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Abstract

Our ability to model spatial distributions of ®sh populations is reviewed by describing the
available modelling tools. Ultimate models of the individual's motivation for behavioural
decisions are derived from evolutionary ecology. Mechanistic models for how ®sh sense
and may respond to their surroundings are presented for vision, olfaction, hearing, the
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lateral line and other sensory organs. Models for learning and memory are presented,
based both upon evolutionary optimization premises and upon neurological information
processing and decision making. Functional tools for modelling behaviour and life
histories can be categorized as belonging to an optimization or an adaptation approach.
Among optimization tools, optimal foraging theory, life history theory, ideal free
distribution, game theory and stochastic dynamic programming are presented. Among
adaptation tools, genetic algorithms and the combination with arti®cial neural networks
are described. The review advocates the combination of evolutionary and neurological
approaches to modelling spatial dynamics of ®sh.

Keywords: adaptation, arti®cial neural networks, ®sh, ®tness, game theory, genetic algorithms, hearing,

ideal free distribution, learning, life history theory, memory, migration, olfaction, optimal foraging

theory, optimization, sensory organs, spatial modelling, stochastic dynamic programming, vision

Introduction

The oceans, as well as lakes and ponds, offer their inhabitants environments that are
variable in time and space. Moving about, either vertically or horizontally, imposes
gradients in growth and survival through the effects of temperature, food concentration,
sensory capabilities, predator density and detection risk. All large and commercially
important marine ®sh stocks undertake seasonal horizontal migrations, and freshwater
®shes have ontogenetic and seasonal patterns in habitat use. The extent of these
migrations varies with age, size and environmental conditions. Understanding the forces
that create spatial distributions is a major challenge to ecology (Kareiva, 1994), but also
has clear economic bene®ts to humans, by allowing more precise assessments of
managed stocks. And while ®eld studies may reveal patterns at a given time and place
and laboratory investigations may isolate effects of single causes, models may combine
several forces in continuous space and time.

Spatial models of aquatic organisms have deep roots. Models of nutrient and
phytoplankton dynamics go back to Fleming (1939), Sverdrup et al. (1942) and Riley
(1946), while spatial models of zooplankton and ®sh are more recent (reviewed by
Fransz et al., 1991, and by Tyler and Rose, 1994). Spatial modelling of ®sh with
individual behaviour was initiated by Balchen's group (Slagstad et al., 1975; Balchen,
1976; Reed and Balchen, 1982). Individual-based models (IBMs) are founded on the
recognition that individuals differ in their characteristics and abilities (Hamilton, 1964;
Dawkins, 1976), and that such differences may be important in ecology and population
dynamics (Metz and Diekman, 1986; Huston et al., 1988; Lomnicki, 1988; DeAngelis
and Gross, 1992). Perhaps the most interesting feature of IBMs with regard to spatial
distributions has been the recent development of spatially explicit models (Tyler and
Rose, 1994), which incorporate spatial heterogeneity, individual variability and
individual movement. One of the problems with IBMs is that they are little more
than a way of accounting for individuals in a population. If IBMs are to become an
important tool for explaining the behaviour of individuals and populations, models that
describe why individuals are motivated for actions are needed. This means that
individual actions should be viewed in the light of what evolution has found favourable.

Three types of information may be relevant to maximize the reproductive rate: (1)
the very general genetic information on how to build a body, allocate energy and
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reproduce; (2) current information through sense organs to correct and update the
genetic view of life; and (3) stored information from past experiences that will be
relevant for improving behaviour in the future. After describing ®tness maximization,
we will therefore also show how sensory capabilities may be modelled for the different
sensory organs of ®sh, and how memory and learning can increase the ef®ciency of the
individual. Thus, our review covers both ultimate (evolutionary) and proximate
(mechanistic) aspects of life, and throughout we emphasize the need for integration
of these two approaches in models of spatial dynamics of ®sh.

Finally, our ability to model organs, individuals, populations and ecosystems depends on
the available modelling techniques and computing power. We will therefore explore some of
the recent methods in use. In particular, we describe the differences in attitude to modelling
among neurobiologists and evolutionary ecologists. And as behavioural ecology bene®ted
from the fusion of life history theory and optimal foraging theory in the 1980s, we believe
that there is now a huge gain to be had by combining evolutionary and neurobiological
approaches to understand the individual. This process is yet in its early stages.

Rate maximization

Imagine a planet with two species of objects able to reproduce, differing only with respect
to their commitment to reproduction. Dissimilar commitments give dissimilar fecundities.
With no mortality before reproduction, the numbers in each species will increase
exponentially (Euler, 1760). The genetic codes for devoting less than maximum into
offspring production will, over time, be rarer and rarer and the relative frequency of the
more devoted species will approach 1 after a suf®ciently long time. This simple reasoning
would be the same for differences in the capacity to reproduce as for differential
commitment. Hence, over evolutionary time, genetic codes that tend to produce fewer
offspring than others will become rarer and rarer. The core of natural selection is that only
those genomes that code for maximal investment into reproduction, will survive.
Reproducers exist for reproduction, which probably makes them the only kinds of object in
the universe that exist for something. No wonder then, that the ®rst sentence God spoke to
Man was `Be fruitful and multiply, ®ll the Earth and subdue it' (Genesis 1:28).

In a stable environment, the maximum reproductive rate r of an individual may be
found from the Euler±Lotka equation (Euler, 1760; Lotka, 1907), which accounts for
expected survival and fecundity at each age (Fig. 1). The Euler±Lotka model assumes
that each generation will experience the same conditions for survival and reproduction.
This is not the case on planet Earth, where the expected reproductive rate of a strategy is
variable in time and space. The growth rate of a strategy (e.g. a genetic code) over a long
time horizon is therefore better described by the product of the growth rates over each
generation (Table 1; reviews: Yoshimura and Clark, 1993; Tuljapurkar and Caswell,
1997). However, as the environment is variable, the value of this geometric mean will
depend on the time horizon. This is more a problem for modellers than for nature, and an
individual (and a strategy) can do no better than to behave and allocate resources in a
way that maximizes the expected reproductive rate in the environment in which it lives.

Individuals able to assess the current state of their environment and to respond
adequately to this information, will potentially have higher reproductive rates than
passive individuals or those expecting the average. Therefore, sensory abilities and
phenotypic plasticities (Fig. 1) have developed through all kingdoms of life. Further, if
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Table 1. Fitness measures

Fitness measure Symbol Major assumption Review references

Energy ef®ciency

maximization

e=t Fitness proportional to feeding rate;

predation risk not in¯uenced by

behaviour

Schoener (1987)

Gilliam's rule minimize

M=g

Juveniles with unconstrained age at

maturity; generation time inversely

proportional to somatic growth rate;

current conditions will prevail

Werner and Gilliam (1984),

McNamara and Houston

(1994)

Net reproduction

ratio

R0 Stable population size Roff (1992), Stearns (1992)

Deterministic

reproductive rate

r � r Deterministic (constant or regular)

environment from generation to

generation

Roff (1992), Stearns (1992)

Stochastic

reproductive rate

r � a Variable (stochastic) environment in

time and space

Yoshimura and Clark

(1993), Yoshimura and

Jansen (1996)

ABIOTIC AND
BIOTIC FACTORS

HIGH REPRODUCTIVE
CAPACITY

MUTATIONS,
RECOMBINATIONS and
NATURAL SELECTION

`
1 5 ΣmY

Y 5 1
lY e2ρY

ANATOMY AND
PHYSIOLOGY

LIFE HISTORY
STRATEGY

LEARNING AND
MEMORY

PHENOTYPIC
PLASTICITY

Fig. 1. Evolution by rate maximization: all aspects of life are optimized in order to

maximize reproductive rate r, here given by the Euler±Lotka equation. The challenge to

modelling is to ®nd the optimal decision set (e.g. spatial behaviour, life history, growth

allocations) given the constraints imposed by the environment.
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the variation is not chaotic, so that conditions for life in the near future are related to
conditions in the near past, it may pay to develop learning abilities and memory
(Anderson, 1995). Hence, we should expect individuals to act in a way that takes note
of the past, of current and anticipated future states of the environment (LeoÂn, 1993;
Zhivotovsky et al., 1996), of their own physiological state and rank (Houston et al.,
1988; Mangel and Clark, 1988) and of the behaviour of their conspeci®cs (Fretwell and
Lucas, 1970; Mylius and Diekmann, 1995).

In optimality models, ®tness is described in terms of future expectations. But as with
modellers, the organisms do not understand the world they live in and cannot react to
what will happen in the future. The strategies that individuals undertake are not
necessarily those that will maximize their expected reproductive rate, but rather those
that have evolved and have been maintained in the population through aeons of natural
selection. Through phenotypic plasticity, an individual assessment of the near future is
possible and may be optimal. But the long-term assessment of optimality is taken care
of by natural selection on past generations. In a stable but seasonal and heterogeneous
world, as described by the Euler±Lotka equation, it is possible to ®nd optimal solutions
to life history decisions and behaviour. In a partly stochastic world, as described by the
mean geometric growth rate model, optimal solutions do not exist. Yet evolution occurs,
and the survivors become steadily adapted to the new twists of chance and change
(Monod, 1971). All current survivors, including us, are evolutionary winners! And we
have won because our ancestors have been `adaptation executors', not `®tness
maximisers' (Wright, 1994). This distinction between optimization and adaptation has
also been utilized in modelling. Adaptive modelling methods will search for
improvements of current solutions, while optimization modelling derives the optimum
from a ®tness measure.

Just because natural selection has shaped all species to live as for the maximization
of the reproductive rate, it is possible to construct predictive models for the behaviour
of individuals and populations. In the ®nal section will we describe several ®tness-based
modelling approaches, based on either optimization or adaptive algorithms, concentrat-
ing on methods for understanding spatial distributions of aquatic organisms. But ®rst,
we will discuss how ®sh sense and may respond to their surroundings.

Mechanistic understanding of spatial dynamics

ENCOUNTER RATES AND FEEDING

The average encounter rate between a cruising predator and a stationary prey is
frequently described by the cylinder model, where encounter rate (e) is proportional to
prey concentration (N), predator swimming speed (v) and the square of the reaction
distance of the predator (r):

e � ðr2vN : (1)

In the following sections we shall describe the spatial variability of the reaction distance
of several sensory systems. Gerritsen and Strickler (1977) showed that the velocity
component of contact rates can be described from swimming speeds of both predators
and prey, and Rothschild and Osborn (1988) showed that turbulence may increase the
contact rates considerably, especially for slow-moving predators. Sundby (1997) predicted
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that encounter rates between ®rst-feeding cod (Gadus morhua, Gadidae) larvae and their
Calanus nauplii prey increase by a factor of 7 when wind speed increases from 2 to
10 m sÿ1. He found that wind-driven turbulence was especially effective for slow larvae
feeding on small prey at high concentrations. Turbulence could increase feeding of
juveniles up to 2 months old. (See Dower et al., 1997, for a recent review.)

For the case of planktivores and most actively searching piscivores, predator
swimming speed is generally an order of magnitude higher than turbulent velocity and
prey swimming speed, and these variables can be ignored. Aksnes and Giske (1993)
then showed that the maximum ingestion rate of the predator could be expressed by the
Holling (1959) disc equation:

f � hÿ1

(h e)ÿ1 � 1
: (2)

This function is asymptotically limited to the inverse of handling time (h) at suf®cient
reaction distances and prey concentrations. The Holling model implies that feeding is
limited by prey availability or handling time. This need not be the case, and a visual
planktivore feeding in surface waters will encounter more prey than can be digested
(Rosland and Giske, 1994; Giske and Salvanes, 1995). For this situation, maximum
feeding rate must be calculated from stomach or gut evacuation rate (whichever is the
smallest) (Henson and Hallam, 1995; Salvanes et al., 1995; Stephens, 1996).

Many tactile predators are assumed to yield a linear functional response curve over a
large spectrum of prey abundances (Alldredge, 1984) because the handling time of
individual prey is negligible. Hence, the maximum feeding rate is identical to the prey
encounter rate.

RANGES OF SENSORY SYSTEMS

All variables in the encounter rate model can be rather easily obtained by ®eld or
laboratory investigations, except for the maximum detection range (r). This sensory
range will be very variable, depending both upon which sensory organ is most ef®cient
and upon the environmental conditions. As an empirical approach to its estimation would
require a huge number of experiments, an attempt to describe each system by
mechanistic models is the only realistic approach.

Aquatic organisms have a wide variety of sensory organs (Atema et al., 1988;
Bleckmann, 1993; Guthrie and Muntz, 1993; Hara, 1993; Hawkins, 1993) and are able
to respond to current phenomena, in the near ®eld by lateral line and vision and far
away by hearing and chemical sensing, as well as to signals from their own body. Their
reactions may also depend on past experiences by learning (Hart, 1993) and on
expectations of the future, in¯uenced by their memory and current perceptions. In this
paper we will focus on how the sensory organs determine the encounter rate between a
®sh and its prey, mates and predators. The lateral line system, vision, olfaction and
hearing can be used to detect information from different distances, as these systems
operate at different spatial scales (Table 2). In addition to the sense organs themselves,
each of them requires brain capacity to analyse and respond to the signals, as well as
memory of past information. Within a given brain size of an individual, the sensory
systems compete for space, and a huge brain will also impose hydrodynamical
disadvantages for a swimming ®sh as well as increased detection risk. Hence, as for
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Table 2. Models of reaction distances (r) for sensory systems

Sensory system Detection range, r Predator characteristics Prey characteristics Environmental

characteristics

References

Hearing
r � rck2d2

ÿ2P
U cos è

Pressure threshold for

sound detection (P)

Prey radius (d),

wavenumber (k),

amplitude of source

velocity (U), angle of

radiation (è)

Density of water (r),

speed of sound (c),

time (t)

Modi®ed from

Kalmijn (1988a),

Bleckmann (1993)

Vision
r2ecr�kz � jC0jAE

Eb

Ke � Eb

Visual capacity (E), eye

saturation parameter

(Ke)

Prey contrast (C0),

prey area (A)

Background irradiance

(Eb), depth (z), diffuse

attenuation coef®cient

(k), beam attenuation

coef®cient (c)

Aksnes and Giske

(1993), Aksnes and

Utne (1997)

Olfaction
r � Pt ÿkt � ln

M=h

C2ðP2 t2

� �
Threshold concentration

for odour detection (C)

Chemical decay rate

(k), mass released (M),

vertical dimension of

release (h)

Diffusion velocity (P),

time (t)

Jumper and Baird

(1991)
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other `replicators' (Dawkins, 1995), an optimal ®sh does not have the best the market
can bring of all components (cf. Schellart, 1992). Further, the nervous system must
detect and analyse the status of the individual itself, e.g. its stomach fullness, blood
sugar, and reproductive status. In this section we only consider detection of external
stimuli, while input from internal sources will be mentioned in the section on the
`Neurological approach' (page 000). Further reviews are by Ketterson and Nolan (1992)
and Legac et al. (1993), who deal with interactions of hormones and life history theory.

Sound and pressure perception

Models of sensors for sound and pressure are reviewed by Kalmijn (1988a,b) and by
Rogers and Cox (1988). Most of these sensors are found in the inner ear and in the
lateral line system. The reviews cited above, and others in Atema et al. (1988) and
Coombs et al. (1989), explain the physics and biology in detail. Basically, sound has two
components of importance for sensing: the sound pressure and the particle velocity. The
acoustic pressure from a body can be expressed by models representing the propagating
wave and the near-®eld pressure (Kalmijn, 1988a; Bleckmann, 1993).

Fish may determine the angle to a target (food source or whatever) by time and=or
phase differences of the waves, while the distance to the object is primarily determined
by the curvature, the amplitude spectrum and the local frequency and the frequency
modulation of the wave train (Bleckmann et al., 1989). As the lateral line system is
most sensitive to the very near ®eld, it is important for maintaining position and
acquiring information whilst schooling (Bleckmann, 1993; Montgomery et al., 1995),
and may also aid in the detection of small prey (Montgomery, 1989). Particularly for
the smallest ®sh larvae, near-®eld sensing may be crucial for start-feeding and survival.
The startle response in ®sh larvae becomes more directional with the development of
the lateral line (Blaxter and Batty, 1985). Probably owing to the very local range and
the multitude of sensors on the body surface, the lateral line system has not been used
much in spatial modelling. As the effect of the near-®eld pressure falls with the square
of the distance travelled, this term can be neglected for all but the smallest distances.
This makes modelling of the auditory detection of distances much simpler (Table 2).
Directional hearing thresholds do not vary much with angle (Lu et al., 1996) but are
both frequency dependent and species speci®c (Popper, 1996).

Vision

All ®sh species, except those living in almost total darkness, have well-developed eyes.
Due to the fast and directional travel of light beams, the visual perception of images
gives very precise information over short distances. Individuals may see prey, predators,
competitors, mates, school members as well as physical objects in their habitat. However,
images decay quite rapidly underwater, either due to collision with particles or water
molecules (scattering and absorption) or because of scattering of other light beams onto
the image. Therefore, information from distant objects must be sensed by other receptors.
Aksnes and Giske (1993) and Aksnes and Utne (1997) have developed a model for the
detection range of ®sh (Table 2). The search volume of a cruising predator is further
restricted by the visual search angle (Luecke and O'Brien, 1981; Dunbrack and Dill,
1984). Aksnes and Giske (1993) have predicted that the feeding rate of a pelagic visual
predator will generally be far more sensitive to changes in visual range than to prey
concentrations. Eiane et al. (1997) studied the potential exploitation competition between
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tactile and visual predators. They concluded that light intensity, water clarity, small-scale
turbulence and prey density were the major factors determining the relative success of
these predators. They speculated that heavy eutrophication could lead to dominance of
jelly®sh through reduced water clarity and visual range of planktivorous ®shes, and not
through changes in species structure in the plankton communities.

Olfaction

Smells and odours spread in the water much more slowly than do light beams and
pressure ®elds, but they also remain in an area much longer. Hence, odours may be
tracked in time and space. Their spread and longevity depends on physical factors like
molecular diffusion, turbulence and water currents, but also upon their chemical stability.
The horizontal spread of a point source of a chemical component can be modelled as a
combination of molecular diffusion and chemical instability by the Joseph and Sendner
(1958) model, which was reformulated by Jumper and Baird (1991) to express detection
range as a function of time since release. The chemical decay rate is important for long-
distance detection of a target, but this factor may be neglected for search over shorter
distances, such as food search in darkness or in turbid water.

In addition to the effect of molecular diffusion, the spread of a molecule will depend
on turbulence and advection. These effects can be studied by models of 3D
hydrodynamics (Parslow and Gabric, 1989; Baird et al., 1996). Turbulence will act
much like diffusion, only much stronger. Advection will act to change reaction distance
along, transverse to or opposite to the current. Swimming against the current will allow
the planktivore to smell its prey without being smelt. However, this will also apply to
the piscivores following the planktivores. The impact of turbulence was modelled by
Baird et al. (1996). Turbulence is much stronger in the upper mixed layer than in deep
strati®ed waters. Baird et al. (1996) modelled vertical differences in detection distances
of a pheromone and found a strong impact of the vertical gradients in turbulence. They
also showed that there is a huge gain in detection distance by increased sensitivity.
Baird and Jumper (1995) modelled the mate location problem of deep-living hatchet®sh
(Sternoptyx diaphana, Sternoptychidae) by analysing the sensory capabilities of the ®sh.
They showed that with a sensory range of less than 2 m, mate location could take
weeks in some populations. Increased perception distances, for example by using sound
or by bioluminescence, as well as a high swimming speed of at least one of the sexes,
are often required for mate location and reproduction.

Other sensory systems

In addition to the ability to locate prey and mates and to avoid predators and parasites,
®sh possess several other types of sensors which we will not describe here. Internal
sensors for supervision of the physiological state are abundant and some can be modelled
(Olsen, 1989; Legac et al., 1993; Broekhuizen et al., 1994). Further, it is common
practice in optimality modelling to assume that the individual has abilities to acquire the
necessary information, without specifying how this is done (e.g. Rosland and Giske,
1997). In the same way, we usually assume that the ®sh will register external changes in
temperature gradients as they swim through them. The ability to navigate by geomagnetic
®elds is also documented for many species (Moore et al., 1990; Kobayashi and
Kirschvink, 1995; Walker et al., 1997). An organ likely to be responsible for magnetic
sense in rainbow trout (Onchorhynchus mykiss, Salmonidae) has recently been reported
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(Walker et al., 1997). Sharks are able to use weak electric ®elds, both in prey detection
and in spatial orientation (Kalmijn, 1988b). To the best of our knowledge, this has not
yet been used in modelling, although it is common to assume orientation using a
magnetic sense when modelling large-scale migration (e.g. Huse and Giske, 1998).

PREDATION RISK

The models for sensory ranges and encounter rates can also be employed to model the
spatial distribution of predation risk experienced by the prey. A model that is to be used
to ®nd the safest habitat for a prey, should not contain speci®c assumptions about
predator location. If predation risk is assessed on the basis of predator distributions, the
predators may afterwards redistribute themselves to match the new location of their prey.
The only way to ®nd gradients in risk is to search for environmental variation in the
predator's ability to locate or catch prey.

The sense organs discussed here have different importances for detection by
predators. This may be illustrated by the protection gained by schooling (Huth and
Wissel, 1994; Vabù and Nùttestad, 1997). A dense school has a smaller surface than a
loose school or the sum of single individuals, so that schooling tightly may reduce the
ability of a visual predator to locate its prey. For olfaction, the amount released from a
thin shoal and a dense school of N individuals is the same (M=h; Table 2), and social
behaviour has no obvious effect on detection risk. However, the concentration of the
smell of a dense school is higher than that of a more dispersed shoal, although the total
odour mass released is the same. But if the odour is transported with currents, then the
initial concentration may determine from how far away the predator can track its prey.
Turbulence may erase weak odour signals from single individuals, but may spread the
news of a passing prey school. The fast vertical decay of light gives strong potential
gradients in vision-based search ef®ciency, but sound and olfaction will eventually be
dominant in less illuminated waters. We are not aware of models of detection or of risk
caused by olfaction or hearing. Vertical gradients in predation risk for zooplankton were
investigated by Giske et al. (1994) and Fiksen and Giske (1995), while Giske and
Aksnes (1992) and Rosland and Giske (1994, 1997) have studied gradients in mortality
risk for planktivores. Rosland (1997) investigated how small changes in the ecosystem
could select for different kinds of planktivorous ®shes and Eiane et al. (1997) have
compared vertical gradients in the ef®ciencies of visual and tactile planktivory.

While there is no spatial escape from tactile predators, it is often possible to grow
out of their reach. Most tactile predators, being jelly®sh or large zooplankton, prey on
small organisms. Size-dependent mortality risk has been described by an empirical
relationship for pelagic organisms spanning 12 orders of magnitude (McGurk, 1986).
By growing fast, the time during which an individual is susceptible to tactile predation
is reduced. However, larger prey are also more easily detected by visual predators. The
optimal growth pattern is therefore a complex trade-off involving several kinds of
predators as well as the impact of size for age at maturation and for fecundity.

LEARNING AND MEMORY

The learning abilities of ®sh have been reviewed by Thorpe (1963), Gleitman and Rozin
(1971) and Kieffer and Colgan (1992), with many good examples of learning in long-
distance migrations, spatial orientation, foraging, detection of threats, recognition
processes and social learning. Learning is modelled separately in two ®elds of biology.
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The neurobiological approach studies how information is acquired and where in the brain
it is stored, while the evolutionary ecologist studies why animals learn and what they
should learn or forget. There are obvious bene®ts in combining these approaches.

Ecological approach

Fish utilize memory of past experiences in ®nding food and avoiding predators. Past
experience is often modelled as a memory array. If recent information is more likely still
to apply than older observations, a short-term memory is desirable. If conditions apply
for longer periods, a long-term memory will do better. Fish will usually have both sorts,
and use them simultaneously (Harley, 1981). McNamara and Houston (1985) modelled
optimal patch choice (according to the marginal value theorem ± Charnov, 1976) as a
result of learning, where the individual did not know beforehand the return rate of any
patch or the average return rate. For a changing environment, McNamara and Houston
(1985) gave exponentially declining weight to older information. In their model
individuals do not keep records of the quality of each feeding patch, and the important
information is whether the current patch is better than the experienced average. Then the
individuals need only keep the memory of the estimate of the average patch quality from
the last patch. This model allows the individual to learn the maximum feeding rate in its
habitat and then to live according to the marginal value theorem.

Resident animals must recognize the spatial structure of the habitat so as to orientate.
Benhamou et al. (1995) have developed a place navigation model, based on the
recognition of distance and angle to all landmarks. Central in their model is the
`location', which is the place of interest, such as a point in the territory, and the
individual learns the `panorama' determined by the angular sizes and relative bearings
of all landmarks seen from the location. By comparing and relating panoramas, the
animal may orientate in a complex two-dimensional landscape, as shown for a
planktivorous reef ®sh by Noda et al. (1994).

The quality of a food type can be learned by the general learning rule (Bush and
Mosteller, 1955; Turner and Speed, 1996). Learning is modelled here as change in the
probability of attacking a food type during an encounter, depending on the learning rate
and the learning asymptote for attack probabilities. Turner and Speed (1996) give
several learning rules for these two factors. The model may apply with some
modi®cations also to handling times, palatabilities, encounters with predators, the
assessment of habitat quality and to prey encounters.

Neurological approach

A different approach to model learning is to apply techniques inspired by how the brain
works. The arti®cial neural network (ANN, Hop®eld, 1982; Kohonen, 1984) is such a
computer technique that uses neurobiological principles of brain activity to learn tasks.
The ANN started as an outgrowth of arti®cial intelligence, and has since been applied to
solve a variety of problems within different ®elds. The ANN consists of layers of nodes
that are linked together by weights (Fig. 2), simulating the way in which brain synapses
work. By gradually adjusting the weights according to a training method, the desired
output (actions, Fig. 2) can be achieved. It is common to classify ANN learning as
supervised or unsupervised (Anderson, 1995), where in the former situation the correct
output is known but not in the latter. In supervised learning the weights of the ANN are
often adjusted using back propagation (Rummelhart et al., 1986). Learning can also be
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achieved through gradual adaptation of weights using a genetic algorithm (GA) (Montana
and Davis, 1989) through indirect evaluation of the ANN. The GA method of `synapse'
training (van Rooij et al., 1996) will be discussed later.

As an example of a mechanistic neurological model of animal behaviour we refer to
the model of Hallam et al. (1994). The central unit in the model is a neuroconnector
net, which connects sensory input data with behavioural actions. Information from the
sensory neurons is passed by adjustable `synapses' to a series of releaser `neurons'.
Between these and a corresponding repetition of `behaviour' neurons there is a series of
weighted synapses. Finally, there are inhibition synapses between behaviour neurons. A
neuron will `®re' a signal through a synapse if the inputs are above an `input
threshold'. In the ®rst series of adjustable synapses, the neuroconnector set may learn to
®nd the appropriate weights of the signal as well as the optimal thresholds for each

Actions

Sensory input

Decisions

Hidden
layer(s)

Sensory
organs

Fig. 2. Arti®cial neural networks: a schematic drawing. Information from external and=or

internal sources is retrieved at `input neurons' (here termed sensory organs). If the numerical

value of the input is above a threshold value, the neuron will transmit the message through a

synapse to one or more neurons. In the simplest case, sensory input is sent directly to an

output layer, where decisions are made. More complex neural networks will contain one or

several `hidden layers'. Each neuron in a hidden layer will receive information from many or

all neurons in the level below, and send a new signal to the layer above if the sum of the

input values is above the threshold. The threshold values are usually set, but the strength of

each synapse must be learned so as to adjust to this level. Synapse strength is indicated by

line thickness. The learning may occur as a training if the correct response to all types of

input is known, or as a gradual evolution of improved solutions by genetic algorithms, if the

optimal structure is unknown.

68 Giske, Huse and Fiksen



input register. The neural basis for movement in the lamprey (Petromyzonidae) has been
intensively studied and several ANN models have been published. This detailed
mechanistic approach has been reviewed by Ekeberg et al. (1995).

Modelling learning by ANNs has been applied extensively in arti®cial life studies
(Hinton and Nowlan, 1987; Parisi et al., 1990; Ackley and Littman, 1992; Menczer and
Belew, 1996). Although ANNs have rarely been applied to model learning in ®sh, they
have the potential to become important in this ®eld as well (Reeke and Sporns, 1993;
Nol® et al., 1994).

Functional tools for behaviour and life history

OPTIMIZATION APPROACH

Optimal foraging theory

In 1966, two papers appeared back-to-back in The American Naturalist (MacArthur and
Pianka, 1966; Emlen, 1966). These papers were directly in¯uenced by economic
reasoning, and formed the start of optimal foraging theory (OFT). Emlen (1966, p. 611)
formulated the evolutionary premise for OFT: `Let us assume that natural selection will
favor the development . . . of feeding preferences that will . . . maximise the net caloric
intake . . . per unit time' (Table 1). Hence, OFT relied on a link with the Darwinian force
of evolution, which gave OFT a foundation for generating predictive biological
hypotheses open for testing (Calow and Townsend, 1981). The theoretical work in the
OFT era was to express optimal behaviour with the energy ef®ciency assumption in mind
(Schoener, 1987). However, there is no direct deduction of this optimality assumption
from maximization of the reproductive rate. It is implicitly assumed that increased
feeding rate may enhance survival probability, or enhance fecundity without also
enhancing predation risk or other variable ®tness costs. Hence, the theoretical results
from OFT will be invalid for situations where the behavioural action may greatly affect
predation risk (Table 3). But there is an extensive experimental backup of predictions
from OFT where animals have been offered choices in relatively simple experimental
situations (Stephens and Krebs, 1986; Schoener, 1987).

The classical OFT has been reviewed by Schoener (1987), who included optimal diet
theory, optimal patch choice and optimal patch residence time and departure. More
recent OFT approaches have included risk-prone and risk-averse behaviour when
confronted with environmental variability in expected feeding rate (Caraco, 1980;
Stephens, 1981). Clark and Mangel (1986) modelled stable school sizes for ®sh. They
constructed several models for food intake rate as a function of school size and
environment, and investigated the feeding gain of schooling under common search and
exploitation in relation to prey variables such as patchy versus regular distributions,
ephemeral food patches, and under despotic exploitation.

Life history theory (LHT)

After Darwin and Wallace, the focus of evolutionary biology centred on the morphology
of organisms, and Lotka (1925) may have been the ®rst to consider the `elastic behaviour
schedule' (p. 350) or `the free-choice schedule' (p. 351) as a way to maximize rate of
increase. Also Fisher (1930) saw life history traits as an integrated part of the phenotype
that could be analysed on an adaptive demographic basis. The ®rst spatial model of
distribution of aquatic organisms based upon adaptive values of habitat pro®tability was

Modelling spatial dynamics of ®sh 69



Table 3. A comparison of tools for functional modelling

Desired property Optimality approach Adaptation

approach

OFT LHT (Euler±Lotka) IFD Game theory SDP

Individually variable

motivation

Feeding state Age dependent

(`static' motivation)

In despotic IFD No Age, time and state

dependent

Age, time and

state dependent

Density-dependent

growth and survival

Only through

feeding

No

Yes Yes, and frequency

dependent

Possible only for

very simple scenarios

Yes

State-dependent

growth and survival

Only through

feeding

No Very computer

intensive

No This is what SDP is

best at

Yes

Morphological and

physiological

plasticity

No, OFT covers

shorter intervals

No No No Phenotype

characterized by

states

Probably possible,

not yet done

Individual behaviour

at several trophic

levels

No Static Dynamic games Find optimal

strategies

Only as dynamic

game

Probably possible,

not yet done

Dynamic behaviour

and life history

strategy

Does not cover the

whole life,

concentrates on

feeding situations

Only in stochastic

LHT

Density-dependent

solutions

Frequency-dependent

solutions

Of one actor in a

speci®ed

environment

Will evolve

according to

environment

Find optimal

strategies

To simple problems

without predation

risk

Yes Equilibrium

analysis

Equilibrium analysis Will ®nd global

optimum

May get stuck at

local optima

Learning Yes No No No Yes Yes
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Ecosystem modelling No The environment

is described

implicitly in the

lx and mx vectors

Predator±prey

equilibrium

Can search for

equilibrium

Scenario modelling

or dynamic games

Not granted that

global optimum

or stability will

be found

Heterogeneous and

temporally variable

environment

Only through

feeding

Euler±Lotka

demands that

conditions are

equal for each

generation, genetic

foresightedness

Computer

intensive

Equilibrium analysis Unrealistic

adaptation owing

to perfect

foresightedness

Variation at all

scales possible,

genetic

foresightedness

Fitness measure Partial: feeding

rate and growth

Analytical, rate

maximization (or

a derivative)

Usually partial

(feeding or

growth)

Any, but frequency

dependent

Full or partial,

derived from

analytical

Endogenous

(implicit) ®tness

function

References� 2, 3, 16, 22, 28 5, 18, 21, 24, 27,

28, 30

6, 7, 9, 26 9, 11, 15 8, 12, 13, 14, 17,

18, 23, 28

1, 4, 10, 19, 20,

25, 29

�References: 1, Ackley and Littman (1992); 2, Charnov (1976); 3, Clark and Mangel (1986); 4, Dagorn et al., (1995); 5, Fisher (1930); 6, Fretwell and Lucas (1970); 7,
Giske et al. (1997); 8, Houston et al. (1988); 9, Hugie and Dill (1994); 10, Huse and Giske (1998); 11, Iwasa (1982); 12, Katz (1974); 13, Mangel and Clark (1986); 14,
Mangel and Clark (1988); 15, Maynard Smith (1982); 16, McNamara and Houston (1985); 17, McNamara and Houston (1986); 18, McNamara and Houston (1996); 19,
Menczer and Belew (1996); 20, Nol® et al. (1994); 21, Roff (1992); 22, Schoener (1987); 23, Sibly and McFarland (1976); 24, Stearns (1992); 25, Terzopoulus et al.
(1995); 26, Tregenza (1995); 27, Tuljapurkar and Caswell (1997); 28, Tyler and Rose (1994); 29, van Rooij et al. (1996); 30, Werner and Gilliam (1984).
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presented by McLaren (1963). He discussed how increased water temperature reduced
fecundity and shortened egg development time for zooplankton, and described optimal
temperatures with respect to maximizing the reproductive rate. He also found that an
individual in most cases could increase its ®tness by diel vertical migration. McLaren
(1963) did not invoke predation risk as an environmental variable; this was not included
in a model for another 20 years (Iwasa, 1982).

Although McLaren (1963) described vertical migration of copepods as a means of
maximizing reproductive rate, the study of life history strategies had its breakthrough
three years later, in the same volume of The American Naturalist in which OFT was
published. Murdoch (1966) discussed individual ¯exibility as a strategy for coping with
environmental variability and Williams (1966a) introduced the concept of the residual
reproductive value and the ®tness consequence of a behavioural action. In his book,
Williams (1966b) showed that the individual (rather than the group or the species) was
the unit of selection. Suddenly, ecologists had two sets of optimality theories at hand,
and both theories expanded vastly during the next two decades. In retrospect it is
strange to observe that the central papers in OFT and LHT were published in the same
journals, by scientists at the same or very similar departments, with a very low rate of
theoretical cross-over. OFT assumed that feeding rate de®ned as energetic gain per time
unit was proportional to ®tness, without including into their models other components
of ®tness such as predation risk. LHT was used to ®nd optimal strategies, but not at the
time scale of behavioural decisions. Both theories relied on the optimality assumption,
but even 30 years later there is still a debate over what is to be maximized.

Life history theory has traditionally been concerned with the strategic trade-off
decisions that organisms make about their schedules of fecundity and survival with age.
A shift from age-dependent to state-dependent life history theory has lately been
advocated as a more realistic frame for further progress. The proponents of this change
prefer to view age as only one of a number of states relevant to the adaptive life
history, and one of the least important, as it is dif®cult to ®nd examples where vital
rates are shaped by age per se, rather than by the apparent effects correlated with age
(Ebenman and Persson, 1988; Clark, 1993; McNamara and Houston, 1996). The age-
based approach cannot incorporate many relevant trade-offs, such as maternal effects,
the offspring number=quality decision, or the allocation patterns between reproduction,
growth or storage unless the vital rates are correlated only with age. The tradition of
age-based life history theory probably relates to the more tractable mathematics and the
applicability of analytical methods stemming from this assumption, while the recent use
of computers, even among biologists, now makes the state-based approach more
attractive (Table 3).

The core of LHT is the maximization of reproductive rate. By using ®tness-
maximization as a target function, it has been possible to analyse optimal lifetime
reproductive patterns, energy allocation rules, phenology and willingness to take risk
(Fig. 1; reviews: Roff, 1992 or Stearns, 1992). As has been shown earlier, it is not
straightforward to employ a proper ®tness measure, as evolution is a continuous and
historical process (Table 1). For simplicity, most of LHT has been worked out for stable
environments, where the Euler±Lotka equation (Fig. 1) may be used. When the
population size is stable, r � 0. It may be seen from the Euler±Lotka equation that to
maximize r at steady state is equivalent to maximize R0, the net reproductive ratio
(Table 1). As R0 is much easier to calculate, this measure has been used in several
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studies of optimal life histories and behaviour. This must be done with caution, as the
steady-state assumption will generally be invalid in evolution and ecology (Giske et al.,
1993; Kozlowski, 1993; Fiksen, 1997) because (1) although population size is stable,
individual performance may vary; and (2) the steady state will not be permanent. For
both these cases, strategies that seek to maximize r may never leave fewer offspring to
later generations than do R0-maximizers.

Werner and Gilliam (1984) predicted that if generation time is a function of the
growth rate (g) of juvenile ®sh, and ®tness is maximized by R0, the pro®tability of a
habitat is determined by the mortality risk: growth rate ratio (M=g). This should be
minimized (Table 1). Further, if growth is proportional to feeding rate ( f ), individuals
should seek to minimize (M= f ). Aksnes and Giske (1990) and Giske and Aksnes
(1992) predicted that for adult ®sh or for other organisms with an environmentally
determined reproductive pattern where feeding acts to increase body size and thereafter
fecundity, but does not decrease generation time, the ®tness value of feeding is much
reduced. Such individuals should choose the habitat that minimizes (M=ln f ). However,
if generation time is dependent on environmental temperature, as is common for many
aquatic organisms, the habitat pro®tability function will also change. Aksnes and Giske
(1990) predicted that temperature should be the major environmental signal for the
continuously reproducing copepod Paracalanus parvus, while light intensity, which
affects survival from visual predators, is of highest importance for the annually
reproducing Calanus ®nmarchicus. However, the optimal trade-off between feeding and
predator avoidance depends on future expectations. This has been shown by McNamara
and Houston (1992, 1994). We will discuss their result in the section on state-dependent
behaviour.

Gilliam (1990) provided a link from OFT to LHT. He studied the classical optimal
foraging scenarios for the case in which the individual is at risk while feeding. The
average feeding rate of a foraging individual followed the prey choice model (Schoener,
1971). Gilliam then assumed that the forager suffers one mortality rate while searching
for prey and is killed with a duration-dependent probability while handling prey.
Finally, this individual has a lower mortality risk when hiding in a refuge. Its risk then
depends on prey type when feeding, and on the environment when searching. Gilliam
(1990) investigated how this risk while feeding changed optimal diet breadth and
optimal patch residence time, and the effect of the energetic state of the predator on the
optimal diet selection and activity level.

Although classical life history theory emerged from a static demography where
fecundity and survivorship were deterministic functions of age (cf. the Euler±Lotka
equation), it need not be so. McNamara and Houston (1992) developed a state-
dependent version of the Euler±Lotka equation where individuals optimize their
behaviour given their current state in order to maximize reproductive rate. The
framework for this and similar models (Mangel and Clark, 1986; Clark, 1993;
McNamara, 1991, 1993; McNamara and Houston, 1996) is stochastic dynamic
programming (SDP), which we will discuss later.

Ideal free distribution

The classical OFT and LHT models consider the optimal behaviour of an individual as a
function of its environment, and as a result all individuals are supposed to end with the
same optimal solution. However, it is not always optimal to do the same as all the others.
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The ideal free distribution (IFD) is one of a set of theoretical spatial distribution rules
investigated by Fretwell and Lucas (1970). The original IFD is based on ®ve
assumptions: (1) competitors are equal; (2) resources are patchily distributed; (3) the
competitors incur no cost to move; (4) each individual will go to the patch with highest
gain; and (5) competition between individuals is `scramble', without any contest or
combat. IFD was developed in the era of OFT, and although Fretwell and Lucas (1970)
stated that food was but one component of ®tness, the examples they provided assumed a
direct relationship between feeding rate (`gain') and ®tness (but see Oksanen et al.,
1992). Under this basic version of IFD, the total number of individuals distribute among
the patches so that the gains by all individuals are equal in all patches, which are utilized
in such a way that gain cannot be increased by relocation. The number of individuals in a
utilized patch will be proportional to the resources available (which in a stability
analysis, as IFD is, means the resource input rate). Later IFD models have been
developed for despotism (Fretwell, 1972), unequal competitors (Parker, 1982),
interference feeding (Sutherland, 1983), resource wastage (Sutherland and Parker,
1992), perceptual constraints (Abrahams, 1986), travel costs (Beauchamp et al., 1997),
residence costs (Tyler and Gilliam, 1995), and combined food reward and predation risk
in habitat pro®tability (McNamara and Houston, 1990). A recent review of the IFD
family is given by Tregenza (1995).

MacCall (1990) used the IFD concept in creating the `basin model' of the spatial
distribution of ®sh stocks. He envisioned the geographical ®tness landscape of a ®sh
stock as a basin, where the bottom topography of the basin was formed by habitat
pro®tability (deeper is better). The population size determined the sea level in the basin,
so that a small stock would reside in the deepest pool of the ®tness basin whereas a
large stock would occupy most of the available area and with higher densities all over.
By this graphical theory, MacCall explained interannual variation in the horizontal
distribution of ®sh stocks as a combined effect of habitat pro®tability and intraspeci®c
competition.

Tyler and Gilliam (1995) developed several IFD models for stream ®sh which
experience increased energetic costs of maintaining position and reduced capture
success of drifting prey as current speed increases. The model was designed for two
`patches', differing with respect to supply rate of food and cost of maintaining position.
They compared the predictions of these models and the classical IFD models in a
laboratory investigation of minnows and found that the behaviour of the ®sh was best
described by these extended models. This is a good example of a situation where more
complexity enhances the predictive power of a model.

Giske et al. (1997) developed a complex model for the density-dependent habitat
pro®tability of copepods, where the habitat (pelagic vertical axis) was characterized by
its food concentration, the sensory range of predators, temperature and concentration of
conspeci®cs. All copepods were assumed equal, so the functional model resembled
`̀ equal competitors under predation hazard'' (Gilliam and Fraser, 1988). Giske et al.
(1997) studied a scenario where ®tness was measured by Gilliam's criterion (maximize
growth rate per mortality risk). Because habitat pro®tability is in¯uenced by both risk
dilution and feeding interference, the density-dependent pro®tability curve was dome-
shaped at many depths, with maximum potential reproductive rate at intermediate
copepod concentations. More competition may be better, and it may be more pro®table
to concentrate at a few depths than to spread out to match resources. As an IFD model
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with peaked pro®tability curves may yield a very high number of possible population
distribution patterns, Giske et al. (1997) investigated the validity of several simplifying
methods to ®nd the optimal solution faster.

In all these IFD models, individuals do not differ in their energetic state. The impact
of individual energetic state on spatial distribution of a population was analysed by
McNamara and Houston (1990) by dynamic programming (SDP, see below). They
studied habitat use when animals experience different risks of starvation or predation
among two patches. Studying IFD by SDP can only be done as an analysis of optimal
behaviour, and cannot be done as part of a simulation model. However, when the
optimal state-dependent habitat selection is found by SDP, a forward-running IFD model
could be able to look up the optimal policies from the SDP model and ®nd the spatial
distribution and population dynamics. But this is probably not a practical way of
modelling spatial distributions, mainly because the IFD assumption of equal ®tness
demands huge computational powers for even moderately complex scenarios (Giske et
al., 1997). IFD will probably remain as a tool for scenario modelling for problems of
low complexity, where the assumptions are more valid (Table 3).

Game theory

Game theory, like optimality theory in OFT, was introduced to ecology from economics
(Maynard Smith, 1982; Parker, 1984). Commonly, the goal of a game is to ®nd a strategy
(pure or mixed) that can persist in a population (Table 3), and the evolutionarily stable
strategy (ESS) is a well-known example (Maynard Smith and Price, 1973; Maynard
Smith, 1974). A strategy is an ESS if, once established in the population, a new mutant
or immigrant cannot invade the population. However, a mixed ESS, or an evolutionarily
stable polymorphism, can be established if the pay-offs of the two (or more) strategies
are the same at some frequency of occurrence and when a change in frequency of
occurrence from this balance leads to reduced ®tness of the strategy. (IFD is an ESS in
this sense, but Giske et al., 1997, found situations when the IFD would not be stable.)

Iwasa (1982) modelled the vertical distribution of zooplankton and ®sh day and night
in two vertical layers, assuming that the ®tness of the ®sh was dependent on
zooplankton catchability and density. He further assumed ®tness of zooplankton to
depend on feeding gain and visual predation risk. Iwasa then found that the equilibrium
concentrations occurred when all zooplankton and ®sh concentrated in the upper
phytoplankton-rich layer at night, with some fraction of both the zooplankton and ®sh
populations remaining in the deeper layer during the day. This fraction depended on the
ef®ciency of the visual predator and on the impact of phytoplankton in the surface
water on zooplankton ®tness. The model of Iwasa (1982) was an important reminder of
the work of McLaren (1963, 1974), that zooplankton vertical migration is a balance
between several selective agents. A weakness of Iwasa's model was that neither
zooplankton nor ®sh had negative in¯uence on their conspeci®cs. This was included in
the zooplankton model of Gabriel and Thomas (1988a,b). They also allowed
zooplankton to distribute in the surface and deeper water and modelled the frequencies
of two strategies: (a) migratory: stay at the surface at night and go deep during the day,
and (b) stationary: always stay near the surface. The strategies were explored under
different environmental conditions. Visual predation and food concentration was highest
in the surface habitat, but feeding gain was reduced by increased competition. They
found many scenarios where the two strategies would coexist, and some where only one
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could be maintained. Hence, they gave a theoretical argument for the coexistence of
genetically and ecologically different clones that have pay-offs that vary with time, but
have the same annual success. Yet, one should keep in mind that Gabriel and Thomas
(1988a,b) compared two ®xed strategies against each other, not against a behaviourally
¯exible strategy.

Hugie and Dill (1994) constructed a game-theoretical IFD model of habitat selection
by ®sh and their prey. As did Giske et al. (1997), they used R0 as the ®tness measure
and demanded that all habitats occupied should yield the same density-dependent
pro®tability. While Giske et al. (1997) only modelled prey distribution in response to
the inherent riskiness of a habitat due to the reaction distances of visual and tactile
predators, Hugie and Dill (1994) modelled the stable solution to the game between
these two trophic levels. In their basic model, which had no interference between
predators, Hugie and Dill found that equilibrium prey densities should be proportional
to the inherent riskiness of the habitat caused by the predator's search abilities. Predator
distributions were in¯uenced by both their ef®ciencies and the productivity of their
prey. These analytical results, particularly with respect to prey distributions, differ
strikingly from the assumptions of the `continuous input' versions of IFD, where
distribution of optimal consumers match the input of their prey (Milinski, 1979). The
model of Hugie and Dill (1994) thus shows that optimality solutions derived from a
partial perspective of ®tness, as with growth maximization in the standard IFD, may
yield erroneous conclusions. According to the Hugie and Dill (1994) dynamic game
model, all habitats will be utilized by the prey. In the IFD model of copepod
distribution by Giske et al. (1997), prey will concentrate in the best habitats at low
overall abundances, and will only exploit all depths at very high population sizes. These
different predictions could be tested experimentally.

Stochastic dynamic programming

For many years now it has been clear that feeding behaviour of ®sh is best understood as
a trade-off between food intake and risk of predation (review: Milinski, 1993). Lately,
virtually every aspect of behavioural ecology and life-history theory has become centred
on this dichotomy: to reproduce or survive. This development seems to have been driven
by observations rather than by theory, as foraging theory in the late 1970s (OFT) was
concentrated on single components of ®tness (Pyke et al., 1977) and lacked the
mathematical tools to treat risk of mortality and food simultaneously within the frame of
Darwinian ®tness. The tool appropriate for such analysis was pioneered by McFarland
and others (e.g. Sibly and McFarland, 1976; McFarland, 1977, but see also Katz, 1974;
Craig et al., 1979) in the late 1970s, and involved state-dependent optimal control theory.

Since then, Mangel and Clark (1986, 1988), McNamara and Houston (1986) and
Houston et al. (1988) have promoted the use of stochastic dynamic programming (SDP)
to study how optimal individuals should trade off different components of ®tness. The
book by Mangel and Clark (1988) made the computational and mathematical skills
needed to build dynamic optimization models available to biologists. SDP is a handy
device to merge life history theory and short-time behaviour in ecological models based
on sound evolutionary theory (Fig. 3; Table 3) by the uni®cation of several components
of ®tness in one currency (Mangel and Clark, 1986; McNamara and Houston, 1986).

In general, SDP assumes the decision maker to be perfectly adapted to its
environment. In SDP models, behaviour or life history will change immediately when
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MAXIMISE
FITNESS

ENVIRONMENT
(light, temperature, food,

predators)

Behaviour
(migration)

Life history traits
(allocation, diapause)

Individual
(size, reserves)

Growth
Development
Reproduction

Mortality

– Trophic interactions
– Density dependent processes IBM

Spatial and temporal population dynamics

Fig. 3. Stochastic dynamic programming: a conceptual overview of how short-term behaviour and life

history theory may be integrated by SDP. Fitness maximization and environmental forcing are both

affecting behaviour (e.g. migration) and life history traits, which in turn are decisive for growth,

mortality, reproduction, development and individual states. Mechanistic submodels are central in

relating states and environment to processes such as growth and mortality. These processes are an

essential forcing in individual-based models (IBM), and can be derived from the dynamic

programming algorithm. Then, the basic predictions from the IBM are spatial and temporal

population dynamics, optimal life history decisions and patterns of behaviour. Trophic interactions,

frequency dependence and density dependence can be included in IBM models, but not in SDP. Thus

it is possible to add density dependence through the IBM, while behaviour and life history remains

constant except for the feedback on state: increased density may cause competition for food ± reduced

physiological condition ± changed behaviour and life history ± new distributions ± new density

dependence. The new behaviours will not be truly optimal, but ®tness will increase. However, we do

not know of any models exploring these possibilities.
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growth or predation risk change. This is most realistic for situations of strong
phenotypic plasticity, which is often the case for behaviours acting on short time
intervals such as diel vertical migration (DVM), schooling, swarming, foraging or
hiding decisions. Organisms are amenable to ¯uctuations in internal states such as
stomach fullness, condition, fat reserves or body size. Also, a growing body of evidence
suggests that prey often possess advanced sensory mechanisms to measure the presence
and density of predators (Smith, 1992; Jachner, 1995a,b; Utne and Bacchi, 1997), and
thus are able to respond in an adaptive manner to this information. A particularly
convincing example of this is the variations in patterns of diel vertical migration in the
water ¯ea Daphnia magna when the concentration of ®sh smell increases or decreases
(Loose and Dawidowicz, 1994). High concentrations of ®sh smell in the environment
cause an instantaneous switch to more intense DVM and less exposure to light. This is
a case where SDP modelling has been applied (Fiksen, 1997) and where the assumption
of much environmental information seems to be ful®lled.

DVM is an example where SDP models have been very useful in the formulation of
quantitative theories of the adaptive value of a behavioural phenomenon (Clark and
Levy, 1988; Rosland and Giske, 1994, 1997; Fiksen and Giske, 1995; Fiksen, 1997;
Fiksen and Carlotti, 1998). These models apply mechanistic submodels to study how
the environment and physics in¯uence the behavioural patterns, and some include both
DVM and other traits as decision variables, such as allocation between growth and
reproduction. State variables such as stomach content, fat reserves and body size are
shown to modify optimal DVM for a range of organisms. SDP has also been used in a
study of the seasonal horizontal migrations of capelin (Mallotus villosus, Osmeridae) in
the Barents Sea (Fiksen et al., 1995), in an attempt to view the migration pattern as a
trade-off between growth in the south-western part and safety from predation by cod in
the north-east. In that model the spatial grid position was included as a state variable.

The LHT-based habitat pro®tability models of Werner and Gilliam (1984) and Aksnes
and Giske (1990) describe situations with spatial but not temporal variation in the
environment. McNamara and Houston (1994) showed that `Gilliam's criterion' is a
proper ®tness measure when future expectations will be the same as the current
conditions (Table 1). If, on the other hand, current conditions do not persist, the value
of a great feeding opportunity increases as does the cost of an increased risk. Moody et
al. (1996) studied habitat selection forced by maximizing state-dependent reproductive
value (McNamara and Houston, 1992) as a state-dependent ideal free distribution model
of foragers under predation risk.

The output of an SDP model is the state- and time-dependent options which
maximize ®tness. To be used in the study of population dynamics, the optimal solutions
can be applied in traditional state projection matrices and Monte Carlo simulations
(IBM). Then the population consequences and sensitivity of deviations from the optimal
policy can be investigated, or the adaptive change in strategy or behaviour that may be
expected if the external forcing by the environment or by predation is altered. Probably,
the road forward for SDP modelling is to utilize these possibilities by transferring the
optimal solutions found by SDP into IBM ecosystem models and physical transportation
models (Fig. 3).

Nature is inherently stochastic and only to a certain limit predictable. In some cases,
such randomness has been included in SDP models (Yoshimura and Clark, 1991;
McNamara, 1995; McNamara et al., 1995), although to ®nd the correct measure of
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®tness becomes more complicated (McNamara and Houston, 1996). Another property of
nature is that the future prospects of an individual may depend on the presence and
actions of conspeci®cs and competitors, i.e. there is frequency- and density dependence.
State variable models have been used to study evolutionary games (Clark and Ekman,
1995; McNamara, 1995), while density dependence can only be embedded by the
assumption of stable populations such that juvenile growth or mortality must decline to
compensate for larger population densities.

ADAPTATION APPROACH

Optimal control theory (e.g. SDP) ensures that optimal solutions to a speci®c problem are
found by calculating all possible solutions and selecting the best (Schaffer, 1983).
Computing power, however, puts severe restrictions on the size of solution spaces that
can be studied using optimal control methods (Table 3). A range of ecological problems
are too complex for all solutions to be calculated. Such complex optimization problems
can instead be solved using heuristic techniques (Reeves, 1993). This is a group of
computer techniques that search for optimal solutions to a problem by using an algorithm
for moving about in solution space without keeping track of all possible solutions. A
problem when using these techniques is that one is never certain that the global optimal
solution to a problem is found unless this is veri®ed by other means. Consequently it is
possible to get stuck on local optima, although methods exist for decreasing the
probability of this (Sumida et al., 1990). The most common heuristic techniques are
simulated annealing (Blarer and Doebeli, 1996), tabu search and genetic algorithms
(Reeves, 1993; Saila, 1996). We will concentrate on the last, because this has been the
most popular approach among ecologists.

Genetic algorithms

The genetic algorithm (GA) uses the principle of evolution by natural selection to evolve
optimal solutions to a given problem (Holland, 1975). Although the GA was inspired by
evolution, the method has had very few applications in ecology (Goldberg, 1989; Davis,
1991; Saila, 1996; Toquenaga and Wade, 1996). In addition to being an optimization
tool, the GA has played a central role in the development of arti®cial life, a ®eld that
studies synthetic human-made life ± life as it could be (Langton, 1989). We think that
the GA may have some advantages over conventional methods in ecology, speci®cally in
cases of a multi-dimensional state space, trophic couplings and density dependencies. To
avoid confusion regarding mixing traditional genetic and GA genetic terminology, a
`chromosome' will be termed a string and a `gene' will be termed a character (Goldberg,
1989). For an introduction to GAs see Goldberg (1989) or Mitchell (1996).

The GA may be considered as a wheel where each turn represents a generation, and
some basic features are given below.

1. A major asset and potential dif®culty in application of GAs is the representation of
solutions to a problem as strings of bits (with values of 0 or 1), where the solutions
are initiated randomly.

2. Each string is then passed through an evaluation routine where its ®tness is
calculated based on some ®tness criterion. This procedure is the essence of relating
the strings to the problem that needs to be solved. The string may be divided into
several characters which together act to determine the ®tness of the string.
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3. When all the strings have been evaluated, they are ranked and selected in proportion
to their ®tness (Goldberg, 1989).

4. The selected strings may then be modi®ed by recombinations and `mutations'.
Recombination is carried out by letting the pairs of strings exchange pieces of bits
with each other. The length of such pieces can be chosen randomly, and from one to
several `crossing-over' points can be used. Furthermore, bit values may be changed
by mutations from 0 to 1 or vice versa. More elaborate mutations such as inversions
may be implemented if desirable. The modi®ed `new' strings are then ready to enter
the next generation. This ful®ls the GA, and this procedure will produce better and
better solutions to the problem as the generations go by (Holland, 1975).

Evolving populations of motivated individuals

Most biological applications of GAs seem to be in molecular biology (Goldberg, 1989).
The few applications in ®sh biology are, however, mostly related to spatial distributions.
D'Angelo et al. (1995) used a GA to examine relationships between the physical
characteristics and trout distribution in a stream. They found that the GA was a more
ef®cient predictor of trout (Oncorhynchus sp.) distribution than was proportional trout
distribution and multiple linear regression techniques. Dagorn et al. (1995, 1997) used a
GA to study schooling and migratory behaviour in tropical tunas (Scombridae). In the
latter paper (Dagorn et al., 1997), a GA was applied to adjust the weights of an ANN
(arti®cial neural network ± p. 67) in a study of the spatial distribution of tuna in the
Indian Ocean. The ANN was used to search for thermal fronts that are normally
associated with high concentrations of food (Lehodey et al., 1997). Two different models
were applied to solve the problem, and the ANN model where the tuna were given
learning abilities proved to be a much better predictor of tuna movement than the method
using search without learning. Huse and Giske (1998) presented a modelling concept
where a linked GA±ANN model is applied in an individual-based setting which they
referred to as the ING (individual-based neural network genetic algorithm) model (Fig.
4). This model is used to explore the spatial distribution of a ®sh through its entire life
span of two years with a daily resolution. Fish with favourable synaptic weights
reproduce more because they are able to move about the heterogeneous and seasonal
environment in a more productive manner than ®sh with poorer weights. From starting
with randomly initiated synaptic weights, the populations of ®sh becomes increasingly
better adapted to its environment by simulating the process of evolution by natural
selection. As is real evolution, solutions to complex tasks such as homing behaviour and
predator avoidance are best found by incremental evolution where the criterion for
success changes in a stepwise way and gets progressively more narrow (Gomez and
Miikkulainen, 1997). The behaviour of the ®sh (Huse and Giske, 1998) is determined by
using reactive or predictive movement control. Reactive movement enables movement in
environmental gradients whereas predictive movement relies on regular features of the
environment, such as seasonal changes. In the model the ®sh applies these types of
movement control for speci®c purposes: during feeding it uses reactive control whereas
predictive control is more often applied during migration. This use of reactive and
predictive control (Neill, 1979; Fernù et al., 1998) is evolved in the model. After 300
years were simulated, the population achieved a migration pattern that was similar to that
of the migrating ®shes of boreal regions, such as the Barents Sea capelin.

Within the ®eld of arti®cial life, several studies using GAs and ANNs have been
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carried out and interested readers are referred to this literature (Langton, 1989, 1997;
Ackley and Littman, 1992; Nol® et al., 1994; Menczer and Belew, 1996). A slightly
different, but very interesting approach has been undertaken by Terzopoulus et al.
(1995). They model arti®cial ®shes with sensory abilities, learning, locomotion and
behaviour. Their model is rooted in arti®cial life, and gives a candidate example of the
bene®t that ecological modellers would gain by paying attention to this literature.

Summary and conclusions

There exist mechanistic models for prey and predator location in aquatic environments,
although the poor understanding of several sensory organs still limits their applicability
in spatial modelling. We also have functional models of learning, motivation and decision
making. Finally we have several different modelling tools for optimization and adaptation
modelling. Evolutionary biology and rate maximization gives biological modelling a
solid basis relative to other sciences. In economics, modern utility theory states that
utility, the currency of welfare that is to be maximized, is neither measurable nor
comparable between individuals (Quirk, 1987, p. 104). While ecologists are notoriously
sceptical about optimality reasoning, this approach is mainstream within economics,
despite the rather weak foundation of the objective function in utility maximization
(Maynard Smith, 1996). This difference may be a result of history; while economists
have thought in terms of optimality since Jeremy Bentham (1748±1832), optimization
theory in ecology goes back only some 30 years, excepting the work by Lotka (1925) and
Fisher (1930) which did not catch on at the time. The starting point of biology is more
axiomatic than the utility maximization in economics. In biology there is variation
generated by mutations and recombinations and adaptation shaped by natural selection
over evolutionary history. Hence, biological optimization should be less susceptible to the
criticism faced by economics, and should become equally important in due course.
However, while physics remains with its rather restricted set of particles and forces, the
numerous variables and processes in ®sh ecology may quickly become unmanageable.
Any biological model must therefore be focused and parsimonious if process uncertainty
and parameter uncertainty are not to ruin the credibility of the model (HaÊkansson, 1995).

Yet, we should accept that as a model can only incorporate a small subset of the
universe, let alone the physiology of a ®sh larva, no single model or modelling
technique should be regarded as the superior approach. Rather, any complex problem
should be investigated by several models, which compete over predictability and
explanatory power, and complement each other so that the scientist or manager may
understand more (Hilborn and Mangel, 1997).

The functional models presented in this paper are concerned with how life history
and behaviour should be so as to maximize the reproductive rate (®tness) of the
individual. Such models are called ultimate, as they seek the most basic level of
explanation. Yet, individuals are not aware that they are faithful obeyers of the rate
maximization doctrine, so they need concrete external and internal stimuli to act upon.
Models that explain behaviour in terms of these stimuli are called proximate. To date,
optimality models are almost exclusively ultimate in design. There is therefore much
work left to be done to establish the proper links between the ultimate forcings and the
proximate triggers. It may seem that the arti®cial neural network combined with the
genetic algorithm may develop into such a unifying approach. By this method of
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evolving optimal solutions rather than by the analysis of them, the ®tness function itself
becomes invisible, as it does in the process of evolution. An understanding of ecology
and evolution will still be needed to construct the most relevant ANNs, although the
precise trade-offs will be found by the GA. This research programme may also
overcome the problems we face today with combining state- and density-dependent
forcings.

ING models are justi®ed only for complex scenarios. The method will only yield
numerical solutions and the mechanics of the evolved trade-offs are not made explicit.
Although SDP is almost equally computer intensive, and cannot handle density
dependency and strong trophic couplings, a clear bene®t of SDP is that the optimal
strategies become explicit. Both analytical (LHT and game theory) and less complex
numerical tools (IFD) will also continue to be important research tools in spatial
modelling of ®sh.
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