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Growth of Mytilus edulis was simulated using individual based models following both Scope For Growth
(SFG) and Dynamic Energy Budget (DEB) approaches. These models were parameterized using independent
studies and calibrated for each dataset by adjusting the half-saturation coefficient of the food ingestion
function term, XK, a common parameter in both approaches related to feeding behavior. Auto-calibration was
carried out using an optimization tool, which provides an objective way of tuning the model. Both approaches
yielded similar performance, suggesting that although the basis for constructing the models is different, both
can successfully reproduceM. edulis growth. The good performance of both models in different environments
achieved by adjusting a single parameter, XK, highlights the potential of these models for (1) producing
prospective analysis of mussel growth and (2) investigating mussel feeding response in different ecosystems.
Finally, we emphasize that the convergence of two different modeling approaches via calibration of XK,
indicates the importance of the feeding behavior and local trophic conditions for bivalve growth performance.
Consequently, further investigations should be conducted to explore the relationship of XK to environmental
variables and/or to the sophistication of the functional response to food availability with the final objective of
creating a general model that can be applied to different ecosystems without the need for calibration.
y design, analysis and writing.
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1. Introduction

Growth of bivalve species with economic value has been widely
studied due to their role in aquaculture and other ecosystem services
such as water filtration (Officer et al., 1982). The need to make growth
predictions goal of creating tools to carry out prospective studies has
promoted the development of individual bivalve growthmodels, which
can be based on empirical (e.g. Hawkins et al., 2002; Gangnery et al.
2003), mechanistic (e.g.Willows, 1992; Kooijman, 2000) or mixed (e.g.
Duarte et al., 2010) approaches. Two main approaches have been
applied to model bivalve growth: Scope For Growth (SFG, Winberg,
1960) and Dynamic Energy Budget (DEB, Kooijman, 1986). The SFG
approach is based on the measurement of the energetic balance of a
“standard” organism, applying allometric curves to extrapolate the
measurement to other animal sizes. The energetic balance is the
difference between the energy absorbed from the food and the energy
lost in respiration and excretion. If this balance is positive, the organism
has energy available for growth and reproduction that is manifest as an
increase in body weight. In contrast, a negative balance will result in a
decrease in body weight as a consequence of the utilization of reserves.
DEB theory describes the individual in terms of two state variables,
structural body and reserves (van der Meer, 2006), describing energy
flow through organisms from assimilation to allocation to growth,
reproduction and maintenance. Therefore, in DEB theory the descrip-
tion of these energetic processes in an organism is a function of its state
and the environment (Nisbet et al., 2000).

The main difference between these approaches is that SFG models
assume assimilated energy is immediately available for catabolism
(respiration and excretion) and the remainder is used for growth or
stored as reserves. This assumption implies that energy from
catabolism is lost. However, the energy from catabolism that has
been reinvested in the anabolic processes of growth stays in the
organism and is not subsequently lost, causing an imbalance
according to the energy conservation rule. DEB theory is based on
the assumption that assimilated energy is first stored in reserves,
which in turn are utilized to fuel other metabolic processes (Pouvreau
et al., 2006). Thus, reserves reflect the feeding history of the
organisms and consequently the structural growth dynamics in a
DEB model become different from the SFG model, particularly in
situations with temporal fluctuations in energy supply. Another
important assumption of the DEB model is the κ-rule which implies
that a fixed proportion κ of the available energy is allocated to somatic
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maintenance and growth, with priority for maintenance, and the
remaining 1−κ is allocated to maturation and reproduction/maturity
maintenance for juveniles and adults respectively. Recently, Brigolin
et al. (2009) applied a variation of the κ-rule concept to an SFGmodel,
fractionating the energy into two state variables: somatic structural
tissue and reproductive tissue. Given the different energy allocation
pathways and the influence of the internal state of the organism, DEB
models are more suitable to predict reproduction, a function of the
energy accumulated in reproductive tissue, and mortality, a function
of the energy deficits in reserve tissue (Duarte et al., 2010). This aspect
of DEB has been explored in bivalves, for example, spawning triggers
related to gonado-somatic index and external temperature (Pouvreau
et al., 2006; Bourlès et al., 2009) or preset spawning events based on
observations at given times of the year (Rosland et al., 2009; Duarte
et al., 2010).

The different energy allocation pathways in SFG and DEB are a direct
consequence of the simplification adopted in SFG models, which
studies organism physiology through the measurement of processes
that are relatively easy to measure, and not because their relationship
to body mass could be readily derived from first principles (van der
Meer, 2006). Although this simplification violates the energy conser-
vation rule, SFG modeling has been widely used because it is an easy
way to empirically estimate growth and therefore can be useful in some
applications. This shortcoming is not present in DEBmodeling, which is
Table 1
Differential equations and parameters of both SFG and DEB models. See references for para
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based on more generic principals that assumes common physiological
processes across species and life stages (Pouvreau et al., 2006).
However, one of the challenges in DEB modeling is to estimate the
basic parameter sets for different species (Pouvreau et al., 2006; van der
Meer, 2006). Therefore both approaches, SFG and DEB, present
advantages and disadvantages, and both have been successfully applied
in individual bivalve growth models (e.g. SFG: Grant and Bacher, 1998;
Hawkins et al., 2002; Brigolin et al., 2009; e.g. DEB: Bacher and
Gangnery, 2006; van der Veer et al., 2006; Rosland et al., 2009) as well
as submodels of complex ecological models (e.g. SFG: Pastres et al.,
2001; Ferreira et al., 2008; Filgueira and Grant 2009; e.g. DEB: Grangeré
et al., 2009; Maar et al., 2009, Ren et al., 2010).

A common function of both the SFG and DEB models applied in this
study is the one describing food ingestion. This is based on a Michaelis-
Menten term that regulates the amount of food that is ingested by the
organism depending on the food concentration itself. Therefore, the
half-saturation coefficient of the Michaelis-Menten term, XK, is an
important parameter for regulating the feeding response. The implica-
tions of XK on the feeding behavior are not limited to filter feeders. For
example, Gallegos (1989) used the same approach to describe the
dynamics of microzooplankton grazing on phytoplankton. This author
described the half-saturation coefficient as an indicator of the range of
food levels over whichmaximal consumption rates are maintained and
suggested a high correlation of its valuewith the initial concentration of
meter values discussion.

rms and parameters

w Mussel weight (mg C)
Dimensionless phytoplankton assimilation efficiencya,b

Ingestion rate (see text)
r Dimensionless standard respiration functiona,b

r Standard respiration rate (d−1)a,b

Dimensionless cost of growth coefficienta,b

r Dimensionless scaling constanta,b

r Temperature rate constant for standard respiration (°C−1)a,b

Temperature (°C)
wRef Mussel reference weight (mg C)a,b

r Dimensionless allometric exponent for respirationa,b

2009d)

Energy storage (J)
Assimilation rate (J d−1)
Mobilization rate of reserve energy (J d−1)

Amg Maximum surface-area-specific assimilation rate (J cm−2 d−1)c

Michaelis-Menten term (see text)
Structural volume (see text)
Arrhenius temperature function
Arrhenius temperaturec

Lower boundary of tolerance range (K)c

L Rate of decrease at lower boundary (K)c

H Rate of decrease at upper boundary (K)c

Reference temperature (K)c

Upper boundary of tolerance range (K)c

Fraction of utilized energy to somatic maintenance and growthd

G] Volume-specific costs for structure (J cm−3)c

m] Maximum storage density (J cm−3)c

Maintenance rate (J d−1)
� Volume-specific maintenance costs (J cm−3 d−1)d

Energy allocated to reproductive buffer (J)

Structural volume at sexual maturity (cm−3)c

Reproductive buffer dynamics when energy storage is too low

Mussel length (cm)
Dimensionless shape coefficientd
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chlorophyll. In the particular case of filter feeder modeling, several
studies have highlighted the need to calibrate XK according to local
conditions (Kooijman, 2006; Pouvreau et al., 2006).

In the present study, two individual growth models for the blue
mussel Mytilus edulis were applied using both approaches, SFG and
DEB, with the aim of: (1) calibrating both models based on a single
parameter, the half-saturation coefficient XK, (2) validating a set of
parameters for M. edulis using at field and laboratory data from
Norway and France, and (3) comparing the results obtainedwith both
approaches.

2. Material and methods

2.1. The SFG-model

The model is based on our earlier works (Grant et al., 1993; Grant
et al., 2007; Filgueira and Grant, 2009), which are in turn based upon
the Kremer & Nixon equations (Kremer and Nixon, 1978) and it was
developed in Matlab® (http://www.mathworks.com). A brief de-
scription of the main equations is included in Table 1. The ingestion
function has been slightly modified compared to our previous studies,
where ingestion depended on both phytoplankton and detritus
concentration. In the present study, ingestion depends exclusively
on phytoplankton concentration. The mg of carbon ingested per day
depends on the weight of the mussel:

I = Im fmi
Mw

MwRef

 !bmi

ð1aÞ

where Im is the reference ingestion rate (d−1), fmi is the dimensionless
mussel ingestion function,Mw is the weight of the mussel,MwRef is the
mussel reference weight and bmi is the dimensionless allometric
exponent for mussel ingestion. The fmi function depends on water
temperature and phytoplankton concentration (X) following a
Michaelis-Menten term:

fmi = Cmi exp QmiTð Þ X
X + XK

� �
ð1bÞ

where Cmi is the dimensionless scaling constant that assures a value of
unity at a specified mussel reference mass, Qmi is the temperature rate
constant for mussel ingestion (°C−1), T is temperature (°C) and XK is
the half-saturation coefficient (μg Chl a L−1) which is the food
concentration when ingestion rate reaches half the maximum rate.

2.2. The DEB-model

The model is identical to the DEB mussel model presented in
Rosland et al. (2009) using the same set of parameter values and it
was constructed in Matlab® (http://www.mathworks.com). A brief
description of the model is presented in Table 1, and a more thorough
presentation of themodel and the equations is given in Pouvreau et al.
(2006) and Rosland et al. (2009). In the same way as for the SFG-
model, we limit the detailed description of the model to the
formulation of the ingestion function. We have adapted the DEB
symbols and notations from Kooijman (2000), where braces {} denote
quantities expressed as per unit surface-area of the structural volume
and first derivatives with respect to time are indicated with overdots.
The energy ingestion rate p�X (J d−1) is proportional to the surface area
of the mussel:

p�x = p�Xmf gTDfV2=3 ð2aÞ

where p�Xmf g is the maximum ingestion rate per unit surface area
(J cm−2 d−1), TD is the Arrhenius temperature function and V2/3 is
proportional to the surface of the mussel expressed by the structural
volume V. As for the SFG-model, f scales the ingestion rate to the food
concentrations (X) following a Michaelis-Menten term:

f =
X

X + XK
ð2bÞ

The maximum surface-area-specific assimilation rate ({pAm} in
Table 2) is equal to the maximum surface-area-specific ingestion rate
{pXm} multiplied by an assimilation constant a of value 0.75 (van der
Veer, 2006).

2.3. Calibration of the half-saturation (XK) coefficient

The half-saturation XK coefficient (Eq. 1b and Eq. 2b for SFG and
DEB respectively) was used to calibrate the model. The auto-
calibration used a non-linear optimization algorithm (Nelder–Mead)
to search for the parameter value of XK which yielded the best fit
between model and observations. The best fit is defined as the
smallest deviation between simulated and observed mussel flesh
mass for each site, where the deviation (D) is calculated by:

D =
1
N
∑N

n = 1
Ms nð Þ−Mo nð Þj j

Mo nð Þ ð3Þ

where n is the observation index, N is the total number of observations
in each dataset, andMs andMo are simulated and observedmussel flesh
mass, respectively.

2.4. Norwegian datasets

The data are from laboratory and in situ experiments and include a
time series of size data (mussel shell length and dry flesh mass) and
environmental data (chlorophyll concentrations and water temper-
ature). The laboratory datasets are from Austevoll research station
(August 2006–April 2007, D1 to D4, following the nomenclature used
by Rosland et al., 2009 for the different datasets) while the in situ
experiments in suspended culture are from Toskasundet (August
2006–April 2007, D5), Austevoll (February 2007–December 2007,
D6) and Flødevigen (March 2007–November 2007, D7). The labora-
tory data involved serial dilution of low seston waters to examine
mussel feeding under these conditions. A more thorough description
of the mussel characteristics (weight, density, etc.), sampling scheme
through time and forcing time series can be found in Rosland et al.
(2009) and Strohmeier et al. (2009).

2.5. French datasets

These experiments were carried out in Pertuis Breton between
February 1999 and February 2000, however, only the period between
February 1999 and September 1999 was analyzed, in order to avoid
the spawning event that occurs between September and October.
Spawning events were not modeled in the present study. The time
series include size data (mussel shell length and dry flesh mass) and
environmental data (chlorophyll concentration and water tempera-
ture). One dataset corresponds to mussels that were grown in
suspended long lines (D8) and the other to mussels that were
grown in bouchots (D9 and D10, bouchots arewooden poles anchored
perpendicularly to the marine floor), the latter exposed to air 26.5% of
the time. Two simulations were carried out for mussels cultivated in
bouchots, assuming 26.5% (D9) and 0% (D10) emersion time.
Although emersion implies different metabolic pathways, no changes
were made in the model given the shorter aerial exposure (maximum
of 1.7 h) and in the interest of comparing XK values of D9 and D10
datasets under the samemodeling set up. A detailed description of the

http://www.mathworks.com
http://www.mathworks.com
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Fig. 2. Simulated (dashed and continuous lines for DEB and SFG, respectively) and observed (crosses with bars showing standard deviation) dry flesh mass (g) for the French datasets.
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experiment, culture characteristics, sampling procedure and forcing
time series can be found in Garen et al. (2004).

2.6. Sensititivity to changes in Xk

The models were tested for sensitivity to changes in the XK values
(+/− 10% of the calibrated XK). The sensitivity was measured as the
relative difference in mussel mass at the end of the model
simulations:

S =
Mdiff−Mc

Mc
� 100 ð4Þ

where Mdiff and Mc are the final mussel mass for the simulation with
calibrated and alternated XK values respectively.

3. Results

3.1. Mussel growth simulation

Both models provide a prediction of mussel growth that is in good
agreement with the observed values (Figs. 1 and 2, Table 2). For the
Norwegian datasets (Fig. 1), the simulated weight is generally within
the range of observed standard deviation. In Norwegian laboratory
experiments, the growth is slightly overestimated by the SFGmodel in
mid March (Julian day 438) in dataset D4 and by both approaches in
late February (Julian day 415) in datasets D1 and D3. Despite this
Table 2
Averaged chlorophyll content as well as optimized XK values, deviation betweenmodeled and
Eq. 3) decreasing and increasing the optimized XK by 10% in both SFG and DEB approaches

Dataset SFG

Chlorophyll XK Deviation Rela

μg chla l−1 μg chla l−1 % XK −

D1 exp. treat 1 0.66 2.78 22.80 3.98
D2 exp. treat 2 0.39 4.84 17.15 1.97
D3 exp. treat 3 0.14 6.76 14.76 0.75
D4 exp. treat 4 0.01 54.90 12.14 0.12
D5 Toskasundet 0.91 2.49 15.35 4.77
D6 Austevoll 1.17 2.93 9.98 7.20
D7 Flødevigen 1.65 0.43 36.10 6.06
D8 Pertuis Breton — longline 3.07 1.61 14.77 6.48
D9 Pertuis Breton — pole 26.5% 4.65 2.38 15.29 7.39
D10 Pertuis Breton — pole 0% 4.65 4.08 14.69 8.56
Pooled data 1.7±1.77 8.3±16.46 17.3±7.39 4.7±
overestimation in dataset D1, at the end of the simulated period in
mid April (Julian day 466) both models underestimate the mussel
weight. The same underestimation pattern at the end of the
simulation period (mid April, Julian day 466) is observed in the
Toskasundet dataset (D5), reaching an average estimated weight 35%
lower than the observed one. On the contrary, the Flødevigen dataset
(D7) is slightly underestimated at the beginning of the simulation,
betweenmidApril and late June (Julian day 102 and179, respectively).
However this trend is corrected through time, yielding a good
agreement at the end of the simulated period between observed and
modeled values. Nevertheless, these discrepancies result in the highest
deviation with the observed values of the study, a total of 36.10% and
23.93% (Table 2) for SFG and DEB respectively for the Flødevigen
dataset (D7). The averaged deviationwhen all the datasets of the study
are pooled together is 17.3% and 12.0% for SFG and DEB respectively,
indicating an overall better fit for DEB compared to SFG.

For the French datasets (Fig. 2), the growth of themussels cultivated
on longlines (D8) is well simulated by both approaches, producing all
the predicted values within the range of observations for both models,
SFG and DEB. For mussels cultivated on poles, the two emersion
simulations (26.5% and 0% for D9 and D10 respectively) are similar and
in fairly good agreement with observed values (Fig. 2) with the
exception of the period late April (Julian day 116) to mid May (Julian
day 135) when both methods overestimate the weight of the mussels.
The difference between emersion time in both datasets, 26.5% and 0%, is
reflected in the XK values, being 2.38 and 4.08 μg chla l−1 and 1.33 and
3.30 μg chla l−1 for SFG and DEB respectively. The deviations between
observed values (calculated with Eq. 3) and, relative change in weight (calculated with
for all datasets.

DEB

tive weight change (%) XK Deviation Relative weight change (%)

10% XK +10% μg chla l−1 % XK −10% XK +10%

−3.33 1.93 9.58 5.75 −4.95
−0.99 2.71 10.02 5.69 −4.82
−0.62 0.88 6.77 6.27 −5.32
−0.10 0.04 4.81 6.23 −5.28
−4.00 2.26 11.19 8.17 −6.88
−5.97 2.62 10.53 5.21 −4.78
−5.49 0.41 23.93 6.42 −5.53
−5.75 1.06 4.79 4.73 −4.33
−6.48 1.33 17.27 7.53 −6.11
−7.33 3.30 20.67 4.18 −3.86

2.94 −4.0±2.64 1.6±1.08 12.0±6.57 6.0±1.20 −5.2±0.86

image of Fig.�2


Fig. 3.Optimized XK values for DEB andSFG for datasets D1, D5–D10 and the corresponding
Type II linear regression (continuous line).

Fig. 5. Growth Rate for DEB, SFG and observations versus the chlorophyll content for
datasets D1 to D8 as well as the corresponding linear regressions (DEB: dashed line,
SFG: continuous line, OBServations: pointed line).
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estimated and observed weight indicate that the simulations for
mussels cultivated in long lines, 14.77% and 4.79% for SFG and DEB
respectively, are better than those for poles, with averaged values of
15.0% and 19.0% for SFG and DEB respectively.
3.2. Comparing XK values in both modeling approaches

A sensitivity test was carried out to quantify the effect of XK values
on growth at the end of the simulated period. Two new scenarioswere
run in each dataset varying the optimal XK value by ±10%. The final
mussel weight observed in these simulations was compared to that
observed in the optimal scenario, with differences expressed as a
relative change in weight (Table 2). The results indicate that mussel
weight is not sensitive to changes in XK values in low chlorophyll
content datasets in the SFG approach, which reflects the extremely
high estimated XK values. Given this lower sensitivity of the weight to
XK changes at low chlorophyll content (lower than 2%, Table 2),
datasets D2, D3 and D4 were not considered in the comparison of XK

from both approaches. In addition, the reproductive buffer in the DEB
model turns negative in datasets D2, D3 and D4. Given that a state
variable with a negative value is neither consistent with mass
conservation rule nor with DEB theory, these simulations have been
removed from further analysis.

The relationship between the XK values DEB and SFG can be
expressed in a statistically significant Type II linear relationship that
explains 90% of the variance (Fig. 3). The slope of the regression, 1.15±
0.164, is not statistically different than unity (t=0.933, p=0.394, Zar,
1984), indicating that both approaches follow the same pattern in the
different datasets. In addition, the intercept, 0.26±0.337, includes the
origin, indicating that the values of XK –(SFG) are not statistically
different than those of XK –(DEB).
Fig. 4. Optimized XK values for DEB and SFG versus the chlorophyll content for datasets
D1 to D8.
3.3. XK values and chlorophyll content

The optimized value of XK was analyzed according to the observed
average chlorophyll content of each dataset (Fig. 4). Datasets D9 and
D10 were not included in this analysis because they represent
situations in which the mussels were not always submerged, in which
case they can exert a bias when compared with the other datasets. In
the case of the DEB model, we were not able to determine an obvious
relationship between XK and the chlorophyll content. In the SFG
approach, the relationship could be expressed as a negative power
function; however, the significance of the regression would depend
mainly on of the low sensitivity of XK values for the three datasets, D2,
D3 and D4, with lower chlorophyll and extremely high estimated XK

values. Therefore, in order to avoid this bias, those three points were
not considered. In this new scenario and similar to the DEB model, no
significant relationships were observed between XK and chlorophyll
content.

3.4. Growth rate and chlorophyll content

The mussel growth rate for the entire study period was calculated
for each dataset based on the initial and final weights as well as the
period length and compared to the corresponding average chlorophyll
content. As in the previous section, datasets D9 and D10 were not
included in this section because they are not comparable to the others.
Three statistically significant linear regressions were obtained for
DEB, SFG and observed values (Fig. 5). Their comparison using
ANCOVA yields a common slope (ANCOVA: F=0.759, p=0.587, Zar,
1984), emphasizing the good agreement of bothmodeling approaches
with the observations.

4. Discussion

A use of both DEB and SFG approaches has often been in modeling
bivalve growth (see Introduction for references). Given that growth
integrates all the processes involved in model development, the
agreement between observations and predictions is crucial for
groundtruthing the validity of these simulations. In addition to the
obvious importance of predicting production of commercial species,
the implications of bivalves as “ecosystem engineers” (Jones et al.,
1994) position bivalve growth modeling as a cornerstone for more
complex ecological models used for ecosystem-based management
(e.g. Filgueira and Grant, 2009). SFG and DEB approaches share the
same goal, that is, to describe the energetic processes of an organism.
However, the conceptual foundation is different in each case.
Assuming that the specific hypotheses of both approaches are valid,
SFG and DEB models should be able to successfully represent the real
world, and consequently provide similar results in agreement with
the observations. Therefore, from a practical point of view, both
modeling approaches require the translation of the hypotheses into

image of Fig.�3
image of Fig.�4
image of Fig.�5


409R. Filgueira et al. / Journal of Sea Research 66 (2011) 403–410
mathematical equations and the parameterization of those equations
according to the environmental conditions.

Model parameterization is one of the most challenging steps in the
development. Recently, a number of mathematical tools have been
applied to estimate parameters. Duarte et al. (2010) designed an
objective protocol for model calibration based on a multi-scenario
analysis using different sets of parameters. An alternative approach is
the use of non-linear optimization processes that estimate the value of
a set of parameters, minimizing the discrepancies between the model
results and observed values. For example, Bacher and Gangnery
(2006) used the Nelder–Mead method implemented in Matlab® to
calibrate two parameters of DEB to simulate the growth of Crassostrea
gigas. In the same way, Rosland et al. (2009) calibrated three
parameters of DEB for different M. edulis populations in Norwegian
waters.

In this study, growth of M. edulis was modeled using SFG and DEB
approaches. Given the several ways observed in different studies and
ecosystems to trigger the spawning (see Introduction for references),
reproduction processes have been not modeled. In addition, repro-
duction might exert a minimum effect in this study because a distinct
spawning signal in terms of a distinct flesh mass reduction is not
evident in these datasets. Both models were parameterized using
available data taken from the literature with the exception of XK,
which was calculated for each dataset by auto-calibration. This
parameter was previously used as the sole basis for calibrating a
DEBmodel of growth in C. gigas (Pouvreau et al., 2006; Ren and Schiel,
2008; Bourlès et al., 2009). Both modeling approaches were able to
reproduce the general growth pattern in all datasets, although some
deviations were observed. Datasets with the lowest chlorophyll
content, D2, D3 and D4, provided a good estimation of mussel growth
in both SFG and DEB models. However, estimated XK were unrealistic,
extremely high and not sensitive in the case of SFG and generated
negative reproductive buffer in the DEB model, which is neither
consistent with mass conservation rules nor with DEB theory. For
these reasons, D2, D3 and D4 were not considered for further analysis.
In addition, neither model is able to simulate the steep growth rate
observed at the end of D1 and D5 datasets, as well as at the beginning
of D7, following the nomenclature used by Rosland et al. (2009) for
the different datasets. These discrepancies could be caused by errors
associated with these time series, the model itself or both. For
example, Strohmeier et al. (2009) found that there were no
correlation between clearance rate of mussels and temperature in
datasets D1–D5. The temperature regulation of feeding rate, which in
the DEB model is based on the Arrhenius function, may put too high
constraints on the feeding rate compared to the real system. Thus, the
lack of feeding response in the high Chl a and low temperature periods
in D1 and D5 could be due to erroneous temperature regulation of the
feeding process. Nevertheless, both SFG and DEB growth models
performed well by tuning only this single parameter, XK, providing
agreement with the observed growth datasets, as well as consistency
of XK values between both approaches. Therefore, these sets of
parameters and an optimization procedure to calibrate XK seem an
adequate way to successfully apply both modeling approaches to
these datasets. Minimizing the number of parameters that must be
estimated constitutes an important advance for future studies,
reducing complexity and uncertainties caused by overtuning the
model. In addition, the use of an optimization tool is an objective way
to calibrate the model, and avoids the need for “eyeball” estimations.

Both approaches required specific calibration to local conditions,
restricting their general application to different ecosystems. The
calibration is performed only for the half-saturation constant of the
Michaelis-Menten term that regulates the ingestion of food. This
feeding parameter requires that for higher XK values, more food is
required to reach maximum ingestion rates. This can be observed by
comparing D9 and D10, which use the same forcing time series, but
with immersion time 26.5% higher in D10, allowing the mussels to
feed longer. Consequently, a higher XK value is necessary at D10 to
compensate for the longer feeding time in order to achieve the
observed growth results. Therefore, with the exception of D9 and D10
datasets, in which the emersion variable is involved, a relationship
between food supply and XK would be expected, if the quantifier of
food was appropriate. The observed pattern between average growth
rate and chlorophyll content suggests the use of chlorophyll content
as a quantifier to describe mussel performance. In addition, this
relationship was carried out with pooled datasets from two different
environments, Norwegian fjords and Atlantic French waters, suggest-
ing that higher chlorophyll values result in higher mussel growth
independent of the studied ecosystem. However, this response should
be tested across other different ecosystems to establish further
conclusions about its general application. In addition, other charac-
teristics of the ecosystem, e.g. hydrodynamics, andmussel population,
e.g. cultured density, can affect the available food, e.g. local
chlorophyll depletion, and therefore they have to be considered in
further experimental designs.

The relationship between XK and the food quantifier should permit
the construction of a general model that does not need calibration in
order to perform in different ecosystems. Given that such a
relationship was not obtained in this study, the calibration of the
model using XK is limited to use as an empirical adjustment to a
specific environments. Although chlorophyll has been commonly
used as a variable to represent food availability and is correlated with
observed growth rate, other environmental variables can exert an
important effect on bivalve feeding and growth. Similar results were
observed in C. gigas by Pouvreau et al. (2006), who suggested that
site-specific responses are due to phenotypic adaptation in clearance
rate and selection capacities of oysters or to variation in phytoplank-
ton chlorophyll to carbon ratio. Kooijman (2006) demonstrated that
silt and other particles bivalves shunt to pseudo-feces productionmay
affect the XK value. Similarly, Ren (2009) confirmed the importance of
particulate inorganic matter in the functional response of energy
uptake by Perna canaliculus, suggesting that its inclusion in XK could
improve the estimation of ingestion rate. The effect of changes in the
chlorophyll to carbon ratio was also discussed by Ren and Schiel
(2008) and demonstrated by Grangeré et al. (2009), who used carbon
as a food level variable in simulating the growth of C. gigas. Other
quantities such as particulate organic matter, particulate organic
carbon and phytoplankton enumeration expressed both in cell
concentration and biovolume have been studied by Bourlès et al.
(2009), demonstrating that phytoplankton enumeration yields better
growth model performance than chlorophyll concentration. In
addition, the potential contribution of other food sources such as
heterotrophic plankton (Davenport et al., 2000; Trottet et al., 2008) or
detritus (e.g., Bacher and Gangnery, 2006) may be important in
bivalve nutrition.

These different approaches of quantifying food availability and the
need for site-specific calibration to simulate growth reflect the
complexity of bivalve feeding behavior. In fact, although bivalve
feeding ecology has been widely studied under controlled laboratory
conditions and in situ experiments (see review of Bayne et al., 1993),
the effect of different trophic variables as well as their interactionwith
ingestion rate is yet inconclusive. The improvement of food level
quantifiers and/or the sophistication of the functional response to
food availability directed to successfully determine ingestion consti-
tutes the future of bivalve research. This is crucial in low food
environments where themodels have greater difficulties to reproduce
the bioenergetics of the mussels. Recent model studies (Bourlès et al.,
2009) on Pacific oyster (C. gigas) showed that phytoplankton
enumeration was a better food proxy than particulate organic matter
and carbon, chlorophyll a concentration. Recent studies on mussels
(Alunno-Bruscia et al., in prep) have not revealed any clear differences
between chlorophyll a, phytoplankton enumeration or particulate
carbon as food proxies.
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