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The world is filled with uncertainty. Processes inherently fluctuate. Indeed,
the observation system between us and the natural world contains so many
sources of uncertainty that even if the processes are certain, the observations
are usually uncertain. If we understand theory to be going beyond the data
(Peters 1991; Rigler and Peters 1995), then any model-—whatever 1its con-
struction or underlying structure—is a form of ecological theory. Never-
theless, it is possible to classify models broadly as statistical, theoretical, or
logical.

Statistical models arise in the analysis of data (regression, ANOVA, non-
parametric tests, and the like). They are post hoc models (done after the data
are collected) and allow the analysis of data. Theoretical models posit mecha-
nisms and thus lead to predictions even before data are collected. There are
two main reasons for exploring theoretical rather than statistical models:
because we wish to understand nature or because the environment is so
variable that statistical relationships will not hold. When mechanistic models
lead to predictions that disagree with the data, we must rethink the logic of
the model or question the data’s quality or validity. Statistical relationships
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are valuable in situations with low variability—that is, when the model may
be expected to work in situations and populations different from the situa-
tion of measurement. The way temperature affects growth rate, for instance,
may be studied in a laboratory and applied to temperatures in other labora-
tories and in the field. Statistical models must be treated with caution, how-
ever, as soon as the relationship may be influenced by individual behavior.
This is particularly true for estimates of natural growth, reproduction, and
mortality rates, which are heavily influenced by the activity level and habi-
tat selection of the individuals (Aksnes 1996). To model such phenomena in
natural environments, we need theoretical considerations.

Logical models are mathematics motivated by the natural world. An
example of the distinction between a logical and a theoretical model is the
Euler-Lotka model. According to this model, if a population consists of
identical individuals for whom fecundity and survival are deterministic
variables of age, then the population will grow by a constant rate and reach
a stable age distribution. This was first proved via mathematical arguments
by Lotka (1925). As a logical statement it is not open to experimental ver-
ification, and it holds true within the realms of mathematics. Biologists,
however, may investigate whether this model is a good approximation for
real populations. For biologists, therefore, the Euler-Lotka model is a the-
ory for population dynamics. Since it does not fit well with observations,
an alternative theory for population dynamics has been developed that
includes variable environments, individual variability, and stochasticity (Tul-
japurkar 1990; Tuljapurkar and Caswell 1997).

Ludwig (1995) has proposed that natural resource management involves
at least two paradoxes connected to uncertainties in nature and models:

 Management for sustained yield cannot be optimal.
« Effective management models cannot be realistic.

The source of these paradoxes is “statistical issues and the relationship
between models and data” (p. 516). The implication of these paradoxes, par-
ticularly the second, is that “statistical considerations generally invalidate any
but the simplest aggregated models as management tools” (p. 516). In this
chapter we investigate some of the conceptual issues that underlie the para-
doxes proposed by Ludwig. Our goal is to lead the reader to a deeper appre-
ciation of the care that must be taken when connecting models and data.

THEORETICAL MODELS, PREDICTION,
AND PARAMETER ESTIMATION

When using theoretical models, we posit mechanisms that connect the
independent and dependent ecological variables. Among theoretical mod-
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els it is fruitful to treat “why” (ultimate/functional) questions and “how”
(proximate/mechanistic) questions separately. Models dealing with ultimate
questions address the causes of a phenomenon—which for biology means
that these models should be founded in the theory of evolution by natural
or artificial selection. Models dealing with proximate questions address how
a mechanism operates and resolve the process to a desired level. In estimat-
ing mortality, for example, we could construct mechanistic models of the
environmental factors that influence mortality risk (visibility, smell, sound,
density dependencies). Alternatively, we could construct theoretical models
of how Individuals are predicted to act in response to a mortality risk (ind
the tradeoff between predation risk and feeding rate, for example, as in
Werner and Gilliam 1984). By combining these models we can calculate
the mortality rate.

Two points, however, are generally unappreciated: a theoretical model 1s
almost guaranteed to be wrong, and there can be many theoretical models
of the same phenomenon. For example, the long-standing discussion about
“testing the optimality assumption” in behavioral ecology (Gray 1987;
Pierce and Ollason 1987; Parker and Maynard-Smith 1990; Brandon and
Rausher 1995; Orzack and Sober 1994, 1996) by comparing the predic-
tions of a single theoretical model with data misses the point that there are
many optimality models (Hilborn and Mangel 1997; Clark and Mangel
2000). Science progresses by the confrontation of different models with
data. The models that are simultaneously the most explanatory (help us
understand the data) and predictive (tell us how to find new data by pre-
dicting outcomes of new experiments or observations) are the winners and
represent our best understanding of the natural world. Theoretical models
replace the data of a statistical model by mechanisms, and the best predic-
tions are about new kinds of informative data.We use theoretical models to
understand systems and predict their properties.

Data and statistical parameter estimation are components of theoretical
models. Ludwig points out, for example, that in order to estimate parame-
ters in a relationship between spawning stock (parents) and recruitment’
(offspring), we need variation in the spawning stock (see also Myers et al.
1995). Thus it is generally true in fisheries management that the stock can-
not be maintained at a single “optimal” level if we need to learn about
parameters (Ludwig’s Paradox 1). Similarly, instream flow models, which are
used to predict habitat preferences of fish, are a case of a deterministic
model that is probably better treated as one in which it is necessary to learn
about parameters (Ghanem et al. 1995). Modern statistical methods, partic-
ularly those based on likelihood and Bayesian approaches, are well suited for
estimating the parameters in theoretical models (Hilborn and Mangel
1997).
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Theoretical models are intended to be general—that is the point of
focusing on mechanisms. The parameters at a particular site may change, but
we assume that the mechanisms do not. Thus theoretical models are intel-
lectually transportable. A theoretical model can fail in the obvious way if it
makes predictions that are completely at odds with the data. But a theoret-
ical model may fail in a more insidious way: if 2 model leads to “exactly
what we expected,” without further understanding or prediction, then it
has failed. After all, if the results were expected and there are no new pre-
dictions, then we understood the scientific question before constructing the
model and the model is therefore superfluous. This is why we model: a
model of vertical migration that yields an ordinary pattern of diel vertical
migration as output has value if the model’s structure explains the forces
that are needed to get this result. A good model should explain phenomena
at a level previously not understood and should suggest experiments or
observations that have not yet been conducted. If we are particularly lucky,
then after the model has been developed and analyzed it may be possible to
understand the biological situation without recourse to the model (Clark
and Mangel 2000, especially chapter 4).

Theoretical models need not be simple. Indeed, the development of
high-speed and powerful desktop computing has allowed the construction
of individual-based models (Romey 1996; Chapter 12 1n this volume) and
spatially explicit models (Mason and Brandt 1996) of enormous complex-
ity. They are still theoretical models, however, positing mechanisms to make
predictions.

A theoretical model must be able to explain the mechanism and
processes of the problem at hand, and its structure and detail must have a
biological (or physical) interpretation and be measurable (at least in princi-
ple). Formulating a theoretical model—specifying the mechanism, con-
straints, and parameters—is an exercise by itself, and a fit to data is not the
only criterion by which the model is evaluated. Although we can investi-
gate the internal consistency and predictions from a theoretical model, a
theory can be tested for relevance to natural phenomena only through nor-
mal scientific progression—that is, by formulating alternative hypotheses,
outlining critical experiments (or searching for field observations to evalu-
ate hypotheses), and then letting the data adjudicate the hypotheses (Platt
1964; Mangel and Clark 1988; Hilborn and Mangel 1997). We should not
evaluate theoretical models solely on how well they fit the data: there are
other grounds as well, such as elegance, internal logic, and explanatory
power. If a consistent theory does not compare favorably with all the data,
we should reconsider the data and the way they were acquired before
rejecting the theory. This is especially relevant when no alternative theory
is available or when the alternative theory is not consistent or simple or
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supported by other sources. Natural resource ecology and management is a
complex matter. Mo matter how expanded our model, we cannot expect
more than partial overlap between the model and field or laboratory data.
This point is related to Ludwig’s second paradox: when we need to esnmate
parameters, smaller (and simpler) management models often perform bet-
ter than more complicated ones.

In a variant of the approach used here, Loehle (1983) divided the mod-
els along a continuum between the “application™ model and the “calcula-
tion” model. An application model uses laws and theories to make predic-
tions about a phenomenon; a calculation model can be as simple as a
statistical regression without any notion of mechanism. Because they are
more general and apply to a wider range of situations, application models
are superior to calculation models.

In general, theoretical models provide a deeper level of understanding
than statistical models. This is not always reflected in the quality of fit to
data, however, If we are most interested in a close fit to the data, we should
choose a statistical model because it allows us to modify all parts of the
model to achieve this goal. As we start to adjust theoretical models, how-
ever, they lose their explanatory power and gradually become statistical
models. The implication is that science should aim for theoretical models
(Giske et al. 1992; Giske 1998)—while always making explicit the processes
and parameters that weaken the level of understanding expressed through
the model. This is an important part of the modeling process: to clarify what
is known and what needs further elaboration. Since theoretical models
should be formulated in biologically meaningful terms, they indicate whart
needs to be measured in order to settle parameter values. Once these val-
ues are defined and measured, the modeler is no longer free to change
them.

STATISTICAL MODELS AND EFFECTS

Statistical models are typically without a mechanism, although they posit
relationships between variables, Imagine a set of data {X{1), ¥(i i =1, . ..
, n}, where X(i) are the presumed independent variables and ¥{i) are the
presumed dependent variables. The statistical model answers the question
“Does ¥ change as X changes?” (or some variant of this); this is what most
ecologists do. Even with statistical models, this question can be answered in
a number of different ways. That is, there are many statistical models for a
phenomenon. In null hypothesis testing, for example, we begin by hypoth-
esizing that there is no relationship between X and Y (the null hypothesis)
and then use the data to determine the probability of observing data given
the assumption of no relationship. If this probability is small enough, we say
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the hypothesis of no relationship has been “rejected” (see also Gotelli and
Graves 1996). Note that this does not actually deliver the goods. What we
would ideally like to know is the probability that a hypothesis (say, that X
increases as Y increases) is true given the data, What we get is the probabil-
ity of observing the data given that the null hypothesis (in this case of no
relationship) is true (Cohen 1994; Rooyall 1997).

Monparametric statistical methods deal with the data only. Parametric
statistical methods posit a statistical relationship such as

Y() = By + B, X0 + Z() [4.1]

where B, and B, are constants and Z{(i) represents the uncertainty in the sys-
tem. Alternatively, we might posit a log-linear relationship in which the log-
arithms of the variables are linearly related. Equation (4.1) 1s generalized in
a relatively straightforward manner when there is more than one kind of
independent variable. Suppose that X, (i) and X, (i) are two different inde-
pendent variables. The generalization is

YU = B, + B0+ BAG + 20 [4.2]

This is called a model without interactions, because no combinations of X
and X, appear. There is only one model without interactions but an infi-
nite number of models with interactions because the interaction can be
characterized by any function of X, and X,. Hence researchers typically
concentrate on models without interactions (see also Hilborn and Mangel
1997). Bradford et al. (1997), for example, used a combination of statistical
models to develop predictions about the relationship between abundance
of coho salmon (Owmcorhynchus kisurch) smolts and stream characteristics such
as length, gradient, valley slope, latitude, and minimum and maximum
flows.

Statistical models are driven by data. For this reason they are specific to
the location and the system studied. Their details are not intellectually
transportable, although the general approach may be. Indeed, Roughgarden
et al. (1994) argue that we should view ecology more as an earth science
(in which every setting is unique and controlled as much by geological
transport processes as by biological species interactions) than as a molecu-
lar biological science (in which every experiment is reproducible any-
where). But care must be taken. Kozel and Hubert (1989), for example,
identified the physical and biological factors that appeared to control the
density of brook trout (Salvelinus fontinalis) in drainages in Wyoming. They
found a suite of 18 variables that were significantly (p < 0.05) correlated
with brook trout standing stock and developed individual regression equa-
tions for each of them. They also discovered 25 significant correlations
between the variables, but they provided little theoretical underpinning for
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the statistical relationships. Fine so far; this is a statistical model. Now con-
sider their last sentence: “The relationships presented by us can be used as
standards for comparison when assessing abundance of brook trout in
streams altered by human activity or when determining mitigation objec-
tives for such streams.”” By advocating not the approach but the relation-
ships, they changed a statistical model into a theoretical model with little
evidence that this change 1s valid.

AVOIDING THE PITFALLS

There are a number of ways to avoid getting trapped by Ludwig’s para-
doxes, which remind us of the care that must be taken when connecting
models and data.

Avoid Too Many Uncertain Parameters

Ludwig (1995) points out the dangers of overfitting data and notes: “Hav-
ing the correct model is not enough: the associated parameters must be well
determined” (p. 521). Picking the right size for a model is a developing art
(Hilborn and Mangel 1997). This applies to statistical models (Hakanson
1995) and to theoretical models for which parameters must be estimated. If
the physical or biological parameters are not known or are measured with
great uncertainty, it is even more important to keep the number of param-
eters low. With well-defined and independently measured parameters, this
is less critical.

There is always a tradeoff between simplicity and the level of mecha-
nistic description. This is what leads to Ludwig’s second paradox. In gen-
eral, simple models are attractive because of their tractability and trans-
parency and should not be abandoned too quickly due to dissimilarities
with empirical studies (although our unease with the model may increase).
A mechanistic model of the functional response in fish was developed by
Aksnes and Utne (1997), for example, and the derivation clarifies the
importance of the optical properties of water in understanding the distri-
bution and dynamics of fish and zooplankton. In this case, the level of elab-
oration was justified by the influence of the model’s details on the predic-
tions—conforming to the rule that we should keep models simple unless
there are good reasons to do otherwise.

This argument can also be applied in the discussion of whether a model
should be formalized computationally or analytically. With analytical mod-
els, we are more likely to be able to control and verify the results directly
from the derivation, whereas numerical models may carry flaws in the
computer realization that are not easily detected. Analytical models are
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often more elegant and parsimonious in the sense that they may be resolv-
able without aid of computers (at least in principle). This is also the limita-
tion of the analytical approach, however, because the simplifications are
made at the expense of realism. Mumerical models allow much more bio-
logical detail and realism and permit investigations of many questions that
cannot be asked analytically. General principles can be drawn from numer-
ical modeling through the performance of “computer experiments’ and
sensitivity analyses (Mangel and Clark 1988, Hilborn and Mangel 1997;
Clark and Mangel 2000).

Always Try to Compare Multiple Models with Data

Chamberlin (1897) argued that we should always have multiple working
hypotheses. As we have seen, theoretical models almost immediately lead to
multiple models as different mechanistic formulations are envisioned. Sta-
tistical models can do the same, if we posit different relationships, but with-
out a mechanism. Myers et al. (1995), for example, confronted four differ-
ent models of recruitment and two different models of uncertainty with
more than 250 sets of stock-recruitment data. This method allowed them
to determine the most appropriate description of the functional relation-
ship between recruits and spawners and the most appropriate conceptual-
ization of the variability in recruitment.

Gan and McMahon (1990) showed that the Physical Habirat Simulation
Systemn (PHABSIM) used for instream flow analysis actually consists of a
large number of different logical and statistical models (based on which
subprogram is used), assumptions about how velocity, depth, and substrate
are related to weighted usable arca (WUA), type of velocity profile, type of
velocity equation, and bed material. Using a single set of hydraulic data and
preference curves, they investigared 23 combinations of variables and dis-
covered (Figure 4.1) a nearly tenfold range in predictions of WUA for fry
and juvenile brown trout (Salmo trutta). They noted (p. 233) that the “results
are shown to vary greatly according to the particular combination of
options selected, so unless calculations are founded on biologically realistic
assumptions, the potential within PHABSIM for the ‘fudging’ of results is
considerable” Thus it is essential to have agreement on biological assump-
tions before computations are done (Mangel et al. 1996). It is even more
important, however, to evaluate the models by confrontaton with data
(Hilborn and Mangel 1997).

The same is possible for statistical models. Ruahel et al. (1996), for exam-
ple, used a statistical model to predict habitat loss and population fragmen-
tation in the North Platte River drainage by constructing statistical rela-
tionships between geographic area lost based on air temperature, stream
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Figure 4.1. Gan and McMahon (1990) investigated different predictions of weighted
usable area (WUA), computed from PHABSIM, for brown trout (Salmo trutta) fry
(squares) and juveniles (triangles). Different assumptions in the underlying logical
model are used in different runs of the program. Note that the WUA for fry may dif-
fer by a factor of 10 and for juveniles by a factor of nearly 8.

distance lost based on air temperature, and stream distance lost based on
water temperature. They noted that the three approaches gave different pre-
dictions of the amount of habitat loss due to climate warming and then
used theoretical methods to sort out some of the variation in the predic-
tions of the statistical model. Lek et al. (1996) conducted a similar study,
using statistical models involving up to eight variables, to relate environ-
mental parameters and trout abundance.

Always Be Thinking of Alternative Models

Logical models are tested with mathematics. Theoretical models are tested
by experimentation and observation. The models we use in management
and ecology are often complex. For these, it is better to test each of the
major assumptions rather than try to test the predictions of the models. This
has to do with the incomplete overlap between model and environment
and the hopeless task of measuring the relevant environmental complexity
in an instant. We should always recognize that the model may miss a key
feature of the matural system—even one that drives the full behavior of the
system.

An example of this research strategy is the study of eutrophication in the
North Sea (Aksnes et al. 1995). Starting from the Holling equation describ-
ing the feeding rate in animals, Aksnes and Egge (1 991) developed a mech-
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anistic model for nutrient uptake in phytoplankton. Parameters were estl—
mated for two groups of algae (diatoms and flagellates) such that the param-
eters (which have precise biological interpretations) were fixed from meas-
urements (Aksnes et al. 1995). Simultaneously, many series of enclosure
experiments were conducted with a wide range of nutrients (Egge and
Aksnes 1992; Egge et al. 1994), and the time series of phytoplankton abun-
dance was compared with predictions from the model. No tuning of the
parameters was allowed, since the intention was to develop a general tool
for the study of eutrophication. The model has now been incorporated into
a three-dimensional physical model of the North Sea and applied to inves-
tigate issues related to eutrophication and management (Aksnes et al. 1995;
Balinio 1996). '

Similarly, from the predictions of a model of an experiment studying
migration and allocation patterns in Daphnia magna, Fiksen (1997) suggested
that the daphnids maximized rate of increase (7) rather than net reproductive
rate (R,). In the model (and experiment), growth was a function of temper-
ature, with 98 percent of the variance explained by temperature. Mortality
risk from fish was an encounter-based model with measurable parameters
such as image area, ambient light, and predator density. The model did not
match the data very well without the assumption of decreasing mortality
with increasing size, which would occur if there were invertebrate predators
present or if the daphnids live according to this potential threat. Thus with
well_defined environmental forcing and physiological response, the model
and the data could be used to investigate assumptions about the shape of the
predation risk and the optimality criterion. By further mechanistic model-
ing and corresponding fixation of parameters, the number of assumptions
was reduced and the model improved for applications.

In summary, then, instead of talking about models being false or true,
we should talk of good or bad models—evaluated by their explanatory
power and ability to predict observations. In practice, models that are con-
sidered good (often the simplest models) are not rejected even if observa-
tions do not confirm their validity (Lotka-Volterra models of population
dynamics, for example). Some models are retained even though there are
hardly any observations that fit the predictions (Fagerstrom 1987). Finally,
models and theories tend to be used as long as there is no better theory to
apply (Lakatos 1978; Hilborn and Mangel 1997). For this reason we should
always be thinking about alternative models.

Don’t Go Where the Data Aren’t

Both theoretical and statistical models may enter intellectual quicksand
when applied to situations where there are no data. Consider, for example,
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Figure 4.2. Forcing a regression equation to show the origin can be very dangerous
if there are no data in that region. Doing so essentially converts a statistical model to a
logical model, perhaps unintentionally. (Reproduced from Cade and Terrell 1997.)

a stock-recruitment relationship between parents in year f (S ) and offspring
in year t + 1 (R): :
R, = aSe7S) [4.3]

t+1

The parameter a represents maximum per capita reproduction when pop-
ulation size is small; f(S) captures the density dependence of reproduction.
The form of density dependence has to be estimated. The trouble is that the
parameter characterizing behavior at a small population size is usually influ-
enced by observations far from the origin (and vice versa: Levins 1966). As
a solution, Myers et al. (1997) propose that we should use only the six
observations with the smallest spawner biomass. When a model has a strong
theoretical basis, we should not feel obliged by the data to apply a simpler
relationship. Rather, we should use the theory to suggest investigations that
will find data in an area that is relevant for discrimination among the com-
peting models.

Similar problems arise with statistical models. Cade and Terrell (1997),
for example, point out that by forcing a regression through the origin by
setting 3, = 0 in Equation (4.1) or (4.2), we may generate an apparent
relationship between fish density and weighted usable area even though
there are no data to support this (Figure 4.2) (see Bourgeois et al. 1996;
for examples in evolutionary ecology see Charnov 1993 or Mangel
1996).
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Don’t Confuse Statistical and Theoretical Models

The error of mixing statistical and theoretical models is called “the error of
pseudo-explanation” in Loehle (1987); Dunham and Vinyard (1997) make
a similar point. It is possible to conduct an excellent and elegant study using
a statistical model but then to conclude wrongly that you have constructed
a theoretical model. As we have seen, forcing the regression through the
origin adds mechanism to a statistical model (see Cade and Terrell 1997 for
ways to avoid this) and thus makes it an implicitly theoretical model. Often
a good statistical model will identify relationships that then lead us to think
about the mechanisms underlying them. Lanka et al. (1987), for example,
found that geomorphic variables alone, used in a statistical (regression)
model, predicted the standing stock of trout as accurately as stream habitat
variables (see also Nelson et al. 1992). This presents a challenge to under-
stand the mechanistic relationship underlying the statistical discovery.

" To be sure, all kinds of models are needed for the solution of ecological
problems. As theoretical models become larger and computationally more
intensive, they require more parameters, and thus we end up with a hybrid
between a theoretical and statistical model. Bartholow et al. (1993), for
example, constructed such a model for spatially distinct cohorts of chinook
salmon (Oncorhynchus tshawytscha). They used theoretical descriptions of life
history characteristics and statistical descriptions of flow patterns of the
Trinity River (see also Williamson et al. 1993). The fundamental notion
here is that flow-dependent physical habitat and water temperature may
ecither increase or limit the carrying capacity of streams. To operationalize
this assumption requires careful use of theoretical and statistical models—
and knowing which is which (see Gore et al. 1992; Harper et al. 1992; Ker-
shner and Snider 1992). Baker and Coon (1997) used a theoretical model,
based on optimal foraging theory, to evaluate habitat suitability criteria for
brook trout (Salvelinus fontinalis).

To construct an effective model requires specification of mechanisms,
processes, and parameters that may not be available. Models are tools to
guide further inquiries in the laboratory, in the field, or in the literature
(Gabriel 1993). They are not the truth, but they are “the lie that helps us
see the truth” (Fagerstrem 1987).
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