INTERFACE

rsif.royalsocietypublishing.org

Correction

Cite this article: Lindemann C, Visser A, Mariani P. 2018 Correction to 'Dynamics of phytoplankton blooms in turbulent vortex cells'. *J. R. Soc. Interface* **15**: 20170951. http://dx.doi.org/10.1098/rsif.2017.0951

Correction to 'Dynamics of phytoplankton blooms in turbulent vortex cells'

Christian Lindemann, Andre Visser and Patrizio Mariani

J. R. Soc. Interface 14, 20170453 (2017; Published online 1 November 2017) (doi:10.1098/rsif.2017.0453)

The values for the sinking rate (*w*), given in table 1, were reported incorrectly. The values used in the model simulation were 0.96 m d^{-1} . Furthermore, the caption of table 1 should only refer to reference [1]. The corrected table is given below.

In figure 4, the label of the *x*-axes was presented incorrectly. They should have stated unit of m d^{-1} . Furthermore, the equation given in the figure caption refers to the dashed lines in figure 4*a*, as now clarified in the new figure caption. The corrected figure is displayed below.

Subject Category:

Life Sciences – Earth Science interface

Table 1. Parameter values used in the simulations. 'Standard values' are the same as the values used by Huisman *et al.* [1], while the 'deep convective values' represent values adjusted to deep convective systems in the North Atlantic. The value of k_T (0.055 m⁻¹) for the deep convective set up gives a euphotic depth, defined as the depth of 1% surface light, of approximately 80 m.

parameter	description	standard values	deep convection values	unit
physical				
lo	surface light	350	100	μ mol photons m $^{-2}$ s $^{-1}$
k _T	background turbidity of water	0.2	0.055	m^{-1}
biological				
k _i	light half-saturation constant	30	45	μ mol photons m $^{-2}$ s $^{-1}$
L	specific loss rate	0.24	0.01	d^{-1}
g _{max}	max. specific growth rate	0.96	0.96	d^{-1}
W	sinking velocity	0.96	0.96	$m d^{-1}$

Figure 4. Sensitivity of the growth rate as a function of sinking velocity for different mean flow velocities (a-h) at a mixed layer depth of 25 m (light grey line); 50 m (dark grey line) and 100 m (black line). The dashed lines in figure 4*a* represent the net population growth rate estimated from $r = w(-0.0037h_z - 0.167) + 0.63$. All other parameters as in table 1.

Reference

1. Huisman J, Arrayás M, Ebert U, Sommeijer B. 2002 How do sinking phytoplankton species manage to persist? Am. Nat. 159, 245-254. (doi:10.1086/338511)

2