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33.1 Introduction

 

The most obvious trait of any biological organism is its functionality. It is so universal that its presence
was almost unnoticed until the early 19th century. Charles Darwin’s (1859) fundamental contribution to
biology was to propose natural selection and adaptation as the explanation for the great variety of
seemingly intelligent design in Nature. In biology, the most common use of the word 

 

adaptation

 

 is the
modification of a trait by natural selection during evolution. For example the white camouflage color of
hares in winter and their gray-brown fur in summer can be referred to as adaptations. Here we refer to
adaptation in a wider sense: as any process that allows adjustments to the environment. The high
importance of adaptation for biological units can be seen from the fact that there are three separate ways



 

512

 

Handbook of Scaling Methods in Aquatic Ecology: Measurement, Analysis, Simulation

 

that adaptation takes place in biology (Figure 33.1). All three types of adaptation may partly determine
individual behavior; whichever is dominant may depend on the current circumstances. We refer to them
as different levels of adaptation, which reflects the different timescales that they work on. Although most
models of populations and organisms do not specify any process of adaptation, or assume the dominance
of a particular kind of adaptation, the idea of adaptation underlies most, if not all, theories and models
in ecology. If not for genetic adaptation, one could not assume that a parameter value measured for some
individuals also would apply to other members of the population. If not for phenotypic plasticity, one
could not assume life history adjustment resulting from climate changes. And if not for learning and
memory, one could not assume group dynamics and territoriality.

Although an unconscious use of the power of adaptation in biological theory and in individual-based
modeling often is sufficient for many purposes, it is also obvious that conscious attention to the effect
of adaptations would improve our ability to mimic natural organisms and their responses to environmental
variation (Railsback, 2001). The purpose of this chapter is to illustrate how different levels of adaptation,
from fixed strategies to phenotypic plasticity and learning, can be utilized in individual-based modeling
of life history and behavioral strategies, to improve models of aquatic populations.

 

33.2 Individual-Based Modeling

 

It is not evident from the name, but individual-based modeling is a tool for studying group and population
processes. For young practitioners of individual-based models (IBMs), it can be useful to recall that
before IBMs there were population-based models. This tradition goes back to Lotka and Volterra, and
has roots in Euler (1760) and beyond. Before computers became standard equipment, there was a huge
need to simplify problems. Thus populations were modeled as consisting of 

 

N

 

 identical individuals.
Alfred Lotka (1925) and Vito Volterra (1926) developed the Lotka–Volterra equations, which enabled
simulations of the dynamics of two (or more) interacting populations. These approaches thus described
the dynamics of the population by the average members, and dynamics usually occurred only in the
temporal dimension. The population approach is still a useful exercise, and the methods developed by
Lotka, Volterra, and others have led to the development of structured population models where the
population is divided according to age, stage, or a physiological criterion (Fisher, 1930; Metz and
Diekman, 1986; Tuljapurkar and Caswell, 1997). Such structured models have proved successful for
many applications in ecology and fisheries science. Their advantage, in addition to being more flexible
than population models, is that the use of differential equations or matrix models allows analytical
solutions (Huston et al., 1988; Caswell and John, 1992).

 

FIGURE 33.1

 

Different levels of adaptation related to environmental complexity.
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One of the first applications of the individual-based approach was to explore causes of recruitment
variability to commercial fish stocks (DeAngelis et al., 1979; Beyer and Laurence, 1980). This issue has
prevailed and been studied empirically in fishery science since Hjort (1914). By IBMs it is possible to
simulate the individual variability in survival and spatial distribution of early life stages of fish cohorts.
This is important for population dynamics, because the survivors tend to differ from average individuals
at earlier stages (Crowder et al., 1992). Studies of fish early life history have therefore become one of
the major topics for IBM applications (Grimm, 1999). Although the individual-based modeling approach
was initiated in the late 1970s, it is only since the influential review of Huston et al. (1988) that it has
been applied extensively in ecology. The so far most valued ability of IBMs is clearly the disintegration
of the population into individuals, and the reintegration of individual events into population processes.
However, while the approach benefits from considering the population impact of local conditions on
individual physiology, there has been little attention to the effect of adaptation to local conditions through
differences in individual performance. On this matter IBMs have the advantage over population models
in that they have the same basic unit as natural selection. This allows a fairly straightforward implemen-
tation of adaptation in IBMs. The individual-based modeling approach is not as formalized as the analytic
life history models and the Lotka–Volterra models, and as the name implies it is an approach rather than
a specific set of equations. Still, IBMs have some common structural elements, and below we provide
a description of attribute and strategy vectors that are used for bookkeeping of individual characters and
implementation of adaptation, respectively.

 

33.3 Methodology

 

33.3.1 The Attribute Vector

 

Individuals can be specified in IBMs by using an attribute vector 

 

A

 

i

 

 (Chambers, 1993), which contains
all the states 
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i

 

 used to specify an individual 

 

i

 

 such as age, weight, sex, hormone levels, and spatial
coordinates (
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Even though the individual-based structure is appealing, it is often difficult to simulate populations
on a truly individual basis due to the great abundances involved. This can be solved using the super-
individual approach (Scheffer et al., 1995). A super-individual represents many identical individuals and
the number of such identical siblings (

 

n

 

s

 

) thus becomes an attribute of the super-individual:
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where 

 

A

 

s

 

 is the attribute vector of super-individual 

 

s

 

. Mortality operates on the super-individual, and the
number of siblings of each super individual is thus decreased in proportion to the mortality rate (Scheffer
et al., 1995).

 

33.3.2 The Strategy Vector

 

In addition to possessing states, real individuals have adaptive traits, such as life history and behavioral
strategies that specify how they should live their lives. The previous lack of IBM studies involving life
history strategies and behavior of individuals is in part due to a lack of appropriate techniques for
implementing these features. However, adaptive traits can be modeled by introducing a strategy vector 

 

S

 

i

 

(Huse, 2001; Huse et al., 2002a) that specifies the adaptive traits, such as life history traits or behavior,
of an individual:
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) (33.3)

where 

 

β

 

m

 

i

 

 is the adaptive trait 

 

m

 

 of individual 

 

i

 

. The strategy vector may be considered analogous to a
biological chromosome as in the genetic algorithm (Holland, 1992), but may also be updated during the
individual’s life as a way to simulate learning. In both cases the trait values are modified iteratively in
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search of the best strategy vectors, and both these approaches for establishing trait values will be discussed
below. The combination of attribute and strategy vectors thus enables most relevant characteristics of
individuals to be implemented in IBMs. The classification based on attribute and strategy vectors can
be used to describe IBMs verbally even though the actual programming implementation is not vector
based, as, for example, in object-oriented programming (Maley and Caswell, 1993).

 

33.3.3 Criteria for Evaluating Adaptation

 

In nature, adaptation is evaluated by natural selection (Darwin, 1859). To allow analysis of behavioral
and life history traits, criteria mimicking the process of natural selection have been constructed and
implemented in models as Darwinian fitness measures. The argument behind the application of a fitness
measure is that a particular feature or trait under investigation has become optimally adapted over
evolutionary time under the given constraints (Stearns and Schmid-Hempel, 1987; Parker and Maynard
Smith, 1990). Although there is an ongoing debate of what is the most appropriate definition of fitness
(Stearns, 1992; Giske et al., 1993; Mylius and Diekmann, 1995; Roff, 2002), there seems to be a consensus
about the importance of including aspects of survival and fecundity (growth) into the fitness definition.
The common fitness measures based on this assumption are the instantaneous rate of increase 

 

r 

 

and the
net reproductive rate 

 

R

 

0

 

 

 

(Roff, 1992). An alternative approach is to use endogenous fitness rather than an
explicit fitness criterion (Mitchell and Forrest, 1995; Menczer and Belew, 1996; Huse, 1998; Strand et al.,
2002). In endogenous systems, no fitness measure to maximize is provided, but rather fitness emerges by
interactions between the organism and its environment. Individuals grow and die according to probability
functions and Monte Carlo simulations (Judson, 1994). Criteria are set for reproduction and the fittest
organisms will, by definition, be those that are able to reproduce more, relative to the other individuals
under the set conditions. Such models operate similarly to the way in which evolution works: through
“adaptation execution” rather than by “fitness maximization” (Wright, 1994).

 

33.4 Three Levels of Adaptation

 

33.4.1 Fixed Genetic Strategies

 

Traditionally, evolutionary adaptations have been implemented in IBMs in two ways. First, all parameter
values that are results of experiments on the modeled organism, such as physiological and morphological
parameters, reflect the results of natural selection. In such cases modelers may not always be conscious
about their application of adaptation, but application of measured parameters is a shortcut to the adapted
state without performing the selection process over again. Second, rules of behavior implemented in
IBMs are often derived from evolutionary considerations. The major source of such rules is life history
theory, and we take the much-used “Gilliam’s rule” as an example. This rule states that juvenile fish
should seek the habitat where the mortality risk per growth rate (µ/g) is minimal. Werner and Gilliam
(1984) showed that for a specific life history pattern of fish, a given growth and mortality regime, and
under the assumption that fitness could be modeled by the net reproductive rate (

 

R

 

0

 

), this was the optimal
policy for pre-reproductive organisms. This rule has been applied in many studies of fish spatial
distribution, but also in studies of many kinds of organisms for which it was not developed. Aksnes and
Giske (1990) developed other life history–based rules for other aquatic life histories.

Although Gilliam’s rule and other rules for optimal behavior yield both analytical and intuitive
understanding of the major trade-offs for individuals in a given environment, they cannot be said to be
truly individual, but rather population rules. The rule is derived from typical aspects of the life cycles,
not from individual characteristics. Also, when using such life history–based rules, all individuals tend
to make the same decisions. An alternative approach to deriving rules from some theory could therefore
be to evolve them. The genetic algorithm (GA) developed by Holland (1992) is a technique that applies
evolution by natural selection in computer programs to find optimal solutions to a problem by representing
solutions in “genetic code.” It involves: a numeric genetic code, selection of the best combination of
numbers in consecutive generations using a fitness criterion, and mutations and recombinations to produce
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new variation (Figure 33.2). The GA has successfully been applied to problems within a large number of
fields, such as engineering, physics, economics, medicine, artificial life, and biology (Goldberg, 1989;
Mitchell, 1996). For recipes on applications of GAs in IBMs, see Huse et al. (2002a).

The simplest application of GAs to evolve adaptations in an IBM is through life history switch genes.
In classical models of zooplankton dynamics, the seasonal dynamics of the population was taken care
of by programming codes, such as

IF (JulianDay = 280) THEN descend to overwintering depth (33.4)

The programmer knew that zooplankton in spring and summer fed in surface waters, and overwintered
at greater depths during the winter season. Hence, the programmer used the first level of adaptation by
driving the model through observations and fixed preset values. Alternatively, the GA could be used to
search for the optimal date for seasonal migration, and the pseudocode could have been as

IF (JulianDay = character 

 

β

 

m

 

) THEN descend to overwintering depth (33.5)

where now character 

 

β

 

m

 

 (Equation 33.3) is the character value of character number 

 

m

 

 in the strategy
vector of an individual. Individuals with the same character values at character 

 

m 

 

would then descend
to overwintering depths the same day. After some generations of adaptation, the gene pool of the
population would consist of one single character value of character 

 

m

 

, or a series of values that on
average gave their bearers the same fitness. Another modeling technique related to the GA is genetic
programming (Koza, 1992), where computer code rather than allele values are evolved. GP can be used
instead of the GA for most of the cases discussed in this chapter.

 

33.4.2 Phenotypic Plasticity

 

Above we discussed how to adapt fixed strategies for maximizing survival, growth, and reproduction
using the GA. When the environment varies in a fairly predictable fashion such as the seasonal changes

 

FIGURE 33.2

 

The genetic algorithm. Of a large initial population of newborn offspring, a smaller number will survive
and become the parents for next generation. These survivors produce sexual products in proportion to their accumulated
reserves. These sexual products form the eggs for next generation, possibly after recombinations and mutations of the parent
strategy vectors. This process is repeated in an individual-based model over a number of generations. In each generation,
strategy vectors that make the offspring more likely to become parents will increase in abundance, and hence the individual
genomes and the whole gene pool of the offspring population will become better adapted to the local conditions.
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in day length or interannual climatic variation, fixed strategies (Equation 33.5) tend to yield for flexible
strategies that are dependent on the state of the environment. We now come to the second level of
adaptation in biology: phenotypic plasticity.

Phenotypic plasticity is defined as “a change in the average phenotype expressed by a genotype in
different macro environments” (Via, 1987). Thus one genotype adapts by expressing different phenotypes
under different environmental states. This does not imply that an individual is equally well adapted to
all environmental states, but rather that the individual resources are allocated to give the best attainable
life history for the particular environment (Lessells, 1991). The relationship emerging between the
expressed phenotype for an environmental state and the environmental state is referred to as the reaction
norm. This concept is illustrated in Figure 33.3.

To implement phenotypic plasticity in models it is necessary to include environment state (

 

E

 

) as a
variable in the model. To model, for example, the linear reaction norm seen in Figure 33.3, one needs
intercept and slope characters embedded on the strategy vector. In this case the phenotype is 

 

β

 

1

 

E 

 

+ 

 

β

 

2

 

.
To allow more complex reaction norms the complexity of the equation needs to be increased, along with
the number of adapted variables. The variables are estimated using the GA as discussed above. In some
cases several environmental features affect a trait. One way to model this would simply be to add more
terms to the reaction norm. A different approach would be to use an artificial neural network (ANN),
as discussed below.

State dependency is a phenomenon similar to phenotypic plasticity. From the perspective of the
organism, phenotypic plasticity is the genes’ changes in strategy under a variable external environment,
whereas state dependency is the genes’ changes in strategy under a variable internal environment. But
from the perspective of a gene, the nearest external environment is the rest of the genome and the
organism. The organism is the survival tool for its genes (Dawkins, 1982; Keller, 1999). State-dependent
behavior or life history decisions appear because the genes code for flexible strategies. State-dependent
decisions are usually modeled by stochastic dynamic programming (Houston and McNamara, 1999;
Clark and Mangel, 2000). This method, however, is backward running, and therefore not always easy
to combine with other individual-based methods. An alternative would then be to use ANN and a GA,
which also can solve state-dependent problems (Huse et al., 1999). ANN is explained in the next section.

 

33.4.3 Individual Learning

 

The final and perhaps most refined level of adaptation is learning. Learning can be defined as “any
process in an animal in which behavior becomes consistently modified as a result of experience”
(Lawrence, 1989). As opposed to the other two kinds of adaptation discussed previously, learning is not
passed on to offspring. Instead, learning is an independent process for each individual, although it may
be facilitated by parents. Still the capacity for learning is evolved. Learning is particularly efficient in
complex or unpredictable environments where changes take place at a small timescale. Learning requires
a higher mental capacity than the other means of adaptation, and in general it is more important for

 

FIGURE 33.3

 

Reaction norms emerge as different phenotypes are expressed under different environmental states. The
relationship between phenotype and environment is shown for two different genotypes.
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marine mammals (Rendell and Whitehead, 2001) than for fish, and rather restricted in invertebrates. The
evolutionary role of learning is very obvious in mammals, where parents usually teach their offspring
to find food and to avoid predators. For good introductions to learning and modeling learning, respec-
tively, see Schmajuk (1997) and Ballard (1997).

Learning can be implemented in models in different ways and below we address some basic methods
for doing this. Simulation models of learning can be divided into supervised learning paradigms and
reinforcement learning. Common to many of the models is that they are based on ANNs.

 

33.4.3.1 Artificial Neural Networks —

 

The ANN is a computing method inspired by a con-
ceptual model of how the human brain functions. Neurons in the brain are interconnected by synapses;
similarly layers of nodes in an ANN are linked together and pass signals between each other (Figure 33.4).
Thus, the ANN is made to mimic the decision process in a biological organism, with multiple sensory
inputs, a complex and hidden brain, a decision and a muscle output. This paradigm was initiated by
McCulloch and Pitts (1943) and their theoretical outline of the two-state neuron. Since then, there has
been considerable development in ANNs, and today a wide variety of ANN architectures are available
(Rosenblatt, 1958; Rummelhart et al., 1986; Montana and Davis, 1989). In Figure 33.4 a three-layer
feedforward ANN is illustrated.

The connection between a series of stimuli and the decision in an ANN goes from the input layer
through one or several layers of hidden nodes. Each hidden node adds and weighs the input from a
series of input nodes:

(33.6)

where 

 

I

 

i

 

 is input data 

 

i

 

, 

 

W

 

ih

 

 is the connection weight between input data 

 

i 

 

and hidden node 

 

h

 

 (i.e., the
relative influence of input data 

 

i

 

 for hidden node 

 

h

 

), 

 

N

 

h

 

 is the sum of the weighted input data of hidden
node 

 

h

 

, and 

 

m

 

 is the number of input nodes connected to hidden node 

 

h

 

. At the hidden node, values are
transformed to the [0,1] range using the standard sigmoid transformation:

(33.7)

where 

 

TN

 

h

 

 is the transformed node value and 

 

B

 

h

 

 is the bias (van Rooij et al., 1996) of hidden node 

 

h

 

. The
bias 

 

B

 

h

 

 is similar to an intercept value in a regression model. The transformation in the ANN introduces
nonlinearity, which allows the network to solve complex problems. The output 

 

O is calculated by adding
together the sums of the transformed hidden node values multiplied by the output weights (Who):

(33.8)

FIGURE 33.4 A schematic outline of an ANN. The connection points of the lines are referred to as nodes.
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where n is the number of hidden nodes. Finally the output is transformed using an equation similar to
Equation 33.7. The ANN is adapted by defining all connection weights and biases as separate characters
on the strategy vector select for the best ANNs using the GA or learning techniques. With an initial
random set of connection weights in each modeled individual in the first generation, there is a potential
risk that no phenotype will be able to perform sensible decisions. This can be overcome by introducing
the first few generations in the GA to a simpler and friendlier environment, where the pressure to perform
is weaker than for later generations.

33.4.3.2 Supervised Learning — Supervised learning is a method where a training set of known
input–response pairings is used to produce generalizing capabilities in an ANN. This corresponds to
having an omniscient teacher, hence the name. In supervised learning, the output produced by the ANN
is compared to the correct response and the weights are modified according to the discrepancy in an
iterative procedure. This procedure is repeated for the entire training set. The trained network can then
be used to generate predictions for cases outside of the training set. One of the simplest ANNs is the
so-called perceptron (Rosenblatt, 1958). This network consists of an input and an output layer and can
be trained using the Widrow-Hoff or delta learning rule (Ballard, 1997). In this case the output is the
sum of the input to the network multiplied by the weights (W) between the input and the output node,
and the weights are then changed by

(33.9)

where L is the learning rate, I is the input, and d is then defined as Otarget – O. Thus, the discrepancy
between the observed and predicted output is used to modify the weights. This procedure is a simple
way to implement associative learning into models, for example, classical conditioning. In classical
conditioning, a conditioned response toward a conditioned stimulus, which does not elicit response, is
learned as the conditioned stimulus is presented in conjunction with an unconditioned stimulus that
elicits response (Schmajuk, 1997). In the classic case of Pavlov’s dog, the bell ringing before the food
is presented is the conditioned stimulus and the food is the unconditioned stimulus. After several pairings
of the two stimuli, the conditioned stimulus is able to produce a conditioned response similar to an
unconditioned response. This is referred to as stimulus substitution (Schmajuk, 1997). Classical condi-
tioning can be simulated by presenting the stimuli as input to the ANN and then correcting the weights
through iterations to reproduce conditioned responses similar to the observed (unconditioned) responses
using Equation 33.9.

There are some limitations to what problems the perceptron can solve, and for more complex problems,
backpropagation is a better technique (Rummelhart et al., 1986). Implicit in this approach is the use of
a hidden layer, as seen in Figure 33.4, in addition to the input and output layers of the perceptron. This
along with a sigmoid transfer function and a generalized delta rule that is propagated backward into the
ANN allows solution of complex problems (Ballard, 1997). Thus errors are computed for each unit in
the hidden and output layers and the weights are modified correspondingly.

33.4.3.3 Reinforcement Learning — While the supervised learning paradigm assumes the presence
of an omniscient supervisor able to tell the network the correct response, one often does not know the
correct answer. Instead, it may be possible to evaluate actions in a less rigorous manner. Such situations
are suited for reinforcement learning where actions are associated with rewards and punishment for
“good” and “bad” behaviors, respectively (Ackley and Littman, 1992). Thus as opposed to supervised
learning where the correct output is known during training, the ANN has to discover the desired output.
This process allows individuals to produce increasingly more favorable behaviors as they explore and
learn about their environment. A behavior network can be updated by calculating a reinforcement signal
based on the fitness consequence of the previous action, so-called delayed rewards. The weights of the
ANN are then modified according to a reinforcement learning procedure that resembles backpropagation,
to produce increasingly “better” behavior. Recipes for applying reinforcement learning can be found in
Ballard (1997), and for an application of reinforcement learning to simulation of movement behavior in
a spatial lattice, see Ackley and Littman (1992).

W W d L Iold= + ⋅ ⋅
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33.5 Case Studies

The discussion above has focused on presenting and categorizing adaptation and adaptive modeling
techniques. Below some cases are provided where we discuss the different levels of adaptation and
model implementation. The cases focus on diapause in zooplankton, vertical migration in salmonids,
and antipredator responses.

33.5.1 Overwintering Diapause in Daphnids

In autumn, many life-forms shift focus from growth to overwintering survival. This applies to boreal
trees as well as to boreal bears. We illustrate this with two examples, starting with hibernation decision
in a freshwater herbivorous zooplankter. Daphnia enters diapause in fall in temperate lakes by producing
two resting eggs, which overwinter in the lake sediments. Next spring the resting eggs hatch and grow
into adult females that commence asexual reproduction at maturity. The timing of the onset of diapause
is important because the alternative is to produce several female offspring that reach maturity and can
reproduce themselves again. On the other hand Daphnia strains that remain in the water column through
winter risk extinction due to the long generation time, low fecundity, a potentially high predation pressure,
as well as environmental hazards.

The simplest modeling strategy for this phenomenon would be to obtain the most probable date for
hibernation from a field study. In many cases this would also be the most appropriate method, as this
date reflects the actual adaptation that has taken place in this or a similar lake, and as it allows the
modeler to concentrate on other dynamic aspects of the model. But if one were to model the timing,
the first approach would be to assume a Julian day for descent and code this on the strategy vector.
However, if interannual variation in the environment is great, this fixed strategy might be inferior to a
more flexible strategy taking the state of the environment into account. By assuming that temperature
is a key variable in this respect, the decision variable (D) could be expressed, for example, as a power
function of the temperature T at some early stage:

D = β1Tβ2 (33.10)

The corresponding strategy vector is Si = (β1,β2). A similar approach has been used in a model of the
life cycle of the boreal marine copepod Calanus finmarchicus (Fiksen, 2000). Fiksen equipped each
individual in the population with three evolvable characters: (1) the day of the year (i.e., the day length)
at which a resting stage V copepodid should wake from overwintering diapause, (2) the day of year
when it should shift allocation pattern from somatic growth to production of fat reserves for overwin-
tering, and (3) the fat/somatic tissue ratio required to initialize overwintering diapause. Thus, he used
two static characters and one state-dependent character.

If in addition to the interannual variation in temperature, additional factors such as the predation
pressure or density of conspecifics, or both, are important, the problem of the Daphnia becomes a lot
more complex. To model this, one could build on Equation 33.5, and include more factors in a similar
fashion. This kind of model would soon become rather complicated, especially if the different factors
interfere with each other in affecting the survival of Daphnia. An alternative way of doing this would
be to use a formalized structure such as the ANN. For example, the problem could be solved sequentially
so that each day the Daphnia would be presented with the relevant information and perform the decision
whether to enter diapause or continue producing regular offspring. This example illustrates how increas-
ing environmental complexity needs to be approached with increasing model complexity in order to
solve the important trade-offs.

33.5.2 Diel Vertical Migration in a Salmonid

Vertical migration is a classic theme in ecology occurring in a wide range of aquatic organisms. Diel
vertical migration (DVM) comes about as an adaptation to the daily light cycle and usually moves
organisms between deep waters during the day and shallower waters at night (Figure 33.5). This behavior
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is driven by the trade-off between feeding and predation risk. Below we develop a model for vertical
migration in a small freshwater fish, for example, a small salmonid (Clark and Levy, 1988). The fish
feed on zooplankton and are eaten by visually foraging fish.

The surface light level goes through tremendous changes during the diel cycle, peaking at midday
and going to virtually zero at night, except for regions with a midnight sun. A simple way of performing
DVM would thus be to adapt to a constant light level and adopt this throughout the day. Thus the fish
would always stay at or move toward the depth corresponding to this light level, and the best isolume
will be estimated iteratively using the GA. Movement would be constrained by the surface and the
bottom, and at night the fish would tend to occupy the surface layer.

The isolume strategy is simple, but also rather inflexible, and might leave the fish more exposed to
predation than optimal, for example, when it is satiated. A state-dependent strategy involving stomach
fullness (SF) would therefore improve the flexibility of the model:

D = β1 + β2·SFβ3 (33.11)

where D is the decision variable (depth), and β1 is the isolume level, and β2 and β3 represent the depth
dependence on stomach fullness. The strategy vector would then be Si = (β1,β2,β3). In addition to the
state dependence, there could be other factors influencing depth selection, such as the distribution of
food resources, conspecifics, or the temperature. Again it can be profitable to use ANNs if several factors
are to be taken into account. See Strand et al. (2002) for an application of ANNs and GAs in an IBM
of vertical migration in the mesopelagic fish Maurolicus muelleri.

33.5.3 Antipredator Responses

A number of aquatic species are able to learn antipredator responses. Even flatworms with a very simple
nervous system are able to learn avoidance of predators by associating it with odors of injured conspecifics
(Wisenden and Millard, 2001). This is a case of classical conditioning where the response to chemical
cues released by injured conspecifics is evolved. Once this smell is associated with a strange odor, the
strange odor is responded to as the presence of a predator. In this case the predator odor becomes the
conditioned stimulus, and the smell of injured conspecifics is the unconditioned stimulus. Similarly,
young stages of daphnids can alter their morphology on detection of chemicals associated with digestive
processes of their predator, the phantom midge Chaoborus sp. (Krueger and Dodson, 1981; Larsson and
Dodson, 1993). The alteration reduces the likelihood of Daphnia being ingested by the predator. Because

FIGURE 33.5 The diel vertical distribution of salmonids in a lake. (From Clark, C.W. and Levy, D.A., Am. Nat.,
131:271–290, 1988. With permission.)
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the morphological alteration is irreversible and costs energy, it can be fruitful to study at what predator
densities or Daphnia densities or time of year it should be induced. Alterations in morphology can be
predicted using an ANN with the factors mentioned above as input data along with equations for the
costs and benefits associated with the alterations. So here we see examples of adaptation by phenotypic
plasticity toward a specific and evolutionary well-known predator, and through learning toward any new
predator. This is seen in fish species as well. For example, gobies in western Norway do not have
inherited aversion against cod, their main predator, but rather learn to be averse through combined visual-
olfactory associations (Utne-Palm, 2001). Mathis et al. (1996) further showed that such predator aversions
could be transferred culturally from experienced to naive individuals, also across species barriers.

33.6 Discussion

33.6.1 Pros and Cons of the Different Levels of Adaptation

There has been no thorough account of the relative profitability of the different levels of adaptation
(Frank, 1996), although some preliminary efforts have been attempted (Boyd and Richerson, 1985;
Holland, 1992). The lack of a lucid theory for understanding the profitability of the different levels of
adaptation makes it difficult to provide recommendations for when to use the different approaches in
IBMs. However, there is a general tendency for the level of adaptation to increase with the complexity
of the environment (Figure 33.1). Thus in constant environment a fixed strategy is favorable as no time
or energy is wasted on failed explorations (Frank, 1996). In a seasonally variable environment or if the
environment varies between rather predictable states, phenotypic plasticity would be the adaptive level
of choice. For short-term variation caused, for example, by the tidal cycle, learning might be the most
profitable way of exploiting the environment. In general, it is useful to consider the kind of adaptation
exerted in nature and the capabilities of the target species when deciding on what level of adaptation to
use in a model. Each level of adaptation has its pros and cons. Genetic adaptation, through fixed or
flexible phenotypes, is slow, inflexible, and irreversible in the organism. Mental adaptation, through
learning, is quick and reversible, but requires individual association and explorations by trial and error.
Hence, very dangerous or very rare events are not open to learning. Learning is costly to the organism
in several ways. It costs time, lost opportunities, and sometimes enhanced mortality risk to make the
observations and associations that can be learned. It also costs energy to transfer them into storage, and
keep them stored in the neural system. The storage capacity itself is also under adaptive evolution,
competing for resources with all other anatomical structures (Fisher, 1930). The capacity for learning
is therefore strongly dependent on the evolutionary lineage, and learning ability is, for example, much
greater in mammals than in fish. Finally, with a limited storage capacity, different elements of learning
compete for available memory. This explains also why organisms should be quick to forget as soon as
the learned association is not of high fitness value any more (Healy, 1992).

Social learning is widespread in primates and other mammals. Similar cultural exchange between
age groups is seen in herring where young individuals seem to learn features of their migration pattern
from schooling with older ones (McQuinn, 1997; Fernö et al., 1998). However, the collective dynamics
of the herring schools are important for the information exchange among herring cohorts, and in years
when the recruiting year class is especially abundant, the information exchange seems to be interrupted
(Huse et al., 2002b). This shows that social learning can be vulnerable to interference at large
population sizes.

33.6.2 The Baldwin Effect

James Mark Baldwin (1896) proposed a mechanistic connection between individual learning and genetic
evolution. In a variable environment, the genome can improve its survival by including genes that code
for alternative phenotypes. Hence, phenotypic plasticity is a genomic bet-hedging strategy in variable
environments. But in a complex fitness landscape, where events seldom repeat, the organisms cannot
possess a genetic preparedness for all possible circumstances. It is therefore in the interest of genes in
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a genome to include new members that code for mental structures facilitating learning. Hence, individual
learning is adaptive if learners reproduce their genetic codes more frequent than nonlearners. This is
the standard explanation for all types of phenotypic adaptation. However, Baldwin suggested an
additional mechanism: in variable environments, new external factors can appear, impacting genetic
fitness of the organism. Individuals with genomes that contain genes coding for a capacity to learn how
to handle new situations can more easily survive and reproduce their genome. One can say that learning
smooths the peaks and valleys in the fitness landscape, allowing the genes in the learner to be fit in more
environments. And while the genes are kept alive through individual learning, any mutation in the genome
leading toward genetic adaptation toward the changed environment will be facilitated. So although
random favorable mutations are equally likely in learners and nonlearners, learners are more likely to
remain alive and reproducing until the favorable mutation has occurred. As a result, Baldwin said,
adaptive genetic evolution is more likely in learners, and hence the genetic trait of learning is maintained
and spread.

The Baldwin effect moves the evolutionary level of selection upward from single genes and genomes
to organisms and groups. The effect of the third level of adaptation is that social information transfer
on the level of groups, as well as nonsocial individual learning, affects both the behavior of the organism
and the survival of its genes. In fish, this is clearly seen in the potential strength of imitation-learning
in fish feeding (Baird et al., 1991), in predator avoidance (Mathis et al., 1996; Krause et al., 2000), and
mating behavior (Dugatkin and Godin, 1993), but is also likely to affect long-range migrations (McQuinn,
1997; Fernö et al., 1998). Hence, to study population processes in fish and other Baldwinian creatures,
consideration of all three levels of adaptation may be warranted.

33.7 Conclusions

Above we have presented an approach for thinking about adaptation as well as a conceptual framework
for utilizing different levels of adaptation in IBMs. In behavioral ecology it has been commonplace to
disregard the level of adaptation involved and simply assume that optimal behavior is achieved.
Adaptation in aquatic animals spans from fixed genetic strategies via phenotypic plasticity, to individual
and social learning, and IBMs can be used to address all these levels of adaptation. The cases discussed
above illustrate the importance of including adaptation in IBMs, as well as being specific about the
level of adaptation.

Acknowledgments

G.H. was supported by the European Commission. J.G. was partly supported by the Research Council
of Norway. We thank Sami Souissi for providing valuable comments on a former version of this chapter.

References

Ackley, D. and Littman, M., 1992. Interactions between learning and evolution, in Langton, C., Taylor, C.,
Farmer, J., and Rasmussen, S., Eds., Artificial Life III. Reading, MA: Addison-Wesley, 487–509.

Aksnes, D.L. and Giske, J., 1990. Habitat profitability in pelagic environments. Mar. Ecol. Prog. Ser.,
64:209–215.

Baird, T.A., Ryer, C.H., and Olla, B.L., 1991. Social enhancement of foraging on an ephemeral food source
in juvenile walleye pollock, Theragra chalcogramma. Environ. Biol. Fish., 31:307–311.

Baldwin, J.M., 1896. A new factor in evolution. Am. Nat., 30:441–451.
Ballard, D.H., 1997. An Introduction to Natural Computation. Cambridge, MA: MIT Press, 307 pp.
Beyer, J.E. and Laurence, G.C., 1980. A stochastic model of larval fish growth. Ecol. Modelling, 8:109–132.
Boyd, R. and Richerson, P.J., 1985. Culture and the Evolutionary Process. Chicago: University of Chicago Press.



Utilizing Different Levels of Adaptation in Individual-Based Modeling 523

Caswell, H. and John, A.M., 1992. From the individual to population in demographic models, in DeAngelis,
D.L. and Gross, L.J., Eds., Individual-Based Models and Approaches in Ecology. New York: Chapman
& Hall. 36–66.

Chambers, C.R., 1993. Phenotypic variability in fish populations and its representation in individual-based
models. Trans. Am. Fish. Soc., 122:404–414.

Clark, C.W. and Levy, D.A., 1988. Diel vertical migration by juvenile sockeye salmon and the antipredation
window. Am. Nat., 131:271–290.

Clark, C.W. and Mangel, M., 2000. Dynamic State Variable Models in Ecology. Methods and Applications.
New York: Oxford University Press, 289 pp.

Crowder, L.B., Rice, J.A., Miller, T.J., and Marschall, E.A., 1992. Empirical and theoretical approaches to
size-based interactions and recruitment variability in fishes, in DeAngelis, D.L. and Gross, L.J., Eds.,
Individual-Based Models and Approaches in Ecology. New York: Chapman & Hall, 237–255.

Darwin, C., 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured
Races in the Struggle for Life. London: J. Murray, 502 pp.

Dawkins, R., 1982. The Extended Phenotype. Oxford: Oxford University Press, 318 pp.
DeAngelis, D.L., Cox, D.C., and Coutant, C.C., 1979. Cannibalism and size dispersal in young-of-the-year

largemouth bass: experiments and model. Ecol. Modelling, 8:133–148.
Dugatkin, L.A. and Godin, J.G.J., 1993. Female mate copying in the guppy (Poecilia-Reticulata)   age-

dependent effects. Behav. Ecol., 4:289–292.
Euler, L., 1760. Recherches générales sur la mortalité: la multiplication du genre humain. Mem. Acad. Sci.

Berlin, 16:144–164.
Fernö, A., Pitcher, T.J., Melle, W., Nøttestad, L., Mackinson, S., Hollingworth, C., and Misund, O.A., 1998.

The challenge of the herring in the Norwegian Sea: making optimal collective spatial decisions. Sarsia,
83:149–167.

Fiksen, Ø. 2000. The adaptive timing of diapause   a search for evolutionarily robust strategies in Calanus
finmarchicus. ICES J. Mar. Sci., 57:1825–1833.

Fisher, R.A., 1930. The Genetical Theory of Natural Selection. Oxford: Clarendon Press.
Frank, S.A., 1996. The design of natural and artificial systems, in Rose, M.R. and Lauder, G.V., Eds.,

Adaptation. San Diego: Academic Press, 451–505.
Giske, J., Aksnes, D.L., and Førland, B., 1993. Variable generation time and Darwinian fitness measures. Evol.

Ecol., 7:233–239.
Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Reading, MA:

Addison-Wesley, 412 pp.
Grimm, V., 1999. Ten years of individual-based modelling in ecology: what have we learned and what could

we learn in the future? Ecol. Modelling, 115:129–148.
Healy, S., 1992. Optimal memory: toward an evolutionary ecology of animal cognition? Trends Ecol. Evol.,

7:399–400.
Hjort, J., 1914. Fluctuations in the great fisheries of northern Europe reviewed in the light of biological

research. Rapp. P.-V. Réun. Cons. Int. Explor. Mer, 20:1–28.
Holland, J.H., 1992. Adaptation in Natural and Artificial Systems. Cambridge, MA: MIT Press, 211 pp.
Houston, A.I. and McNamara, J.M., 1999. Models of Adaptive Behaviour. An Approach Based on State.

Cambridge, U.K.: Cambridge University Press, 378 pp.
Huse, G., 1998. Life History Strategies and Spatial Dynamics of the Barents Sea Capelin (Mallotus villosus),

thesis, Bergen: University of Bergen, 37 pp.
Huse, G. 2001. Modelling habitat choice in fish using adapted random walk. Sarsia, 86:477–483.
Huse, G., Strand, E., and Giske, J., 1999. Implementing behaviour in individual-based models using neural

networks and genetic algorithms. Evol. Ecol., 13:469–483.
Huse, G., Giske, J., and Salvanes, A.G.V., 2002a. Individual-based models, in Hart, P.J.B. and Reynolds, J.,

Eds., Handbook of Fish and Fisheries. Oxford: Blackwell Science, 228–248.
Huse, G., Railsback, S.F., and Fernö, A., 2002b. Modelling changes in migration pattern of herring: collective

behaviour and numerical domination. J. Fish Biol., 60:571–582.
Huston, M., DeAngelis, D., and Post, W., 1988. New computer models unify ecological theory. BioScience,

38:682–691.
Judson, O.P., 1994. The rise of individual-based model in ecology. Trends Ecol. Evol., 9:9–14.
Keller, L., 1999. Levels of Selection in Evolution. Princeton, NJ: Princeton University Press, 318 pp.



524 Handbook of Scaling Methods in Aquatic Ecology: Measurement, Analysis, Simulation

Koza, J.R., 1992. Genetic Programming. Cambridge, MA: MIT Press.
Krause, J., Hoare, D., Krause, S., Hemelrijk, C.K., and Rubenstein, D.I., 2000. Leadership in fish shoals. Fish

Fish., 1:82–89.
Krueger, D.A. and Dodson, S.I., 1981. Embryological induction and predation ecology in Daphnia pulex.

Limnol. Oceanogr., 26:212–223.
Larsson, P. and Dodson, S., 1993. Invited review: chemical communication in planktonic animals. Arch.

Hydrobiol., 129:129–155.
Lawrence, E., 1989. Henderson’s Dictionary of Biological Terms. Harlow, U.K.: Longman Scientific &

Technical, 637 pp.
Lessells, C.M., 1991. The evolution of life histories, in Krebs, J.R. and Davies, N.B., Eds., Behavioural

Ecology. Oxford: Blackwell Scientific, 32–68.
Lotka, A.J., 1925. Elements of Physical Biology. Baltimore: Williams & Wilkins.
Maley, C.C. and Caswell, H., 1993. Implementing i-state configuration models for population dynamics: an

object-oriented programming approach. Ecol. Modelling, 68:75–89.
Mathis, A., Chivers, D.P., and Smith, R.J.F., 1996. Cultural transmission of predator recognition: intraspecific

and interspecific learning. Anim. Behav., 51:185–201.
McCulloch, W.S. and Pitts, W.H., 1943. A logical calculus of the ideas immanent in nervous activity. Bull.

Math. Biophys., 5:115–133.
McQuinn, I.H., 1997. Metapopulations and the Atlantic herring. Rev. Fish Biol. Fish., 7:297–329.
Menczer, F., and Belew, R.K., 1996. From complex environments to complex behaviors. Adaptive Behav.,

4:317–363.
Metz, J.A.J. and Diekman, O., 1986. The Dynamics of Physiologically Structured Populations. Berlin:

Springer-Verlag.
Mitchell, M., 1996. An Introduction to Genetic Algorithms. Cambridge, MA: MIT Press, 205 pp.
Mitchell, M and Forrest, S., 1995. Genetic algorithms and artificial life, in Langton, C.G., Ed., Artificial Life:

An Overview. Cambridge, MA: MIT Press, 267–289.
Montana, J. and Davis, L., 1989. Training feedforward networks using genetic algorithms, in Sridharan, NS.,

Ed., Eleventh International Joint Conference on Artificial Intelligence. Morgan Kaufman, 762–767.
Mylius, S.D. and Diekmann, O., 1995. On evolutionary stable life histories, optimization and the need to be

specific on density dependence. Oikos, 74:218–224.
Parker, G.A. and Maynard Smith, J., 1990. Optimality theory in evolutionary biology. Nature, 348:27–33.
Railsback, S.F., 2001. Concepts from complex adaptive systems as a framework for individual-based

modelling. Ecol. Modelling, 139:47–62.
Rendell, L. and Whitehead, H., 2001. Culture in whales and dolphins. Behav. Brain Sci., 24:309–382.
Roff, D.A., 1992. The Evolution of Life Histories. New York: Chapman & Hall.
Roff, D.A., 2002. Life History Evolution. Sunderland, MA: Sinauer Associates, Inc., 527 pp.
Rosenblatt, F., 1958. The perceptron: a probabilistic model for information storage and organization in the

brain. Psychol. Rev., 65:386–408.
Rummelhart, D.E., Hinton, G.E., and Williams, R.J., 1986. Learning representations by back-propagating

errors. Nature, 323:533–536.
Scheffer, M., Baveco, J.M., DeAngelis, D.L., Rose, K.A., and van Nes, E.H., 1995. Super-individuals a simple

solution for modelling large populations on an individual basis. Ecol. Modelling, 80:161–170.
Schmajuk, N.A., 1997. Animal Learning and Cognition: A Neural Network Approach. Cambridge, U.K.:

Cambridge University Press.
Stearns, S.C., 1992. The Evolution of Life Histories. Oxford: Oxford University Press.
Stearns, S.C. and Schmid-Hempel, P., 1987. Evolutionary insight should not be wasted. Oikos, 49:118–125.
Strand, E., Huse, G., and Giske, J., 2002. Artificial evolution of life history and behavior. Am. Nat.,

159:624–644.
Tuljapurkar, S. and Caswell, H., 1997. Structured-Population Models in Marine, Terrestrial, and Freshwater

Systems. New York: Chapman & Hall, 643 pp.
Utne-Palm, A.C., 2001. Response of naïve two-spotted gobies Gobiusculus flavescens to visual and chemical

stimuli of their natural predator, cod Gadus morhua. Mar. Ecol. Prog. Ser., 218:267–274.
van Rooij, A.J.F., Jain, L.C., and Johnson, R.P., 1996. Neural Network Training Using Genetic Algorithms.

Bunke, H. and Wang, P.S.P., Eds., Singapore: World Scientific, 130 pp.

TS: curly 
apostrophe 
please

AU: city?



Utilizing Different Levels of Adaptation in Individual-Based Modeling 525

Via, S., 1987. Genetic constraints on the evolution of phenotypic plasticity, in Loeschcke, V., Ed., Genetic
Constraints on Adaptive Evolution. Berlin: Springer-Verlag, 47–71.

Volterra, V., 1926. Variazioni e fluttuazioni del numero d’individui in specie animali conviventi, Atti R. Mem.
Cl. Sci. Fis. Mat. Nat., 6:31–113.

Werner, E.E. and Gilliam, J.F., 1984. The ontogenetic niche of reproduction and species interactions in size-
structured populations. Annu. Rev. Ecol. Syst., 15:393–425.

Wisenden, B.D. and Millard, M.C., 2001. Aquatic flatworms use chemical cues from injured conspecifics to
assess predation risk and to associate risk with novel cues. Anim. Behav., 62:761–766.

Wright, R., 1994. The Moral Animal. Why We Are the Way We Are. London: Abacus.


