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Timing of reproduction may be of crucial importance for fitness, particularly in environments that vary seasonally in food availability or pre-
dation risk. However, for animals with spatially separated feeding and breeding habitats, optimal reproductive timing may differ between
parents and their offspring, leading to parent-offspring conflict. We assume that offspring have highest survival and fitness if they are spawned
around a fixed date, and use state-dependent life-history theory to explore whether variation in conditions affecting only parents (food avail-
ability and survival) may influence optimal timing of reproduction. We apply the model to Pacific herring (Clupea palasii) in Puget Sound,
USA, where 20 subpopulations spawn at different times of the year. Our model suggests that relatively small differences in adult food avail-
ability can lead to altered prioritization in the trade-off between maternal fecundity and what from the offspring’s perspective is the best
time to be spawned. Our model also shows that observed among-population variability in reproductive timing may result from adults using
different feeding grounds with divergent food dynamics, or from individual variation in condition caused by stochasticity at a single feeding
ground. Identifying drivers of reproductive timing may improve predictions of recruitment, population dynamics, and responses to environ-
mental change.
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Introduction
Many fish species do not provide care for offspring after birth,

but parents can still play a major role for the success of

their offspring by deciding where and when to spawn.

Populations often return to the same areas year after year for

reproduction, but there may be substantial variation in when

spawning takes place, both between years and among subpopu-

lations. To understand this variation and furthermore how re-

productive timing may respond to climate change and other

stressors, there is a need for evolutionary interpretations of

local variation in reproductive timing as the outcome of adap-

tive behaviour.

Consider this baffling example from Puget Sound, WA, USA

(Figure 1a), where 20 different Pacific herring (Clupea palasii)

subpopulations (stocks) spawn consistently but at different times

of the year (between late January and June, Stick et al., 2014;

Figure 1b) even though all but two stocks show no discernible ge-

netic variation (Small et al., 2005). No known evidence exists that

this variability in spawn timing is related to environmental condi-

tions; though, at broader spatial scales, it is thought that annual
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temperature regimes regulate maturation and spawn timing

(Hay, 1985). This raises the question of why these stocks display

so much variation in reproductive timing. In addition, peak

spawn date has been shifting for many of the Puget Sound herring

stocks in recent years, but in different directions and magnitudes

(Figure 1b). Local drivers of these changes have not yet been

identified, and similar shifts have been observed but not yet

explained for Pacific herring elsewhere along the west coast of

North America (R. Bartling, pers. comm., S. Dressel and K.

Hebert, pers. comm.). It seems clear that some underlying process

is affecting the spawning time of each stock, while allowing large

between-stock variation.

In fisheries science reproductive timing has been a hot topic

for over 100 years, ever since Johan Hjort presented his famous

“critical period” hypothesis (Hjort, 1914) to explain variability in

recruitment. Hjort (1914) hypothesized that recruitment was de-

termined as early as the time of first feeding, since starvation dur-

ing this early larval phase could substantially reduce offspring

survival. This idea was expanded on by Cushing, who proposed

the “match–mismatch” hypothesis (Cushing, 1973, 1990).

Cushing acknowledged that starvation of first-feeding larvae

could contribute to variability in larval mortality, but built his ar-

gument on the observation that mortality declines with size

(McGurk, 1986; Gislason et al., 2010; Brodziak et al., 2011). In

Cushing’s view, poorly fed larvae grow slowly and are therefore

more susceptible to predation. Accordingly, the central assumption

of the “match–mismatch” hypothesis is that timing of spawning is

adapted to seasonal plankton production blooms in the larval dis-

tributional area. In its original formulation, the hypothesis also as-

sumed that fish populations in temperate waters spawn at fixed

times and thus that mismatches arise due to variable plankton phe-

nology (Cushing, 1969, 1973). However, many temperate fish pop-

ulations demonstrate larger inter-annual variability in spawning

time than can be explained from food availability for early life

stages (e.g. see Wright and Trippel, 2009). For example, significant

intra-specific variation (ranging 65–100 days) over three decades

was reported for three Northwest Atlantic cod (Gadus morhua)

populations (Hutchings and Myers, 1994). There is also large vari-

ation in timing of spawning among populations of the same spe-

cies [e.g. Atlantic herring (Clupea harengus), Sinclair and

Tremblay, 1984; haddock (Melanogrammus aeglefinus), Page and

Frank, 1989; cod, Brander and Hurley, 1992; Myers et al., 1993;

sardine (Sardina pilchardus), Stratoudakis et al., 2007]. While

Atlantic herring populations spawn over the entire year, Pacific

herring spawning can span over several months, and some popula-

tions spawn at different times of the year on the same spawning

grounds (Sinclair and Tremblay, 1984).

Since the introduction of the “critical period” (Hjort, 1914)

and “match–mismatch” (Cushing, 1973, 1990) hypotheses, much

research has been devoted to explaining recruitment variability in

fish populations (see Houde, 2008; Wright and Trippel, 2009).

Most of this research relies on the assumption that fish spawning

times have evolved so offspring encounter conditions that pro-

mote their survival, while any effects on the reproductive success

of individual parents have been ignored (Wright and Trippel,

2009). Thus, it seems fair to say that our current understanding

of the selective factors operating on timing of spawning is incom-

plete, which in turn implies that we lack a mechanistic under-

standing of the underlying drivers of recruitment variation

(Munch et al., 2005a, b).

A better understanding of spawning phenology is also of inter-

est for climate change research, since climate warming is generally

expected to shift reproductive activities earlier in spring or later

in autumn (Stenseth and Mysterud, 2002; Parmesan and Yohe,

2003; Visser and Both, 2005; Both et al., 2009). For over a decade,

Cushing’s “match–mismatch” hypothesis has formed a main basis

for studies on the effects of climate change on trophic interac-

tions and their consequences for population dynamics (Durant

et al., 2007; Parmesan, 2007; Thackeray et al., 2010). Some of

these studies show declines in population fitness as a consequence

of asynchrony between offspring food demand and availability

(e.g. Both et al., 2006; Visser et al., 2006).

However, environmental variability influences more than the

early life stages, it also impacts the success and survival of adults.

A key insight and the driver of our model is that when resources

and predation risk vary over the annual cycle, an adult may not be

able to reproduce at the optimal time for its offspring if this timing

conflicts with other priorities for adult survival or reproduction

(e.g. Reznick et al., 2006; Varpe et al., 2007). In short, what is good

for the offspring may not be good for the parent, and evolutionary

thinking allows us to study this trade-off. For example, a parent

may increase lifetime reproductive success by breeding later than

the optimal timing of birth for its offspring, so that the parent can

have more time to acquire additional energy in preparation for

spawning, and thus eventually produce more offspring (Rowe

et al., 1994; Drent and Daan, 2002). In other cases, it can be better

to reproduce earlier than optimal for the offspring, so that the par-

ent can have returned to the feeding grounds in time for peak food

availability. In addition to foraging considerations, variable preda-

tion risk can similarly influence adult reproductive decisions

(Lima, 2009). In the case of Puget Sound herring, variable spawn-

ing times may thus come about not because of mismatch between

early life stages and benign environmental conditions, but because

parents are attracted to foraging opportunities or avoid predation

risk in ways that are more decisive for their fitness.

To incorporate these considerations, we use the theory of parent-

offspring conflict to model spawning time as a compromise between

the mother’s expected survival and fecundity on the one hand, and

accumulated reproductive success through the survival of her off-

spring on the other (Reznick et al., 2006; Varpe et al., 2007). This

follows the logic of Trivers (1974), who showed that sexual repro-

duction can cause a conflict between parents and their offspring

when the current reproductive investment of the parent has a nega-

tive effect on its future fitness. The prerequisites for such a conflict

are that the optimal levels of parental investment differ between a

parent and its young, and that investing more in the offspring can

benefit the offspring but at a cost to the parent (Roitberg and

Mangel, 1993). This leads to joint evolution of parental and off-

spring traits, and the outcome can either be evolutionarily stable or

result in a continuing arms race (see Kilner and Hinde, 2012, and

references therein). A spawning time that diverges from the optimal

timing from an offspring’s perspective may thus result from stronger

selection on related traits in parents, which may constrain offspring

fitness although it maximizes parental fitness.

Since timing of reproduction is an emergent property of the

overall selection on parental timing and offspring survival

(Trivers, 1974; Varpe et al., 2007; McNamara and Houston,

2008), explaining variation in this trait requires incorporation of

a full life cycle perspective (i.e. both offspring and parents). In

this study we include the parental view and adopt a simplified
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Figure 1. (a) Puget Sound herring are managed by the Washington State Department of Fish and Wildlife (WDFW) as 20 separate spawning
populations (inset shows location in the northeast Pacific, WA, USA). (b) Time series of peak spawn dates (with linear smoother and 95%
confidence interval) for Pacific herring spawning sites in Puget Sound. Peak spawn date is defined as the survey date on which the cumulative
observed egg abundance (based on WDFW rake surveys) exceeded 80% of the total egg abundance observed for that year. Note that some of
the stocks recognized by WDFW (Figure 1a, 20 in total) spawn in adjacent bays and have somewhat different peak spawn times, and have
therefore been separated in the graphs showing spawning times (Figure 1b, 25 in total). Int San Juan 2¼ Lopez Island; Cherry Point 2¼ Birch
Point; Semiahmoo 2¼ Point Roberts; Cherry Point 3¼Hale Passage.
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annual routines approach to capture trade-offs resulting from life

in a seasonal environment (Barta et al., 2008; Feró et al., 2008).

To explore how variation in conditions (food availability and

mortality rate) that only affect parents influences optimal repro-

ductive timing, while accounting for seasonality in offspring re-

cruitment probability, we use a state-dependent life-history

model. We focus on migratory Pacific herring spawning in Puget

Sound as it exemplifies a system in which the conditions that af-

fect adults for most of the year are separated by migration from

those that determine survival of early life stages. Although our fo-

cus is on migratory pelagic fish populations, the mechanisms and

relationships are general and could be applied to explore repro-

ductive decisions of other migratory organisms as well.

Our aims are: (i) point to possible drivers of evolved patterns

in spawning time in fish populations and assess the potential

magnitude of their effects on spawning time variability; and (ii)

expand match–mismatch thinking by parent-offspring conflict as

basis for a richer explanation of shifts in reproductive phenology

associated with environmental change.

Material and methods
Overview of the model
We will now provide verbal summaries of the model; the relevant

equations are given in appropriate detail in Supplementary

Material S1.

To explore how variation in food availability and mortality

rate at the feeding grounds of adults affects their optimal re-

productive timing, while taking seasonality in offspring re-

cruitment probability into account, we used state-dependent

life-history theory in which optimal life-histories are found by

stochastic dynamic programming (Houston and McNamara,

1999; Clark and Mangel, 2000). The central assumption of our

model is that there are three seasonally fluctuating relation-

ships that influence reproductive success: (i) food availability

and (ii) predation risk at the feeding grounds, affecting only

adults, and (iii) probability of recruitment for offspring

hatched on a certain day of the year (referred to as offspring

fitness). We used the model to predict when it was optimal for

parents to reproduce and how much energy they invest in cur-

rent reproduction; both these decisions were conditional on

the energy reserves of the parent, its location, and the day of

the year. The model maximized expected lifetime reproductive

output, accounting for current and future reproductive events.

Thus, in this study decisions represent strategies and behav-

iours that have evolved by natural selection, and not decisions

due to cognitive choice. We parameterized the model for

Pacific herring in Puget Sound. After determining the optimal

decisions for each state and time as they were constrained by

physiology (bioenergetics) and ecology (food availability and

mortality of adults and offspring), we used forward Monte

(a)

(b)

Figure 2. (a) Schematic illustration of the model. Individuals can either be at the feeding ground foraging and building reserves for spawning,
at the spawning ground to reproduce, or migrating in between. Key variables are given in lowercase letters. (b) Seasonal variability of
parameter values. When the environment varies seasonally, the annual sine curves are characterized by their peak day, mean value, and
amplitude.
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Carlo simulation to predict individual lifetime trajectories.

Differences across individuals thus arose from stochastic en-

ergy gain, and by summing across many individuals we

obtained population-level distributions of key traits and

behaviours. We have strived to present results as quantities

that can be measured in the field.

Optimal decisions, state variables, the environment, and
reproductive success
We consider three locations: a feeding ground; a migration route;

and a spawning ground (see Figure 2a for a schematic illustration

of the model).

We only consider females, assuming that males are sufficiently

abundant that all eggs are fertilized. When a female is on the feed-

ing ground, her possible behaviours are “stay” or “migrate”;

when on the spawning ground, they are “wait,” “spawn a propor-

tion of available reserves and migrate back to feeding grounds,”

or “spawn all available reserves and die.” The latter option is not

necessarily semelparity because it may be preceded by spawning

events in which not all resources were used. It is thus better de-

scribed as terminal spawning, and can occur at any time if condi-

tions dictate so (Duffield et al., 2017). The reproductive output of

an individual that spawns on a particular day of the year is

obtained by multiplying the energy allocated to reproduction by a

recruitment probability for offspring spawned on that day. We

thus assume a seasonal curve for offspring fitness, and use the

identical curve across all simulations so all variation in spawning

time predicted in this study stems from environmental effects on

adults. We assume that natural selection has acted on these

behaviours to maximize accumulated reproductive output

(expected number of recruited offspring a parent produces, i.e.

offspring that survive to join the adult population).

The model characterizes the female by the physiological state

variable energy reserves, which on day t has the value x, measured

in joules (J). The feeding ground is characterized by three envi-

ronmental parameters: food availability (energy intake, i.e. con-

sumed energy minus losses due to digestion and waste; J day�1);

energetic cost (temperature-dependent standard metabolism;

J day�1); and rate of mortality (day�1). Depending on the specific

analysis (see Analyses section), we treat these either as constant or

following seasonal patterns, given by sinusoidal functions with an

annual period. The annual sine curves are characterized by a

mean value, peak day, and amplitude (see Figure 2b, Table 1).

We model energy intake as stochastic and autocorrelated between

days, and let the environmental state variable Y(t) (J day�1) repre-

sent the actual energetic intake on day t of the year. We assume

that no feeding takes place during migration, or at the spawning

ground, thus, these two locations are only characterized by an en-

ergetic cost and a rate of mortality. Hence, the state-dependent

life-history model explicitly accounts for the trade-off between

current and future reproductive output, within the constraint of

the energy budget. See Supplementary Material S1 for equations

and other details of numerical solution.

Analyses
Sources of environmental variability that could alter the cost/ben-

efit ratio and thus timing of spawning are seasonal variation in re-

source availability and predation risk, because these potentially

lead to feeding and survival opportunities lost to adults while

they are away spawning. To systematically explore the effects of

annual fluctuations in food availability and mortality rate at the

adult feeding ground on optimal spawning time, we used three

different analyses that vary these environmental variables within

reasonable limits. First, we investigated the relative roles of energy

Table 1. Parameters and variables (italics) used in the three analyses.

Location Parameter Puget sound Food availability analysis Mortality analysis Units

Feeding ground (f) Energy intake �YðtÞ
Mean 10 11 12 10, 11, 12 10, 11, 12 kJ/day
Amplitude 10 11 12 1.375, 2.75, 4.125 0 kJ/day
Peak day Every 50 days(30, 80, 130,

180, 230, 280, 330)
Every 50 days(30, 80, 130,

180, 230, 280, 330)
[constant] Day of year

Energetic cost afðtÞ
Mean 6.7 6.7 6.7 kJ/day
Amplitude 1.8 0 0 kJ/day
Peak day 212 [constant] [constant] Day of year

Rate of mortality mfðtÞ
Mean 0.5 0.1, 0.3, 0.5 0.2, 0.4, 0.6 Year-1

Amplitude 0 0 0.05, 0.1, 0.15 Year-1

Peak day [constant] [constant] Every 50 days(30, 80, 130,
180, 230, 280, 330)

Day of year

Migration route (m) Energetic cost amðtÞ
Mean 9.13 9.15 9.15 kJ/day
Amplitude 1.8 0 0 kJ/day
Peak day 212 [constant] [constant] Day of year

mm tð Þ ¼ mfðtÞ ¼ mf tð Þ ¼ mf tð Þ Year–1

Spawning ground (s) as tð Þ ¼ af tð Þ ¼ af tð Þ ¼ afðtÞ kJ/day
ms tð Þ ¼ mfðtÞ 0.2 0.2 Year–1

Offspring fitness FoffspringðtÞ
Mean 0.4 0.4 0.4
Amplitude 0.4 0.4 0.4
Peak day 91 91 91 Day of year
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intake (“Food availability analysis”) and mortality rate

(“Mortality analysis”) in driving variation in reproductive timing,

then we explored dynamics with the model parameterized to

Puget Sound (“Puget Sound analysis”). See Table 1 for parame-

ters investigated in these analyses.

Food availability analysis
In this analysis, we used three mean levels of the annual sine

curve in energy intake over three different amplitudes, and with

three constant levels of feeding ground mortality to investigate

the effects of variation in food availability on optimal spawning

time. To isolate the effects of variation in energy intake, we kept

the energetic costs constant. Keeping all other parameters con-

stant, we ran forward Monte Carlo simulations over three levels

of energy intake (low, medium, high), for several different peak

days of this variable), to represent feeding grounds of different

quality and timing. To reduce the number of combinations of

parameters to explore, we kept mortality rates constant and equal

at all three locations.

Mortality analysis
In this analysis, we investigated the effects of variation in mortal-

ity rate on optimal spawning time. We simulated three mean lev-

els of the annual sine curve in feeding ground mortality rate over

three amplitudes, and three constant levels of energy intake. To

isolate the effects of variation in mortality rate, we kept the ener-

getic costs constant. Keeping all other parameters constant, we

ran forward Monte Carlo simulations for several different peak

days in mortality rate.

Puget Sound analysis
In this analysis, we explored the seasonal dynamics of herring

spawning in Puget Sound. Food availability and energetic costs

were characterized by annual sine curves, with parameter values

representative of Puget Sound herring. Although the model is

conceptual and parameters are coarse, it shows the potential

range of spawning times that could be brought about by environ-

mental fluctuations that affect only parents at the feeding

grounds. Keeping all other parameters constant, we ran forward

Monte Carlo simulations for several different peak days in energy

intake.

Optimization and simulations
We used state-dependent behavioural and life-history theory by

stochastic dynamic programming (Houston and McNamara,

1999; Clark and Mangel, 2000) to find optimal life-history strate-

gies by iterating backwards from a final point in time, constantly

assuming that an individual acts optimally at every future deci-

sion point. Our model runs by daily time steps and finds the opti-

mal strategy for when to move between feeding grounds and

spawning grounds for each combination of the state variable and

time. The optimization criterion is accumulated lifetime repro-

ductive output, i.e. the sum of the energy spawned at each repro-

ductive event discounted by survival probability to that event,

and multiplied with offspring fitness (recruitment to the popula-

tion) for that day of year. Thus, the predicted strategies are evolu-

tionary optima for the specific parameter set used to describe the

ecology of the system. To allow for investigation and visualization

of individual and population level patterns emerging from the

interaction between the optimal strategy and the environment,

we simulated 10 000 individuals that followed the optimal strat-

egy in a stochastic food environment.

Parameterization
The parameter values used in the model were chosen to represent

Pacific herring spawning in Puget Sound (Supplementary Table

S1). The majority of the parameter estimates was obtained from a

model study on Pacific herring in an adjacent area, the west coast

of Vancouver Island, British Columbia, Canada (Megrey et al.,

2007).

We used the Wisconsin bioenergetics framework (Hewett and

Johnson, 1992) to model energy intake (see Supplementary Material

S2.1 for equations, and Supplementary Material S2.2 for parameter

values and references). Briefly, we estimated the daily energy intake

[consumption – (specific dynamic actionþ excretionþ egestion)];

J day�1) and energetic cost due to respiration (J day�1), for the high-

est (14�C, day 212) and lowest seasonal (7�C, only used for respira-

tion cost) water temperature in the Puget Sound region (Megrey

et al., 2007). Depending on the analysis, particularly whether the en-

vironment was modelled as seasonal or constant, we used the esti-

mated values to set the limits for the corresponding annual sine

curve, or their mean value. Parameters for daily consumption rates

are commonly derived from lab experiments conducted at the opti-

mum temperature under ad lib feeding conditions. Thus, the esti-

mated value for energy intake at the highest seasonal water

temperature is the theoretical upper limit for this parameter, and we

assumed a lower value to reflect realized intake. Puget Sound herring

weigh �100 g at the start of their feeding season and gain typically

30 g, sometimes up to 40 g, over the season (Schweigert et al., 2002).

We assumed that all this weight gain is fat, so that length and non-

reproductive mass are constant over the feeding season, and parame-

terized the bioenergetics for an adult herring of average size (115 g).

The annual sine curve for offspring recruitment probability

(offspring fitness) was set to depend on prey availability for newly

hatched larvae, assuming that its combined effect on starvation

(Hjort, 1926; McGurk, 1984; Huwer et al., 2011) and predation

mortality (McGurk, 1986; Bailey and Houde, 1989; Litvak and

Leggett, 1992; Takasuka et al., 2003; Jørgensen et al., 2014) dic-

tates the likelihood that offspring survive until recruitment.

Hence, our offspring fitness curve represents the probability that

individuals spawned on different days of the year survive from

that day until recruitment, considering all factors acting on their

survival during that time. The peak day in offspring fitness was

set in early April, because this is the typical period of max abun-

dance of nauplii larvae, which are prime food for herring larvae

and produced by adult copepods during the spring phytoplank-

ton bloom. The exact dates of peak food abundance for larvae vs.

adults in Puget Sound are of less importance in this study since

we do not aim to precisely fit the model to data, but rather to use

the Puget Sound case for motivation and a general sense of what

needs to be explained. Depending on the analysis, adult mortality

rates were set to different levels within an ecologically appropriate

range. Natural mortality rates for adult herring of 0.2–0.4 yr�1 are

considered typical for herring worldwide, and similar values were

reported for Puget Sound herring up until the late 1970s (Stick

et al., 2014). Since then, mortality has increased. A mortality rate

of 0.8 yr�1 was reported for the years 1973–1990 (Siple et al.,

2017) and the current rate is thought to be around 1.2 yr�1 (Stick

et al., 2014; Siple et al., 2017). In the “Puget Sound analysis,” we

564 G. Ljungström et al.

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsy106#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsy106#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsy106#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsy106#supplementary-data


used an intermediate mortality rate of 0.5 yr�1, assuming that

herring life-histories in this area are undergoing adaptation to the

new and higher natural mortality, but have not yet fully adapted

to this new selection regime. Results for a mortality rate of

0.8 yr�1 are qualitatively similar and shown in Supplementary

Figure S7.

Results
A common feature of our results is that food dynamics at the

feeding grounds of adults influenced optimal timing of spawning

(both mean and variance), and that lower food availability lead to

a wider spread in timing of spawning.

Food availability analysis
Food availability was a major driver of optimal spawning time,

and spawning dates were more variable when there was little food

(Figure 3). From Figure 3, the isolated effect of different food lev-

els can be read by comparing the location and size of the predic-

tions for the same peak day in energy intake across the three

levels of energy intake. Similarly, the effects of different ampli-

tudes in energy intake, and for the three levels of mortality, can

be read by comparing with Supplementary Figures S1–S3. Of par-

ticular interest is the comparisons between simulations that differ

in the strength of the parent-offspring conflict. Where the red

dotted and solid green lines cross on Figures 3 and 5, food avail-

ability peaks at the date of maximum offspring fitness, thus im-

plying maximum conflict between parental feeding and the

fitness return from each egg spawned. This conflict is minimal

where the red dotted and solid green lines are half a year apart,

i.e. around October in Figures 3 and 5. In addition to at low food

levels, spawning dates were more variable when this conflict was

large, while less conflict allowed for better timing from an off-

spring perspective. This resulted in lower relative fitness at higher

than at lower levels of conflict.

In Figure 4, we show individual trajectories in detail, assuming

a peak day in zooplankton abundance �1st July (see boxes in

Figure 3). Spawning times were more variable at low food levels.

Further, individuals spawned earlier if they had acquired little en-

ergy for reproduction, so that they were away for spawning closer

to the trough of the annual food curve. This strategy allowed

them more time to forage for the subsequent spawning event,

and more of that time was around the food peak. At medium and

high food levels, individuals spawned more consistently around

Figure 3. The top panel shows the predicted spawning days for 10 000 individuals following the optimal strategies for the reference case in
the “Food availability analysis,” showing the effects of variation in food availability. Dots represent predicted spawning days for different peak
days and three mean levels of energy intake under a medium feeding ground mortality rate. The size of the dot indicates the frequency of
spawning events predicted for that day and the colour the energy spawned as a proportion of the maximum predicted spawning energy for
that peak day (blue to pink¼ less to more). The dotted red horizontal line shows the peak day in offspring fitness and the green diagonal line
the peak day in energy intake. Rectangle indicates the case explored in Figure 3. The bottom panel shows the relative fitness value of each
peak day in food availability (energy spawned on each predicted spawning day multiplied with offspring fitness for that day, summed across
all individuals simulated and for all days, and divided by the number of individual-years simulated).
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the peak of the offspring fitness curve, indicating that the trade-

off between this and next year’s fecundity was less severe. More

figures related to this analysis are available in Supplementary

Material S3.1.

Mortality analysis
Varying mean level, peak day, and amplitude of mortality rate at

the feeding ground had only negligible effects on spawning time

(Supplementary Figures S5–S7). In agreement with the results of

the “Food availability analysis,” the spread in predicted spawning

days was higher at low levels of food availability and decreased

with higher food levels, regardless of the seasonality in feeding

ground mortality.

Puget sound analysis
When using parameters representative of Puget Sound, the model

predicted variable spawning dates, generally within the broad

range observed from February to June (Figure 5). A major reason

there is more variation in spawning time within the “Puget

Sound analysis” is the long period of negative food intake, typi-

cally in winter in the wild but in the simulations we vary its tim-

ing. The model predicts that the degree of parent-offspring

conflict (approximated by the distance between actual spawning

day and the peak day in offspring fitness) differs depending on

food level. This means that, even with fixed environmental effects

on early life stages, certain adult feeding conditions can bring

about variation in spawning times comparable to that observed

in Puget Sound. Further, at the metapopulation level, different

sub-stocks of herring may utilize food resources that differ in

their abundance or timing, so that spawning in Puget Sound as a

whole may be assembled by different spawning components sam-

pled across the three panels in Figure 5.

For a peak day in adult energy intake that corresponds to the

approximate current peak in zooplankton abundance in the

Puget Sound region (�1st July, Moore et al., 2016; see boxes in

Figure 5), we predicted a range in spawning time of approxi-

mately four months across the three food levels (early February to

late May). We consider a peak day in adult zooplankton abun-

dance between November and February unlikely for Puget Sound

and hence do not include these results in our interpretation and

discussion. They could however be relevant for other systems, so

the results are reported on the figures for theoretical

completeness.

We explored the current case (peak day in energy intake �1st

July; see boxes in Figure 5) further by forward simulating a

Figure 4. Detailed results for an individual following the optimal strategies, assuming a peak day in zooplankton abundance �1st July and
the three levels of food availability in the “Food availability analysis” over five years. First row: the energy reserves of the individual, green line
indicates that the individual is on the feeding ground and blue line that it is migrating. The red dot represents a spawning event and its size
the amount of energy spawned (proportion of maximum amount of energy spawned). Second row: the energy that an individual can acquire
if on the feeding ground. Third row: offspring fitness. Fourth and fifth rows: frequency of spawning and mean energy allocated to
reproduction, respectively, for each day of the year for 10 000 individuals. Note that individuals may spawn considerable energy at spawning
dates when very few fish spawn.
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population of individuals following the optimal strategies, for

three levels of food availability (Figure 6). These results suggest

that the diverse spawning times displayed in Figure 5 can be

driven by different prioritization in the trade-off between feeding

to ensure high fecundity vs. hitting the peak in offspring fitness.

At low food levels, spawning often took place slightly before the

optimal spawning time, as there was not enough food in spring

for adults to substantially increase fecundity. Sometimes it was

seen that individuals stayed behind at the feeding grounds and

spawned later than the optimum, this happened when current

feeding conditions were particularly good. At intermediate and

high food levels, adults feed more consistently in spring, thus in-

creasing fecundity, but they also spawned slightly after the fitness

peak. These differences in prioritization are illustrated in the indi-

vidual as well as the frequency plots in Figure 6. For example, at

the low food level, the frequency of spawning events peaked be-

fore the peak offspring fitness, whereas at the medium and high

food levels the frequency was distributed around and after the

peak. More figures related to this analysis are available in

Supplementary Material S3.3.

Model sensitivity
Most key parameters have been subject to analysis in the sections

above, with additional results reported in the Supplementary

Material. Another parameter of potentially influential role is the

duration of migration, which when approaching zero would im-

ply that breeding takes place in the feeding habitat and not a sep-

arate location. Results for each analysis of using migration

durations of 10, 30, and 40 days (instead of the default value of

20 days) are reported in the Supplementary Material S4.

Changing the parameter did not qualitatively alter model predic-

tions, except for the Puget Sound scenario where reproduction

became more frequent and almost continuous at the shortest mi-

gration duration (see Supplementary Material S4.2).

Discussion
To date, most research on reproductive phenology and recent

shifts associated with climate change has focused on offspring

(e.g. see reviews by Visser and Both, 2005; Durant et al., 2007;

Wright and Trippel, 2009). This is natural, since timing of birth

Figure 5. The top panel shows predicted spawning days for 10 000 individuals following the optimal strategies with parameters
representative of Pacific herring in Puget Sound (“Puget Sound analysis”). Dots represent predicted spawning days for different peak days and
three levels of energy intake. The size of the dot indicates the frequency of spawning events predicted for that day and the colour of the dot
indicates the energy spawned as a proportion of the maximum predicted spawning energy for that peak day (blue to pink¼ less to more).
The dotted red horizontal line shows the peak day in offspring fitness and the green diagonal line the peak day in energy intake. Rectangle
indicates the case explored in Figure 6, representing the approximate current peak day in zooplankton abundance in Puget Sound (�1st July).
The bottom panel shows the relative fitness value of each peak day in food availability (energy spawned on each predicted spawning day
multiplied with offspring fitness for that day, summed across all individuals simulated and for all days, and divided by the number of
individual-years simulated).
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is of crucial importance for offspring fitness in many species, and

particularly in seasonal environments (Price et al., 1988; Olsson

and Shine, 1997; Reznick et al., 2006; Varpe et al., 2007; Plard

et al., 2015). However, when food availability and predation risk

vary over the year, life cycle constraints and trade-offs may cause

a mismatch between optimal time of birth for offspring and the

optimal time to give birth for parents, leading to a parent-

offspring conflict (Trivers, 1974). The evolutionary outcome of

such a conflict can have important implications for recruitment,

since the optimal timing of offspring birth or parental spawning

(or more likely both) may be compromised. Thus, incorporating

the adult perspective into research on reproductive phenology

will help advance our understanding of the causes and conse-

quences of inter-annual and intra-specific variability, and of shifts

associated with environmental change.

In this study, we explored how conditions that only affect

parents influence optimal timing of reproduction by modelling

the annual routine of a pelagic fish that migrates between spatially

separated feeding and spawning grounds. Even though we kept

environmental conditions for the offspring constant, we found

that resource dynamics at the feeding grounds of adults influ-

enced timing of reproduction. Variation in both the mean level

and timing of peak food availability for adults affected when it

was optimal to reproduce, how much variance there was in repro-

ductive timing, and the degree of parent-offspring conflict.

Drivers of variability in reproductive timing and parent-
offspring conflicts
In all oceans, primary production varies both spatially and tem-

porally over the season due to a range of factors, including varia-

tion in light, temperature, and circulation patterns. If

populations use different feeding grounds, it is thus likely that

they experience divergent resource dynamics or predator regimes.

How large do these differences have to be to produce alternative

life-history strategies? The results of our model suggest that rela-

tively small differences in resource availability can change optimal

strategies, and lead to altered prioritization in the trade-off be-

tween optimal timing of reproduction (from an offspring’s per-

spective) and fecundity (maternal resources invested into

reproduction).

Unexpectedly, parent-offspring conflicts were also pronounced

when adults had a high food supply. This is best explained by fo-

cusing on a resource-poor environment: when the cost of inves-

ting into offspring is high (in terms of energy and starvation

risk), it is important to get the maximum possible return for the

investment and hence to time it right. However, when investing

into young is not as costly, timing becomes less important and

parental priorities may have stronger effects on reproductive tim-

ing. This was most pronounced in the Puget Sound scenario,

where net intake was negative for substantial parts of the year and

energetic trade-offs therefore more dominant. Furthermore, our

Figure 6. Detailed results for an individual following the optimal strategies for the approximate current peak day in zooplankton abundance
in the Puget Sound region (�1st July) and the three levels of food availability in the “Puget Sound analysis” over five years. See legend for
Figure 3. for description of plot specifications.
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model suggests that low resource levels can lead to large annual

and inter-annual variation in the duration and timing of spawn-

ing even within a single feeding ground. This is due to stochastic-

ity in the food source, where individuals may experience different

histories of environmental exposure, which in turn affect their

energy reserves and lead to different behaviours (Houston and

McNamara, 1999; Clark and Mangel, 2000).

Breeding schedules of migratory organisms are adapted to con-

ditions at several locations, which may experience different pat-

terns and rates of environmental change (e.g. Visser et al., 2004).

Circumstances on wintering grounds may thus be a poor predic-

tor of changes in reproductive conditions, especially for long-

distance migrants or if the cue used to trigger migration is inde-

pendent of the change at the breeding site. Such mechanisms may

be responsible for recent reproductive mistiming in several long-

distance migratory birds (Both, 2010; Both et al., 2010), and have

been linked to the decline of some populations (Both et al., 2006;

Møller et al., 2008). However, the specific cause of these declines

is not clear (Knudsen et al., 2011). Low food availability when

parents are feeding their young can lead to low parental invest-

ment, with consequences for nestling growth and survival (Sanz

et al., 2003). A lack of food is also likely to increase parental risk

taking, and has been shown to lead to foraging effort beyond op-

timal levels (Thomas et al., 2001; Drent and Daan, 2002).

Although post-breeding parental effects are not included in our

model (Pacific herring do not provide parental care), the relative

importance of these effects could be teased apart with an ex-

tended model based on the same template.

Spawning time in Puget Sound herring—proximate and
ultimate causes
In Puget Sound, herring spawn between January and June, with

the bulk of the subpopulations spawning between February and

April (Stick et al., 2014). There is no known evidence that this

variation is associated with environmental gradients. In this

study, we use our model to generate new hypotheses about poten-

tial ultimate causes of this pattern. Ultimate causes explain why

strategies and behaviours have evolved under a set of environ-

mental conditions while proximate explanations describe how

these strategies and behaviours are expressed as a response to the

immediate environment. The model suggests a wide span in tim-

ing among populations that breed in the same location could re-

sult from the use of different feeding grounds with divergent food

dynamics, or act through individual variation in condition caused

by high stochasticity at a single feeding ground.

Herring in this region have been observed to spend variable

times in prespawning aggregations before maturation and spawn-

ing, and variation in spawn timing has been associated with mat-

uration rate as estimated by the gonadosomatic index (GSI; Ware

and Tanasichuk, 1989), a measure of reproductive condition and

allocation. Furthermore, the GSI of herring in this region has

been found to be affected by both body weight and temperature

(Ware and Tanasichuk, 1989), indicating that maturation rate

may be a proximate cause of their spawning time behaviour. As

such, in addition to the ultimate explanations for spawning time

variability explored in this study, variation in GSI due to the im-

mediate environment could contribute to explaining both the du-

ration of spawning within a stock at a given spawning site, and

the variability across stocks in a broader geographic region.

Puget Sound herring are thought to consist of a mix of migra-

tory and resident stocks (Penttila, 2007; Stick et al., 2014), with

the migratory stocks moving between spawning grounds inside

the estuary and feeding grounds on the continental shelf outside

Vancouver Island (see Figure 1a). Migratory and resident individ-

uals within single stocks have also been proposed (Penttila, 1986),

suggesting that partial migration with regards to feeding migra-

tions may also be widely present. It is interesting to note that

shorter migration duration led to even higher variation in spawn-

ing times for the Puget Sound scenario (Supplementary Figure

S13). Whether migratory stocks and individuals use the same or

different feeding grounds, migration routes and timings, is cur-

rently largely unknown. In addition, the stocks associated with

spawning sites in the central Puget Sound are well mixed (Small

et al., 2005; West et al., 2008), indicating diffuse migration strate-

gies. Our results show that locating where and when different

stocks feed, by tagging studies or molecular markers to determine

stock structure, may potentially add new insights into why her-

ring stocks spawn at such variable times in this area. Until this ef-

fort is made, current evidence may allow the spatio-temporal

structure of the environment to be qualitatively compared with

the quantitative output from this model to generate new hypoth-

eses for more targeted field studies.

Here, we considered variation in spawn timing around the peak

spawn date. Other potential metrics of spawn timing include onset

of spawning activities, i.e. the date of first observed spawn, and du-

ration of spawning activities, i.e. the time between first and last ob-

served spawn. Future work could consider how behavioural

tradeoffs and other factors influence these features of spawn tim-

ing. Peak spawn was selected for the present analysis in part be-

cause the existing herring spawn monitoring program in Puget

Sound is not guaranteed to capture the exact first or last day of

spawning; each spawn site is surveyed at most once per week.

Thus, there is potential for error in estimating start/end day by 7þ
days. In addition, because herring spawning activities occur at indi-

vidual sites over a period of days to weeks, peak spawn measures a

point in time by which the majority of spawn has occurred, or the

point in time by which the majority of individuals returning to

that site have done so. Also, it has been hypothesized and there is

traditional knowledge that older individuals spawn before younger

individuals at a given site (MacCall et al., 2019). Because our model

is not age-structured, using peak spawn avoids age-based bias that

would not be accounted for in our model.

A meta-population perspective
In this study, we assume local adaptation and thus predict opti-

mal life-history strategies under conditions at set feeding and

spawning grounds. However, there could also be other mecha-

nisms that are relevant for the dynamics seen in Puget Sound her-

ring. One consequence of the wide variability in spawning times

among stocks is that it provides a portfolio effect (Siple and

Francis, 2016), by which subpopulation diversity can confer a sta-

bilizing effect on the overall spawning population (Gillespie,

1974, 1977, Schindler et al., 2010, 2015). In a strict sense, the

portfolio effect cannot be the evolutionary mechanism acting on

individuals to create diversity in spawning times, as that would

presuppose a group selection type of argument. However, dis-

persal bet-hedging, through which risk is spread across space by

decoupling the fates of individuals of the same genotype or line-

age, could provide an evolutionary explanation for such an effect
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(Starrfelt and Kokko, 2012; Schindler et al., 2015). This could

happen if females produce offspring that can take on a range of

spawning strategies, which drift into different locations, and ac-

quire the strategy of the individuals at that location. There is

some evidence in Atlantic herring that younger fish learn migra-

tion patterns from older fish, whom they follow to spawning sites

(the “adopted-migrant hypothesis”; McQuinn, 1997; Corten,

2001; Huse et al., 2002, 2010; MacCall et al. 2019). As such, bet-

hedging could be an adaptation to unpredictable environmental

variation that could play out as a stabilizing effect at the popula-

tion level.

In recent years, spawn timing shifted significantly in half of the

25 Puget Sound subpopulations, with equal numbers spawning

on average earlier and later (Figure 1b). These changes are occur-

ring against a backdrop of wide variability, but no consistent

trend, in the timing of the spring bloom (Moore et al., 2016).

There is little understanding about what factors are associated

with these changes, though there is some evidence that local shifts

may be associated with population age structure, with Puget

Sound stocks having fewer older fish spawning later and stocks

having more older fish spawning earlier (TF, unpublished data).

An age structure dominated by younger individuals may, for ex-

ample, influence spawn site selection according to the “adopted-

migrant hypothesis” (McQuinn, 1997; Corten, 2001; Huse et al.,

2002, 2010; MacCall et al., 2019). This mechanism could lead to

delayed spawning for subpopulations dominated by younger fish,

not familiar with migration routes, or waiting for social cues to

begin spawning. Age may also affect the trade-off between timing

and fecundity, since fecundity increases with age in many fishes.

Another potential explanation for the inconsistent changes in

spawning times observed in Puget Sound herring is replacement

of extirpated local populations by individuals from other subpo-

pulations. This mechanism has, for example, been suggested to be

responsible for marked demographic and phenotypic changes in

a North Sea cod population (Hutchinson et al., 2003).

Implications for research on reproductive phenology
Puget Sound is not the only system in which migratory herring

spawn at highly variable times. In the Pacific, there are both win-

ter–spring and spring–summer spawning herring subpopulations

(Haegele and Schweigert, 1985), and different Atlantic herring

stocks spawn in all months of the year (Sinclair and Tremblay,

1984). Other species show similar dynamics. For example, in the

northeast Atlantic, sardine (S. pilchardus) spawn all throughout the

year (Stratoudakis et al., 2007). Hence, our model findings suggest

that research on spawning time and recruitment variability in sev-

eral fish species could benefit from incorporating the parental per-

spective. The possibility that specific characteristics of seasonal

food cycles in adult feeding areas can lead to differences in spawn-

ing time was already suggested by Iles in 1964 (Iles, 1964), in an at-

tempt to explain variability among several Atlantic and North Sea

herring populations. However, he discarded this hypothesis be-

cause it could not account for the full range of observed spawning

times. This can be expected since timing of reproduction is a life-

history trait that is shaped by selection on both parents and their

offspring (Trivers, 1974). Thus, identifying the underlying mecha-

nisms that form the annual routines of adults, while accounting for

seasonality in offspring fitness, is a prerequisite for understanding

the causes of reproductive variability.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the article.
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Feró, O., Stephens, P. A., Barta, Z., McNamara, J. M., and Houston,
A. I. 2008. Optimal annual routines: new tools for conservation
biology. Ecological Applications, 18: 1563–1577.

Gillespie, J. 1974. Natural selection for within-generations variance in
offspring number. Genetics, 76: 601–606.

Gillespie, J. 1977. Natural selection for variances in offspring num-
bers: a new evolutionary principle. The American Naturalist, 111:
1010–1014.

Gislason, H., Daan, N., Rice, J. C., and Pope, J. G. 2010. Size, growth,
temperature and the natural mortality of marine fish. Fish and
Fisheries, 11: 149–158.

Haegele, C. W., and Schweigert, J. F. 1985. Distribution and charac-
teristics of herring spawning grounds and description of spawning
behavior. Canadian Journal of Fisheries and Aquatic Science, 42:
s39–s55.

Hay, B. E. 1985. Reproductive biology of Pacific herring (Clupea
harengus pallasi). Canadian Journal of Fisheries and Aquatic
Science, 42: 111–126.

Hewett, S. W., and Johnson, B. L. 1992. Fish Bioenergetics Model 2.
University of Wisconsin, Sea Grant Institute, Madison, WI, USA.
1–150 pp.

Hjort, J. 1914. Fluctuations in the Great Fisheries of Northern Europe
Viewed in the Light of Biological Research. Rapports et
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