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ABSTRACT: Avian egg production demands resources such as lipids
and proteins. Relative egg size and mass varies across species, reflecting
differences in maternal investment. This variability may affect the
maternal transfer of anthropogenic pollutants including lipophilic
polychlorinated biphenyls (PCBs) and protein-associated per- and
polyfluoroalkyl substances (PFASs) and mercury (Hg). We conducted
a meta-analysis on seabirds and investigated whether interspecies
variation in maternal investment contributes toward skewed pollutant
concentration ratios between males and females, as Cmale/Cfemale (80
studies). Overall concentrations of PCBs and perfluorooctanesulfonic
acid (PFOS) were 1.6 and 1.3 times higher, respectively, in males than females, whereas mercury was similar between sexes. Few
studies compared females and eggs (n = 6), highlighting a knowledge gap. We found that an increasing maternal investment as a
clutch-to-female mass ratio resulted in lower PCB concentrations in females than in males during the incubation period, but no
sex-specific differences were observed for mercury and PFOS. Egg production is both a lipid dominated and protein-limited
process. Females transfer lipophilic pollutants more easily to eggs, and to a higher degree with increasing maternal investment,
but feeding ecology may be more important. Interspecies variation in maternal pollutant transfer may lead to negative effects
scaling from an offspring to population level.

■ INTRODUCTION

Life history theory can help us predict how an individual
acquires and allocates resources while maximizing fitness.1

Resources, such as lipids and proteins, directed toward
reproduction have been studied in great detail, particularly in
the context of avian egg production. The large variability in
clutch size across avian taxa can be explained by life history
trade-offs between maternal investment and offspring
survival.1,2 In particular, the relative availability of different
nutrients may affect clutch size, with proteins serving as
limiting resource during egg production.3,4

Egg laying serves as one major route of pollutant
excretion.5,6 Egg production includes the transfer of nutrients
from maternal reserves to developing ovarian follicles, in
combination with anthropogenic pollutants.7 Pollutants such
as persistent organic pollutants (POPs) and mercury (Hg) are
known for their bioaccumulative and toxic properties.8,9 Such
chemicals can exert negative effects scaling from an individual
to population level.10−12 POPs include organohalogentated
compounds such as polychlorinated biphenyls (PCBs) and
perfluorooctanesulfonic acid (PFOS).8 PCBs, mercury, and
PFOS accumulate in avian tissue and are soluble in different
macronutrients: PCBs are lipophilic, whereas mercury and
PFOS are protein-associated.7,13,14

Variation in pollutant concentrations across bird species is
largely attributable to biological factors such as seasonal

changes in body lipids, trophic position, and feeding
ecology.15,16 Pollutant transfer from mother to offspring
(maternal transfer) may also lead to skewed concentration
ratios between sexes during breeding, with males possessing a
higher concentration of pollutants than females.17 Reproduc-
tive status may also affect concentration ratios between sexes,
where effects may disappear during the nonbreeding periods,18

as females reach steady-state concentration.19 The effects of
reproductive strategy on pollutant bioaccumulation have been
explored within avian species including ring doves (Streptopelia
risoria) and herring gulls (Larus argentatus).20,21 Interspecies
comparisons have been explored in marine mammals,22 and
also in birds but only on a single pollutant basis.18 If the
resources directed toward egg production are related to
maternal pollutant elimination, then an increasing maternal
investment should also result in lower pollutant concentrations
in reproducing females than in males. Given that protein serves
as a limiting resource during egg production,4 then maternal
investment may have a greater effect on the transfer of
lipophilic PCBs than protein-associated mercury and PFOS.
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To synthesize individual studies reporting pollutant
concentrations in eggs and adult seabird species, we conducted
a meta-analysis. We choose seabirds as our target group when
exploring the effect of life history variation while minimizing
the confounding effects of phylogeny, trophic position, and
dietary specialization across habitats. We quantify maternal
investment as the proportion of a female’s body mass relative
to her clutch of eggs, and sexual dimorphism as the body mass
ratio between males and females. Lipophilic PCBs, and
protein-associated mercury and PFOS represent our model
compounds, as we have a strong understanding of their
physicochemical properties, including their association to
different macronutrients involved in egg production. We also
expect data to be most sufficient for these chemicals to allow
for robust analysis.
We test the effect of maternal investment as a mechanism of

pollutant excretion in females. We test four hypotheses: (1)
species that invest more resources toward clutch production
will transfer more pollutants from mother to egg; (2) species
that invest more resources toward a clutch will result in lower
concentrations in females than males; (3) effects of maternal
investment on pollutant concentration differences will be
greatest during the incubation period; and (4) maternal
investment has a greater effect on transfer lipophilic pollutants
(PCB) than that of protein-associated pollutants (mercury and
PFOS).

■ MATERIALS AND METHODS
Literature Search and Data Extraction.We searched for

all peer reviewed, published studies reporting pollutant
concentrations in seabirds on the Web of Science (v. 5.27.2)
Core Collection database for all years up to 15-Feb-2018. Our
literature search included search terms for pollutants as well as
a combination of common and Latin names for all seabird
species (see Supporting Information, SI, for keywords used).
We first filtered articles according to title, year, and abstract,
while keeping all other details blind. During the title-abstract
screening, we considered all types of anthropogenic organic
pollutants except radionuclides, natural toxins, and trace
elements other than mercury. We considered all seabird
tissues and pollutant data collected from all observational
studies. If it was unclear whether a study was relevant, then we
included it for further assessment. We then screened full-text
articles for eligibility if they:

(1) Measured halogenated anthropogenic pollutants or
mercury in one or more seabird species as part of an
observational field study;

(2) Reported separate measurements for either: (i) male and
female; or (ii) egg and female, with adults at sexual
maturity;

(3) Measured pollutants in internal tissues and/or organs;
(4) Reported mean pollutant concentrations, standard

deviations (SD), and sampled sizes (n), or allowed
them to be calculated.23

Studies measuring pollutants in individuals from laboratory
or zoological garden studies were not considered for full-text
assessment. Studies measuring carcasses were only included if
mortality was recent, i.e., within days of sampling. We included
studies reporting pollutant levels in liver, kidney, muscle, and
fat tissue, as these represented the most measured tissue
matrices across studies. We only considered studies with adults
that had reached sexual maturity, and excluded studies with

data from individuals with unknown or mixed age groups (e.g.,
combination of chick, juveniles, and/or adults). If repeated
sampling of individuals took place, then we only used data
from the first sampling effort.
After full-text screening, we included three pollutants for

meta-analysis: PCB, mercury, and PFOS. We treated these data
separately since these chemicals have different binding
affinities to lipids and proteins. We required PCB concen-
tration on lipid weight basis, because lipid content may vary
across tissue matrix and species.15 We used reported lipid
adjusted concentrations or calculated these from reported wet
weight concentrations and lipid content. When possible, we
obtained the concentrations of the dominating congener PCB-
153, but otherwise assumed PCB-153 to be the dominant
congener when a sum of PCB concentrations was reported.24

For mercury, we required concentrations to be expressed on
dry weight basis, and assumed 80% moisture content in liver,
muscle, and blood for conversion if dry mass was not known or
provided.25 For PFOS, we required all studies to report
concentration on a wet weight basis, and included concen-
trations from the linear isomer of the chemical when possible.
For male−female comparisons, we required pollutant concen-
trations to be reported in the same tissue matrix for both sexes.
For egg-female comparisons, we required pollutant concen-
trations to be reported on a whole egg basis. We also recorded
information on tissue matrix and breeding status (prebreeding,
incubation, postbreeding, nonbreeding, mixed, or not
specified).
We extracted mean pollutant concentrations, SDs and

sample sizes from individual studies from the main text, tables,
and figures, SI, or calculated these values from individual
measurements. We used the selection tool in ImageJ (v. 1.51k)
to estimate concentrations and variability when data were
presented in figure format.26 Our final data sets for PCBs,
mercury, and PFOS include one which compares pollutant
concentrations in egg-females, and one which compares male
to females.

Effect Size Calculations. We calculated the log response
ratio (LRR) as our effect size since pollutant concentrations
represent a continuous positive variable and often take a log-
normal distribution. LRR is represented as the mean pollutant
concentration in one group of individuals divided by another
such that,

C
C

LRR ln male

female
=

(1)

where C refers to the concentration of a given pollutant (PCB
as lipid weight, mercury as dry weight and PFOS as wet
weight). An LRR greater than 0 means that the concentration
of a given pollutant is greater in males than in females, and vice
versa. Variance is calculated as follows:

N C N C
var(LRR)

(SD )
( )

(SD )
( )

male
2

male male
2

female
2

female female
2= +

(2)

where SD and N represent the standard deviation and sample
size of each group from each study.27 LRR and var(LRR)
values are used for statistical analyses. However, for ease of
interpretation in the remainder of this text, we express effect
size as the exponent of LRR, the response ratio (RR). Here, a
RR of 1 represents equal pollutant concentrations between
sexes.

Environmental Science & Technology Article

DOI: 10.1021/acs.est.9b01296
Environ. Sci. Technol. 2019, 53, 7821−7829

7822

http://pubs.acs.org/doi/suppl/10.1021/acs.est.9b01296/suppl_file/es9b01296_si_002.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.9b01296/suppl_file/es9b01296_si_002.pdf
http://dx.doi.org/10.1021/acs.est.9b01296


Quantifying Maternal Investment and Sexual Di-
morphism. We extracted life history measures from seabird
databases including adult body mass (male and female when
possible), clutch size, and egg mass. Most studies reporting
pollutant data either did not measure or provide life history
estimates, prompting us to use population averages from
databases. Additionally, we were interested in the interspecies
variation in life history traits rather than differences within
species. When possible, we extracted life history trait
information using the CRC Handbook of Avian Body Masses,
AnAge database, and Handbook of the Birds of the
World.28−30 When life history information was missing from
databases, we extracted estimates from individual studies
(Table S3, SI).
One approach to quantify maternal investment involves

calculating the ratio between the mass of a clutch with the
mass of an adult female (as [negg × megg]/mfemale). Assuming
that producing a clutch is energetically costly,31,32 an increasing
maternal investment implies greater relative amount of energy
or resources directed toward egg production. For example, an
Adelie penguin Pygoscelis adeliae clutch constitutes less than
10% of an adult female’s body mass, whereas a mallard Anas
platyrhynchos clutch can represent 40% the mass of an adult
female.33 Assuming all other routes of pollutant elimination are
similar between sexes, interspecies variation in maternal clutch
investment should reflect the degree to which females transfer
pollutants to their eggs and thus lead to skewed concentration
ratios between sexes, assuming that exposure routes are also
comparable.
Many seabird species exhibit sexual dimorphism in body

size. Larger-bodied individuals may have higher energetic
demands than smaller individuals,34 meaning that pollutant
concentrations could increase with body size but these effects
are likely limited.18 We explored the potential effect of sexual
dimorphism on pollutant concentration ratios between sexes
by calculating the adult mass ratio between males and females
(as mmale/mfemale). For species where only a single body mass
estimate was available, we assumed sexes were similar and set
the male-to-female mass ratio to one (Table S3, SI).
Statistical Analyses. We tested whether pollutant

concentration ratios varied between sexes by meta-analysis.
We also tested whether differences in tissue matrix, breeding
status, maternal investment, and sexual dimorphism con-
tributed toward differences in pollutant concentration ratios
across species.
For each pollutant, we calculated a grand mean of RR and

95% confidence interval using the RR, variances and weighting
factors derived from each study.35 Weighting factors (wi = 1/
vari) gives studies with high precision (smaller variance and
higher sample size) greater weighting than studies with low
precision (larger variance and smaller sample size). An effect
size with a confidence interval that does not overlap a RR of 1
implies a significant difference between males and females.27

For each pollutant, we also calculated the Q-score and I2

indexheterogeneity statistics that represent the proportion of
unexplained between-study variation. An I2 greater than 50%
suggests that between-study variation is substantial and can be
further explored by meta-regression analysis.36 We also
calculated Hedges’ g, commonly used in meta-analysis, as an
effect size which yielded the same results (Table S4, SI).
We considered the effect of tissue matrix and breeding status

as confounding factors, and tested their effect using subgroup
analysis. Nonoverlapping effect sizes may imply significant

differences between categorical variables. We then analyzed the
relationship between concentration ratio between sexes and
(1) maternal investment in clutches (expressed as clutch-to-
female mass ratio); and (2) sexual dimorphism (expressed as
male-to-female mass ratio) by meta-regression. Models were
developed using a mixed-effects meta-analytical model.37 We
included study and species as categorical random factors, since
studies vary in sampling period and location; and closely
related species may respond more similarly than distantly
related ones.38 When considering species as a random factor
we constructed a phylogenetic correlation matrix using
consensus tree based on subset tree from available
phylogenetic data,39 and included this matrix as an additional
random factor in our mixed-effect model (SI). Models were
fitted using a restricted maximum likelihood (REML)
approach, which is best suited for models with mixed or
multilevel effects.35

Maternal investment and sexual dimorphism were included
as explanatory variables in separate mixed-effect models, and
were compared to null models containing no fixed or random
effects. The explanatory power of included variables was
calculated using a pseudo-R2 value, which represents the
proportional reduction in total variance of a full model
compared to its null model (as [∑σ2null − ∑σ2model]/∑σ2null,
where σ2 is an estimator for between-study variance). We
carried out all analyses in R (v. 3.4.1), using the APE and
Metafor packages for phylogenetic and meta-analyses,
respectively.40−42 We set the significance level α to 0.05 in
all our models, and present estimates and models as means and
95% confidence intervals unless specified otherwise.

■ RESULTS AND DISCUSSION

Summary of Data Sets. A literature search of 2941
seabird studies returned six studies on egg-females and 37
studies on male−females. The egg-female data set reported
pollutant concentrations in six species, however we could not
conduct formal meta-analysis due to the limited number of
studies available (Tables 1 and 2). In the male−female data set,
pollutant concentrations were reported in 27 species, with
mercury concentrations reported at the highest frequency
followed by PCB and PFOS (mercury = 42%; PCB = 39%;
PFOS = 19%; Table 1).

Concentration Sex Ratios. PCB and PFOS concen-
trations were 1.64 and 1.28 times higher in males than in
females, respectively (PCB: CI95 = 1.14−2.36; range: 0.71−
6.48; P = 0.007; PFOS: CI95 = 1.00−1.64; range: 0.30−2.40; P
= 0.054). Mercury concentrations were similar between sexes
(RR = 1.08; CI95 = 0.55−2.12; range: 0.44−2.58; P = 0.82;

Table 1. Number of Studies That Allow Comparison of
Pollutant Concentrations between Eggs and Females, as
Well as between Females and Malesa

number of comparisons from N studies

egg-female male−female incubation data/all data

PCB 2 from 2 studies 24/31 from 19 studies
mercury 2 from 2 studies 14/33 from 17 studies
PFOS 3 from 2 studies 6/15 from 9 studies
total 7 from 6 studies 44/79 from 37 studies

aFor male-female studies, the number of comparisons during the
incubation period is also indicated. Some studies report pollutant
concentrations for multiple species.

Environmental Science & Technology Article

DOI: 10.1021/acs.est.9b01296
Environ. Sci. Technol. 2019, 53, 7821−7829

7823

http://pubs.acs.org/doi/suppl/10.1021/acs.est.9b01296/suppl_file/es9b01296_si_002.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.9b01296/suppl_file/es9b01296_si_002.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.9b01296/suppl_file/es9b01296_si_002.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.9b01296/suppl_file/es9b01296_si_002.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.9b01296/suppl_file/es9b01296_si_002.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.9b01296/suppl_file/es9b01296_si_002.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.9b01296/suppl_file/es9b01296_si_002.pdf
http://dx.doi.org/10.1021/acs.est.9b01296


Figure 1). The proportion of unexplained between-study
variation was large for all pollutant groups (PCB: QE = 111.6;
I2 = 82.5%; P < 0.001; mercury: QE = 198.3; I2 = 96.3%; P <
0.001; PFOS: QE = 50.0; I2 = 95.1%; P < 0.001). For PCBs,
breeding status was important (24 out of 31 studies) when
considering differences in concentration sex ratios (QM = 11.0;
R2 = 15.1%; P = 0.026), with differences between males and
females being largest when comparing individuals during the
incubation period. For mercury and PFOS, breeding status did
not contribute to differences pollutant concentrations, and
tissue matrix did not contribute to differences in concen-
trations for all pollutant groups (Table S7, SI).
During incubation, female seabirds contained lower levels of

PCBs than males, supporting our expectation that egg
production serves as a major route of excretion for lipophilic
pollutants, given that exposure to PCBs was similar. Lipids
constitute approximately 20−30% of total egg mass,43 with
both lipids and PCBs being almost exclusive to egg yolk.44 The
remainder of the egg contains protein, carbohydrate, and
water, which are divided between albumen and yolk.45,46

Mercury is predominantly found in the albumen compartment
of eggs,47,48 which females can form in as little as 1 day.46,49

Some species acquire resources for albumen production
exclusively from local diet as opposed to body reserves.50

However, egg lipids can take several weeks to form and likely
derive from body reserves (capital breeding) than recently
acquired dietary resources (income breeding).33,43 Egg
formation may be a protein-limited process, with increased
protein in diet increasing clutch size in some birds.4,31 These
findings suggest that either females transfer lipophilic
pollutants more easily than protein-associated pollutants
during egg production, or that egg production is a lipid
dominated process. However, PFOS is both protein-associated
as well as lipophilic, binding to both serum albumin and
lipoproteins, respectively.51−53 In biological tissues, PFOS
concentrations increase with increasing lipid content,54

meaning that PFOS is likely affected by similar biological
processes as PCB. However, the additional protein-associated
properties of PFOS may result in weaker sex specific
differences as reflected by the findings in the present study.
PCB concentrations were higher in males than in females

during the incubation period. One explanation could be that
the partitioning of PCBs from female body stores to egg yolk
does not reach equilibrium by the time egg formation is

complete. Lipid-normalized organochlorine concentrations in
female muscle tissue are higher than in eggs across several bird
species,5 suggesting PCB deposition in eggs is a rate-limited
process.55 However, the limited number of studies available
comparing pollutant concentrations between eggs and females
as well as egg-mother pairs indicates a knowledge gap. The two
studies that reported PCB concentrations in eggs and females
also indicate a skewed concentration ratio, with eggs
containing a lower concentration of PCBs than females.44,56

Birds are capable of de novo synthesis of lipids from
carbohydrates stored in liver tissue.20 Given that eggs contain
a large proportion of lipids,43 then lipid synthesis during egg
production may result in increased lipid content in females and
consequently an apparent increased dilution of PCBs. Lipid
content in serum was similar between sexes across all species
included in our data set, suggesting that lipid dynamics during
egg production does not affect circulating lipids in blood. In
addition, we did not detect any differences in concentration
ratios of PCBs between sexes when accounting for tissue
matrix.
Sex-specific differences in PCB concentrations disappeared

when we included studies containing individuals sampled
outside of the incubation period. These additional studies
reported pollutant concentrations in individuals with mixed
and unknown breeding statuses as well as in nonbreeding
individuals. Therefore, sex-specific differences may be the
largest during the incubation period, shortly after females have
produced a clutch. Additionally, females may utilize lipids to
maintain body condition and energetic costs associated with
egg incubation,57 which may also lead to remobilised
concentrations of PCBs. In the northern fulmar Fulmaris
glacialis, females contained a lower concentration of PCBs than
males during incubation, however concentrations were similar
between nonbreeding females and males.17 Pollutant concen-
trations between females and males may quickly reach
equilibrium after producing a clutch,18 which may explain
the interaction between breeding status and concentration sex
ratios in our data set.
A previous meta-analysis found overall lower concentrations

of mercury in females than in males across a wide range of
avian taxa, as well as for those sampled during the prebreeding
and incubation periods.18 In our study, however, we did not
detect sex specific differences in mercury concentrations even
when considering the effect of breeding status, regardless of

Table 2. Response Ratio and Variance of Pollutants Measured Egg-Females of Various Seabird Species, As Well As Pollutant
Group, Tissue Matrix, Concentrations and Sample Sizesa

study species
pollutant
group

female tissue
matrix Cegg Negg Cfemale Nfemale

response ratio
(Cegg:Cfemale)

Verreault 2005 Glaucous gull (Larus hyperboreus) PCBb plasma 11786 ± 3604 30 31646 ± 16863 42 0.37
Verreault 2006 Glaucous gull (Larus hyperboreus) PCB plasma 11130 ± 13820 10 11130 ± 13820 10 0.38
Lewis 1993 European Herring gull

(Larus argentatus)
mercuryc liver 1430 ± 640 26 4370 ± 1760 27 0.33

Robinson 2011 Double-crested cormorant
(Phalacrocorax auritus)

mercury liver 1100 ± 100 8 4400 ± 2165 18 0.25

Bertolero 2015 Yellow-legged gull
(Larus michaehellis)

PFOSd blood 75 ± 31 34 27 ± 17 17 2.75

Bertolero 2015 Audouin’s gull (Larus audouinii) PFOS blood 88 ± 23 36 25 ± 12 12 3.49
Herzke 2009 European shag

(Phalacrocorax artisotelis)
PFOS liver 37 ± 21 6 29 ± 11 6 1.29

aConcentrations are reported as mean ± standard deviation. bPolychlorinated biphenyl (PCB) concentrations reported as ng g−1 lipid weight.
cMercury (Hg) concentrations reported as ng g−1 dry weight. dPerfluorooctanesulfonic acid (PFOS) concentrations reported as ng g−1 wet weight.
eCegg = average concentration of pollutants in eggs; Cfemale = average concentration of pollutants in eggs; n = sample size of each group.
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Figure 1. Concentration ratios (Cmale/Cfemale) of PCBs, mercury, and PFOS between male and female seabird species, including overall effect sizes.
Tissues include abdominal fat, liver, muscle, red blood cells, whole blood, and plasma. Concentrations for PCBs are on lipid weight basis; dry
weight basis for mercury; and wet weight basis for PFOS. A full list of the relevant studies are included in the SI.
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choice in effect size (RR or Hedges’ g). A major difference
between the two studies is that we only considered
concentrations in seabird species, as we were interested in
exploring the effect of life history variation across species with
similar biology. This meant that we excluded mercury data
from terrestrial bird species, freshwater birds, and sea ducks.
We also included a broader range of tissue matrices, including
muscle, and whole blood and red blood cells as concentrations
were most frequently measured in these matrices. Our meta-
analysis included additional publications comparing male−
female seabirds after the 2012 study,18 thus increasing our
sample size and statistical power. These differences in inclusion
criteria may have led to a difference in the overall effect size.
Updated meta-analyses can sometimes conflict with previous
findings.58,59 However, the statistical methods carried out in
this study are similar to the former study, suggesting instead
that the robustness of the data has increased.
Effect of Maternal Investment. The clutch-to-female

mass ratio ranged from 3% in the American pelican Pelecanus
erythrorhynchos to 26% in several Larid genera (Larus and
Sterna), with a median mass ratio of 10%.
For PCBs, we found that an increasing maternal investment

toward a clutch resulted in higher concentrations in males than
in females during incubation (R2 = 53.2%; P = 0.003; Table 3
and Figure 2a). This effect disappeared when combining
seabirds of all breeding statuses (R2 = 13.8%; P = 0.18; Table
3). PCB concentrations during the incubation period were
dominated by studies on the glaucous gulls Larus hyperboreus
(13 out of 24 studies), which has a clutch-to-female mass ratio
of 17%. We analyzed the sensitivity of the meta-regression

analysis by removing this species, and still found a positive
relationship between maternal investment and male−female
RRs (R2 = 76.0%; P = 0.004). This suggests there is a robust
relationship between maternal investment and pollutant
concentration ratios between sexes. For mercury and PFOS,
we found no relationship between maternal investment and
male−female RRs (mercury: R2 = 0%; P = 0.44; PFOS: R2 =
15.1%; P = 0.30; Table 3 and Figure 2b and c), even when only
comparing seabirds sampled during the incubation period.
During incubation, females with large clutches relative to

their body mass may transfer a greater proportion of lipophilic
pollutants to their eggs than females that produce smaller
clutches. Sphenisciformes (penguins) and Procellariiformes
such as petrels and albatrosses represent species with a low
clutch-to-female mass ratio, i.e., lay one or two eggs per clutch,
and PCB concentrations were similar between sexes. However,
Charadriiformes such as gulls, terns, and auks represented
species with the highest clutch-to-female mass ratios, and
during the incubation period, those females contained lower
concentrations of PCBs than males. We assumed that the
allocation of resources toward egg production is closely related
to the proportion between a female’s body mass and clutch
mass. However, the clutch-to-female ratio may only account
for a small proportion of variation in maternal pollutant
transfer. Additional factors such as female quality and food
availability may better represent the potential effects of
maternal investment on pollutant transfer,60 as these variables
more realistically describe a female’s capacity to allocate
resources toward egg production.

Table 3. Summary Statistics of Meta-Regression Models Tested in This Study, Between Various Explanatory Variables and
Pollutant Concentration Ratios (Cmale/Cfemale) of Different Pollutants, Including PCB, Mercury, and PFOS

explanatory variable breeding considered? N intercept ± SE slope ± SE R2 (%) P-value

PCB
clutch-to-female mass ratio no 31 1.15 ± 1.35 16.00 ± 7.71 13.8 0.175
clutch-to-female mass ratio yes 24 0.75 ± 1.33 167.63 ± 5.76 53.2 0.003
male-to-female mass ratio no 33 8.56 ± 4.36 0.24 ± 3.44 0 0.145

mercury
clutch-to-female mass ratio no 33 1.21 ± 1.47 0.37 ± 5.98 0 0.580
male-to-female mass ratio no 33 0.68 ± 2.39 1.52 ± 2.13 0 0.558
PFOS
clutch-to-female mass ratio no 15 0.87 ± 1.49 10.94 ± 9.83 15.1 0.295
male-to-female mass ratio no 15 2.15 ± 2.43 0.63 ± 2.17 0 0.550

Figure 2. Relationship between maternal investment and the pollutant concentration ratio (Cmale/Cfemale) of (a) polychlorinated biphenyl (PCB);
(b) mercury (Hg); and (c) perfluorooctane sulfonic (PFOS) in seabirds. Shaded area represents the predicted mixed-effects meta-regression
model. For PCBs, only species sampled during incubation have been included.
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The lack of relationship between maternal investment and
protein-associated pollutants may imply that maternal transfer
has a weaker effect on protein-associated mercury and PFOS
than lipophilic pollutants such as PCBs during the incubation
period. Alternatively, mercury and PFOS deposited in the
albumen may reflect exposure from a female’s local diet during
egg production,61,62 which may limit her capacity to eliminate
mercury and PFOS from stored body reserves. It is also
possible that the dissolving capacity of mercury and PFOS in
proteins is less than for PCBs in lipids. Reproductive strategies
that influence different macronutrients and egg compartments
warrant further investigation,63,64 especially when pollutants
exhibit different binding affinities to each type of macro-
nutrient.

■ ADDITIONAL SEX-SPECIFIC EFFECTS
When body mass estimates were reported for both sexes as a
proxy for sexual dimorphism, male−female mass ratios ranged
between 1.06 and 1.32, with males always weighing more than
females. Sexual dimorphism was unrelated to concentration sex
ratios of all pollutants types (PCB: R2 = 0%; P = 0.89;
mercury: R2 = 0%; P = 0.97; PFOS: R2 = 0%; P = 0.53; Table
3). The lack of effect remained even when accounting for
breeding status (Table S8, SI).
Differences in pollutant concentrations between sexes could

also be explained by sex-specific differences in feeding ecology,
which may mask the apparent effects of maternal investment
and body size differences. For example, larger-bodied
individuals may have the capacity to prey on larger food
items than smaller-bodied individuals. Diet items such as fish
may increase in age with increasing size class, and have a
reduced capacity to eliminate pollutants.15 Therefore, dietary
differences due to sexual dimorphism may result in varying
exposure to pollutants. Some seabird species such as skuas
(Stercorarius spp.) have reverse sexual dimorphism, i.e. females
are larger than males, but incubating females still contained
lower concentrations of pollutants than males.65,66 In some
species, feeding behavior varies between sexes, e.g., Gentoo
penguin Pygoscelis papua males feed on a higher trophic level
than females,67 resulting in higher exposure to biomagnifying
pollutants.15 Similarly, subantarctic breeding wandering
albatrosses Diomedea exulans have gender specific feeding
ecologies, which may explain differences in mercury and
organic pollutant concentrations.68 Feeding ecology informa-
tion is often lacking for many seabird species, meaning that we
could not account for differences in pollutant concentrations
due to sex specific feeding behaviors.
Other components of life history variation may also play an

important role when assessing concentration ratios between
sexes. Factors such as the lifespan of an individual and age at
first reproduction could impact overall pollutant concentration
ratios across species. For example, the wandering albatrosses
commence breeding from ten years of age,69 while glaucous
gulls can begin at five years of age. Birds that migrate to breed
may utilize resources of varying pollutant profiles,70 which
when combined with sex-specific differences in feeding
ecology, may have consequences on overall pollutant
concentration ratios. Testing the effect of these life history
traits was beyond the scope of this study, but improved and
more transparent data reporting may allow for these factors to
be tested in future meta-analyses.23 While we only considered
the effect of maternal investment in seabirds, the inclusion of
other avian species or consideration of feeding ecology and

physiology in future studies may further resolve differences in
sex-specific pollutant concentrations across avian taxa.
Resources directed toward reproduction can have implica-

tions on how lipophilic pollutants such as PCBs are transferred
from mother to offspring. Embryos and chicks represent a
sensitive life stage of pollutant exposure,71−73 and our analyses
suggest that seabird species that allocate more resources into
their clutches and may transfer more pollutants. However, the
exposure of embryos to pollutants may also depend on
additional biological factors such as clutch size and laying
sequence.44 Seabirds are long-lived organisms, and species with
a late age at first reproduction (e.g., Procellariiformes) may
also place their first clutches at greater risk, given that
pollutants accumulate for a longer period before females of
these species lay their first clutch. Although untested, this may
have consequences on chick growth, development, and
survival,74,75 and further ecological effects, such as pollutant
exposure in predators that specialize on bird eggs. Our findings
that males contain higher concentrations of PCBs and PFOS
than females could contribute to sex-specific effects, which may
include reduced breeding probability or survival rates.19,76

Taking into account variability in reproductive strategies across
organisms is also important when modeling the predicted
effects of pollutants scaling from individuals to popula-
tions,10,77 given variability in life history across organisms.
While many studies in ecotoxicology are species-specific, meta-
analysis serves to bridge species information by synthesizing
study data across many species. This in turn improves our
general understanding of the biological processes that
contribute to pollutant bioaccumulation, including the
complex processes of resource allocation and reproductive
effort, and their links to life history variability.
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