experiment
with computational representation of more gran-
ular network-induced complexities, and validate the
generality of the analytic method and associated
assumptions.

(iii) A natural extension of our analytic methods is to
treat other types or sources of volatility that may
propagate or affect nodes in different ways.

(iv) Because of the explicit representation of the com-
promise of the cyber system, our methods can be
used to explore how filtering methods can be used to
improve response in the face of loss of nodes when
nodes play both sensing and communication roles
and to explore the consequences when sensor and
communications functions are impacted asym-
metrically [64].

(v) At a more theoretical level, our methods can be used
to examine applicability of set-membership filtering
to deal with system information censored or oth-
erwise unavailable due to cyberattack [65].

4.3. Final Conclusion. In this paper, we provided a frame-
work based on the population biology of disease for the
analysis of compromise in complex systems with cyber and
physical systems, gave examples of how the framework could
be used for both a generic metric of performance and for a
metric of performance involving the electric grid, and
suggested opportunities for further explanation. Much re-
mains to be done using this framework.

Appendix

A. Pseudocode for the Computations

%e pseudocode for the computations given here follows the
code available from the first author. Both the code and
pseudocode are written in R, and organized in a way to allow
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other individuals to access the ideas directly. %us, efficiency
of computation has been sacrificed for clarity of develop-
ment and presentation. In general, we adapt the form of the
pseudocode from [65] and continue to use the mathematical
notation from the paper, which is modified in clear ways in
the actual code. Rscript can be obtained from the first author
at marcmangel@protonmail.com.

A.1. Create the Generic Performance Function. To create the
generic performance function in equation (12), use these
steps.

(i) Specify the parameters N, x50, y50, σx, and σy.
(ii) Cycle over x � 0 to N.
(iii) Cycle over y � 0 to N − x.
(iv) For each combination of x and y, set ϕ(x) �

e(x50− x)/σx /(1 + e(x50− x)/σx ) and ϕ(y) � e− (y50− y)/σx /
(1 + e− (y50− y)/σy )

(v) %e generic performance function in equation (12)
for z � 0 is then the product ϕ(x) · ϕ(y).

A.2. Specify the Remainder of the Parameters. %e remainder
of the parameters are as follows:

(i) %ose for the dynamics of compromise, defense, and
detection (equations (1)–(5)): N, c, cs, η, g, f1,

f2, μm,
μDCM, α, β, c, M, ε1, ε2, εc, and the time horizonT.

(ii) %ose for the one-generator one-load model for an
electric grid (Equation (16)): P0, δ, andK.

A.3. Run theModel of Compromise in theAbsence of Defensive
Countermeasure. In order to produce the results shown in
Figure 4(a), solve equations (1)–(3) and (5) in the absence of
DCM (that is, set z ≡ 0). We used the 4th order Runge Kutta
scheme in the package deSolve in R. %e steps are as follows:

(i) Specify the time increment dt when solving equa-
tions (1)–(3) and (5).

(ii) Dimension the dynamic variables x1, x2, y, and U as
vectors of length T/dt.

(iii) Specify the initial conditions; if all components are
initially uncompromised (as in this paper) these are
x1 � N, x2 � 0, y � 0 and U � 1.

(iv) To produce Figure 4(b), solve the differential
equations and link to the generic performance
function from Section A.1.

A.4. Create the Distribution of Times at which Compromise is
Detectedand theLevel ofCompromise at theTimeofDetection.
In order to produce the results shown in Figures 4(c) and
4(d), follow the steps given below:

(i) Specify the number of replicates Nsim of the time of
detection and create vectors tdec and ydec of length
Nsim

(ii) Cycle nsim from 1 to Nsim

(iii) For each nsim, draw a random variable 􏽥U uniformly
distributed on [0, 1] and determine the time t for
which U(t)> 􏽥U and U(t + dt)≤ 􏽥U. Set tdec(nsim)

equal to this time and ydec � y(tdec), where y(t) is
computed from Section A. 3.

A.5. Run the Model of Compromise when Defensive Coun-
termeasures are Activated. In order to produce the results
shown in Figures 5 and 6 in which a range of times of
detection is systematically evaluated, we now solve the full
deterministic-stochastic model, which requires the indicator
function IDCM(t), which will be 0 for times less than the
time of detection tdec and 1 for times greater than it. We
model this as the cumulative Gaussian distribution function,
which is essentially a step function for small enough stan-
dard deviations. %us, in the code, we compute byIDCM(t)

by adding one more equation to equations (1)–(5):

dIDCM(t)

dt
�

1
����

2πσ2I
􏽱 exp −

t − tdec( 􏼁
2

2σ2I
􏼢 􏼣, (A.1)

where σI is the standard deviation (for computations, we
used σI � 0.1) and tdec is the time at which compromise is
detected. Once equation (A.1) is appended to equations
(1)–(5), one proceeds as follows:

(i) Specify the value of σI and the range of times of
detection; for the results shown in the paper, we
used the vector tdec � (10, 15, 20, 25, 30, 35, 40, 45).

(ii) Cycle over detection times.
(iii) Follow the same steps as in Section A.3 with

equation (A.1) appended.
(iv) For each value of tdec, confirm that the IDCM(t) so

generated is essentially a step function at tdec.

A.6. Sweeping Over the Fraction of Decoy Components. In
order to explore the role of decoy components (Figure 7), we
convert η from a scalar to a vector; for computations we used
η � (0, 0.025, 0.05, 0.0075, 0.1, 0.15, 0.2, 0.25) and then pro-
ceed as follows:

(i) Convert the fraction of decoy components to a
vector with the range to be explored.

(ii) Cycle over η
(iii) For each value of η repeat the steps in Sections

A.3–A.5; doing so generates all of the data needed
for Figure 7.

A.7. When the Attacker Relies on Stealth. When the attacker
relies on stealth (Equation (8), Figure 8), we have an explicit
solution for the number of uncompromised cyber compo-
nents (x(t) in equation (8)) and the number of compro-
mised cyber components (y(t) � N − x(t). %is allows
rapid exploration by sweeping over the rate of external
compromise c and rate of co-compromise cs, implemented
with these steps.
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(i) Specify the range over which the rates of com-
promise and co-compromise are explored and
create or replace the scalars c and cs by vectors.
Specify a vector for the time tA at which attack is
initiated.

(ii) Cycle over the rate of external compromise c and the
rate of co-compromise cs

(iii) Cycle over time from t � 0 to t � T.
(iv) For each time, compute x(t) from equation (8) and

y(t) � N − x(t).
(v) Cycle over each time of attack.
(vi) Compute the performance directly from equations

(9), (10), and (12).

A.8.5e One Generator-One Load Model for the Electric Grid
in the Absence of Compromise. As noted in the text, the one
generator-one load model may show instability depending
on the parameter values in equation (16), for which the
transmitted power is proportional to K sin(ϕ). In order to
explore the nature of this instability, proceed with these
steps.

(i) Specify the scalars K and δ and a vector for the
values of P0 in equation (16).

(ii) As above, dimension vectors for v and ϕ of length
T/dt and specify their initial values. Solve equation
(16) (we used deSolve in R).

(iii) Repeat the previous step with different values of δ to
numerically determine the value of δ at which an
instability develops for given values of K and P0.

(iv) In order to initially explore the failure of the grid
due to increasing demand, choose values of K, δ,
and P0 for which the solution of equation (16) is
stable. Create a vector εp that increases the
demanded power.

(v) Cycle over εp and for each value of it, solve equation
(16) as above to determine whether the grid has
stable or oscillatory behavior.

A.9. Couple the Model of Compromise and the Mode of the
Electric Grid. One is now in a position to couple the models
for compromise and the electric grid, in which P0 in
equation (16) is replaced by P0(1 + εdy(t)) where y(t) is
determined during the solution of equations (1)–(5) and
proceeds with these steps.

(i) Specify the value of εd

(ii) Meld Sections A.5 and A.8 above, with P0 in
equation (16) being replaced by P0(1 + εdy(t)). %is
will be sufficient to produce the results shown in
Figure 9. To produce the results shown in Figure 10,
one adds the steps.

(iii) Specify a vector for the increase in demanded power
εd (which provides the x-axis in Figure 10) and
critical values for εp determined from Section A.8;
denote this vector by εc.

(iv) For each combination of time of detection tdec, εd,
and εc, find the fraction of y(tdec) that exceeds the
threshold given in equation (18).

Data Availability

All the results in this paper were generated using R version
3.6.1 (available at the CRAN website https://cran.r-project.
org/) in RStudio version 1.0.143. R script for the models used
in this paper can be obtained directly from the first author.
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