
S

P

S
a

P
b

A

a

A

R

R

2

A

P

K

P

P

M

I

P

T
s
i
w
o
R
B
t
m
t
s
h
d
c

0
d

e c o l o g i c a l m o d e l l i n g 2 0 4 ( 2 0 0 7 ) 553–556

avai lab le at www.sc iencedi rec t .com

journa l homepage: www.e lsev ier .com/ locate /eco lmodel

hort communication

atterns for parameters in simulation models

tephanie Kramer-Schadta,∗, Eloy Revillab, Thorsten Wieganda, Volker Grimma

UFZ, Helmholtz Centre for Environmental Research–UFZ, Department of Ecological Modelling (OESA),
ermoserstr. 15, D-04318 Leipzig, Germany
Department of Applied Biology, Estación Biológica de Doñana, Spanish Council for Scientific Research CSIC,
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Population simulation models are often used in conservation biology to assess human

impact on species survival, but have been under heavy critique due to parameterization

problems. The general notion is that only models for which parameters were directly

assessed from field data can show that a certain process is working, in contrast to using field

data to fit models. We would like to provide an update regarding the relationship between

simulation model parameterization and the use of field data as ‘pattern’ for revealing

‘structurally realistic’ parameters and processes. ‘Pattern-oriented modelling’ is an inverse

modelling technique in ecology that considers the use of multiple field data pattern simul-
arameter

arameterization

odelling

nverse techniques

taneously to filter the parameterizations which were successfully tested against all available

data on system dynamics. We highlight this technique with an example of our own research

and conclude that this approach is especially suitable for models in conservation of rare and

elusive species, where data are generally scarce.

vations are not reliable because the addition of parameters
attern-oriented modelling

he assessment of human impact on the survival of species,
uch as fragmentation due to roads or landscape changes,
ncreasingly relies on population viability analyses (PVA),

hich use demographic models incorporating various aspects
f the ecology and behaviour of the species (Akcakaya and
aphael, 1998; Beissinger and McCullough, 2002; Boyce, 1992).
ecause the relevant biology is in general complex, simula-
ion models of intermediate complexity are virtually the only

eans of finding an answer for distinct questions of popula-
ion development under different landscape and demographic
cenarios (DeAngelis and Mooij, 2003). However, these models

ave been under heavy critique because of their ‘immense’
ata requirements, and particularly because of problems asso-
iated with model parameterization, i.e., because it is usually
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impossible to derive direct field estimates for many model
parameters (Beissinger and Westphal, 1998; Doak and Mills,
1994). A dominant belief in ecology which has its roots in
regression analysis is that only models for which the param-
eters of underlying processes were estimated independently
(i.e., directly from the data) can prove that a certain mecha-
nism is operating (Beissinger, 1995; Beissinger and Westphal,
1998; deRoos et al., 1992; Huisman and Sommeijer, 2002;
McCauley et al., 1993,1996; Peck, 2004). The notion behind this
belief in independence is that models that were fitted to obser-
may increase the ability of models to fit the observations with-
out guaranteeing that a model which fits the observations
better contains the “correct” processes and parameters.
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This notion is correct in principle (and well known in statis-
tical modelling) but ignores both recent advances in ecological
modelling and established techniques of indirect parameter-
ization in other disciplines. Direct field estimates are not the
only means of parameterizing a model. We think that the
potential of parameterizing simulation models is underes-
timated in the ecological literature. Here, we would like to
provide a brief update regarding the use of patterns for select-
ing parameters and processes in simulation models.

Specific techniques are available that can be used in
simulation modelling to indirectly parameterize simula-
tion models. These so-called ‘inverse modelling’ techniques
(Bennett, 2002; Gottlieb and DuChateau, 1996; Tarantola,
1987) are used in many areas of science, e.g., in hydrology,
geology, soil science, oceanography, or global climate mod-
elling, but rarely in ecology. Generally, we have better data
on system responses than on the processes and parame-
ters that drive those responses. Inverse modelling estimates
optimal parameter values by optimizing the match between
observed system responses and the corresponding simulated
responses. In ecology, ‘pattern-oriented modelling’ (Grimm et
al., 2005, 1996; Grimm and Railsback, 2005; Wiegand et al.,
2003, 2004) is a modelling technique which can be combined
with techniques of inverse modelling for indirect parameter
estimation. However, the difference to inverse modelling is
that pattern-oriented modelling uses multiple patterns (data),
each describing a certain characteristic aspect of the real
system. An accepted parameterization must simultaneously
produce simulation results with small departures in all pat-
terns. With these techniques one can use patterns observed at
several hierarchical levels (e.g., population scale patterns such
as time series data of population counts or spatial distribution
patterns, descriptive statistical analyses of field data like daily
distance distributions, etc.) to simultaneously estimate model
parameters which operate at different hierarchical levels (e.g.,
demographic parameters such as mortality probability which
act on the individual level).

Under the pattern-oriented technique, observed patterns
are used to hypothesize a model structure by asking what
parameters and processes must be included in the model so
that these patterns could, in principle, emerge (Grimm et al.,
2005). Then, the comparison of model output and observed
patterns can be used for two purposes. First, patterns can be
used for parameterization. All unknown parameters are varied
systematically over the entire parameter space, and multiple
patterns observed at different scales and hierarchical levels
can be used to determine multiple parameters (Wiegand et al.,
2004). Second, patterns can be used to select the most appro-
priate submodels of certain processes. The question is which
of the alternative submodels that we specified is capable of
reproducing all observed patterns simultaneously (Railsback,
2001; Railsback and Harvey, 2003). This is an important con-
trol mechanism to detect wrong model structures and to yield
‘structurally realistic’ (Grimm et al., 2005; Wiegand et al., 2003)
models. The more different features of the system are suc-
cessfully tested, the less likely it is that the model structure

or parameterization is wrong. Thus, using multiple patterns,
not only one, is very important, but can also be fairly data
intensive. While it might be relatively simple to reproduce one
feature of a system, the simultaneous fulfilment of several pat-
2 0 4 ( 2 0 0 7 ) 553–556

terns describing different features is by far non-trivial (Levin
et al., 1997; Wiegand et al., 2003; Revilla et al., 2004). Further-
more, as many processes may not be known that work on a
lower hierarchical level than the observations, e.g., dispersal
behaviour, alternative hypotheses of these low-level processes
can be tested in the full model (Kramer-Schadt et al., 2004).

Generally, the outcome of an indirect pattern-oriented
parameterization will not be one ‘optimum’ parameteriza-
tion but an entire ‘cloud’ in parameter space. This is because
of uncertainties in the data and the model structure, and
we have to accept it as remaining uncertainty not reducible
with the current data. As parameters are simultaneously
estimated, this method considers possible trade-offs or inter-
actions between model parameters which may cause severe
problems of error propagation in conventional parameteriza-
tion (Wiegand et al., 2003).

Let us illustrate the method of pattern-oriented modelling
and parameterization with a typical example from conserva-
tion biology, where direct estimates of the parameters (i.e.,
high parameter uncertainty) as well as knowledge about the
processes (i.e., high structural uncertainty) are lacking. To
assess the impact of road mortality on patch connectiv-
ity for lynx in Germany, Kramer-Schadt et al. (2004) needed
to parameterize an individual-based dispersal model, where
information on the actual movement path within the active
period was needed, but only data on the day-to-day level
were available. To tackle this problem, Kramer-Schadt et al.
(2004) derived a model to simulate the dispersal of individual
lynx exactly as observed during the telemetric study, i.e., with
their individual time span of dispersal (dispersal season) and
released on a habitat suitability map in the same place where
the real lynx had started dispersal. Thus, they could ignore
any demographic processes like mortality, because there was
no mortality in the field data.

The unknown processes were, whether lynx prefer a cer-
tain direction depending on the type of habitat surrounding
them, and whether they keep a certain direction. Kramer-
Schadt et al. (2004) developed four nested movement models,
a random walk (RW), a correlated random walk (CRW), where
the direction within a day was kept with a certain probability,
a habitat dependent walk (HDW) with different probabilities
to prefer suitable habitat, and a correlated habitat dependent
walk (CHDW), where the hierarchy was suitable habitat before
keeping the direction (Table 1). RW is the simplest movement
type nested in the other movement types which contain addi-
tional processes and parameters.

The unknown parameters were, how many steps each lynx
moves within 1 day, which direction the lynx takes at each
step, the probability to leave suitable habitat per step, and with
that the number of steps spent in unsuitable habitat. These
parameters were varied over a wide range and implemented
in each of these movement models, e.g., the probability to
leave dispersal habitat ranged between 0 and 1 in the habi-
tat dependent models, and the number of steps per day was
drawn within a biologically meaningful range in all models.

From the lynx’ field data set four patterns were derived

for comparison with the simulated data: (1) the habitat use of
dispersing lynx, (2) the average maximum distance of the sea-
sonal dispersal of all lynx, (3) the fact that they stayed within a
given area and (4) the daily step distribution (Table 1). Finally,
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Table 1 – Parameterization of the lynx dispersal model for the movement types random walk (RW), correlated random
walk (CRW), habitat dependent walk (HDW) and correlated habitat dependent walk (CHDW)

Movement
type

n Simulation
runs

Pattern performance [%] Simultaneous fit of
all 4 patterns [%]

Pattern 1
habitat use

Pattern 2 average
maximum distance

Pattern 3
study area

Pattern 4 step
distribution

RW 70 0 59 3 26 0
CRW 700 0 60 4 25 0
HDW 840 76 45 58 26 11 (n = 90)
CHDW 8400 86 56 46 37 18 (n = 1535)

The increase in simulation runs for the movement types is due to their nested structure, i.e., HDW is based on RW but has one variable more
which is multiplied with the other variables to scan the whole parameter space. Each parameter set was repeated 100 times in each simulation
run, and the mean of the 100 repetitions was compared with the observed patterns (see below; Kramer-Schadt et al., 2004). Only when including
a preference for dispersal habitat (HDW, CHDW), all patterns were performed simultaneously.
Pattern1 ‘Habitat Use’: This pattern refers to the frequency of dispersal habitat use during the observation period. We used replacement
techniques to define the range of the observed habitat use and designated the pattern as satisfied when the mean of the simulated pattern
was above 81%. Pattern 2 ‘Average Maximum Distance’ refers to the maximum net distance from the starting point of dispersal. We defined the
pattern as replicated when the observed value of 41.7 km was inside the envelope (mean ± S.D.) of the simulation. Pattern 3 ‘Study Area’: We
defined this pattern to be fulfilled when simulated lynx stayed within the area known to host lynx. Pattern 4 ‘Step Distribution’: The distribution

the root of the mean squared deviation between simulated and observed
the pattern as satisfied when the squared error was below 0.037.
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Fig. 1 – Structure of the lynx dispersal model with
processes working at different hierarchical scales. As an
input we get many parameterizations (symbolized as thin
arrows) of the unknown process taking place at the lowest
model level (per step). The results of the lower model levels
(per step, daily) are aggregated to the higher level (grey
arrows). At a higher hierarchical level, e.g., after each
dispersal season (seasonal), the model results are
measured (thick arrows) in accordance with the field data,
of distances at 1-km intervals follows a power function. We calculated
distributions and, after having used resampling techniques, defined

uantitative criteria to evaluate the agreement between these
bserved and simulated patterns were evaluated: when the
ean of the observed pattern was within the range (e.g., one

tandard deviation) of the simulation runs or vice versa, the
espective parameterization was evaluated to fulfil the pattern
Table 1).

The four observed patterns were used as filters to remove
arameterizations not in agreement with the observations
nd to considerably reducing parameter uncertainty (Fig. 1). It
s noteworthy that single patterns could be reproduced many
imes in the different movement models, but not simultane-
usly (Table 1), indicating that interactions among parameters
re important. Thus, the random walk could be effectively
ejected. Even if this indirect parameter estimate method did
ot result in a single best parameterization, it could reduce
he number of input parameter sets substantially and assured
hat a model behaviour in accordance with the dispersal data
as produced. The indirect approach allows for the use of
ore data than the conventional approach, because the field

ata themselves could not have been used for parameteriz-
ng the model as they were obtained at a higher hierarchical
evel. This is of essential importance in situations of scarce
ata. Our example illustrates how in general, despite sparse
ata, individual-based models can be successfully developed,
arameterized, and applied to real ecological management
roblems. This approach could be useful for a variety of mod-
ls from ecological research (Hancock et al., 2005; Jopp and
euter, 2005; Mathevet et al., 2003; Reuter, 2005; Yamanaka et
l., 2003).

We conclude, that pattern-oriented modelling can be used
or detecting the underlying processes that reproduce the
bserved patterns as well as plausible parameterizations, and

nferences can be made from more aggregated data to pro-

esses working on a lower level or vice versa. Data are thus not
nly included from previous studies to construct the model

tself, as stated by Peck (2004), but the data themselves con-
ain ‘hidden information’ (Wiegand et al., 2003), which can

that act as multiple filters on the seasonal level. Only
parameterizations that simultaneously fulfil all patterns are
accepted, reducing the input parameter set (thin dashed
arrows).
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be revealed by this method. Thus, this approach is especially
suitable for models in conservation of rare or elusive species,
where data generally are scarce and messy, and where any
information about the system is valuable (Rossmanith et al.,
2007; Wiegand et al., 2003, 2004).
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