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abstract: The value of acquiring environmental information de-
pends on the costs of collecting it and its utility. Foragers that search
for patchily distributed resources may use experiences in previous
patches to learn the habitat quality and adjust their behavior. We
map the ecological landscape for the evolution of learning under a
range of conditions, including both spatial and temporal heteroge-
neity. We compare the learning strategy with genetically fixed patch-
leaving rules and with strategies of foragers that have free and perfect
information about their environment. The model reveals that the
efficiency of learning is highest when low encounter stochasticity
results in reliable estimates of patch quality, when there is no or little
temporal change, and when there is little spatial variability. This
partially contrasts with the value of learning, which is highest when
there is temporal change, because flexible strategies may track the
environmental trend, and when there is spatial variability, because
there is a need to distinguish between good and bad patches. Learning
rules with short-term memory are beneficial when patch information
is accurate and when there is temporal change, whereas learning
rules that update slowly are generally more robust to spatial
variability.

Keywords: learning, patch-time allocation, foraging, information
value.

Introduction

Foraging conditions vary in both time and space as a result
of fluctuations in physical and biotic factors. Such changes
may follow predictable patterns—for example, as they vary
throughout the annual cycle—or fluctuations can be more
stochastic. To illustrate this, imagine an arctic fox searching
the snow-covered tundra for food in early spring. If lucky,
it may encounter a reindeer that has starved to death. A
reindeer carcass represents a large but rare food package,
and to the fox such an encounter may be a highly stochastic
event. There might be periods and areas where reindeer
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are more likely to die from starvation, but would we expect
that the fox try to predict locations where starved reindeer
fall dead? Contrast this with the situation a few months
later, when the same fox feeds on eggs and chicks on a
bird cliff. Some parts of the cliff may be easier to hunt,
and different seabird species may vary in their antipredator
behavior and their timing of egg laying and fledging. Suc-
cessful encounters may now be relatively frequent and may
vary in a more systematic manner between areas and over
time. Would we predict that the fox try to learn these
patterns? And would it adjust its behavior as more birds
populate the cliff in early spring or when the chicks fledge
some months later? In this article, we present a method
for quantifying the adaptive value of learning, which we
use to map the general ecological conditions under which
learning is favored.

There are several theoretical models that describe how
resource patches are most efficiently exploited, but they
often do not explain how the forager can arrive at such
optimal behavior. Among the classics are the marginal-
value theorem, which addresses how long a forager stays
in a gradually depleting patch (Charnov 1976), and the
ideal free distribution model, which predicts how foragers
should distribute in a heterogeneous habitat (Fretwell and
Lucas 1970). Common to these two models is that they
assume that foragers are able to perfectly assess the spatial
heterogeneity and alter their behavior accordingly. For ex-
ample, the marginal-value theorem predicts that a forager
should leave a patch when the instantaneous intake rate
in the patch drops to the average intake rate in the habitat
(Charnov 1976). But how can a forager know what the
average foraging rate in the habitat is? And how does it
measure its own intake rate if the food arrives through
stochastic encounters? For this, either learning or genet-
ically coded preconceptions of the environment are
needed.

The marginal-value theorem highlights that foragers
need information on two hierarchical levels to decide when
to leave a patch: information about the current intake in
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the patch must be compared with information about the
average intake rate in the habitat as a whole. In this article,
we study how information about the patch and infor-
mation about the habitat are linked and their influence
on the evolutionary landscape of learning. Under most
natural conditions, both patch information and habitat
information are associated with uncertainty, and they pose
different but interlinked challenges. In general, models and
empirical studies of patch allocation behavior have con-
sidered only one of these information problems at a time.
The main focus has been on the way foragers use search
time and resource encounters to estimate the quality of a
patch (Oaten 1977; Iwasa et al. 1981; McNamara 1982;
Green 1984; Valone 1991; Olsson and Holmgren 1998; van
Alphen et al. 2003; Olsson and Brown 2006). Other models
have focused on the additional challenge that arises when
foragers use information on patch quality to learn about
large-scale changes in habitat conditions (McNamara and
Houston 1985, 1987; Mangel 1990; Rodrı́guez-Gironés and
Vásquez 1997; Hirvonen et al. 1999).

Acquiring information is valuable only when it leads to
behavioral changes that enhance fitness; this is the utility
of learning (Gould 1974; Stephens 1989; Dall et al. 2005).
The information that is conveyed by resource encounters
may depend on how the resources are distributed in space
and time. This is illustrated by observations of the para-
sitoid specialist Cotesia rubecula and its generalist sibling
species Cotesia glomerata, which both use a simple, non-
responsive strategy when feeding on a uniformly distrib-
uted host (Vos et al. 1998). When the generalist parasitoid
forages on a highly aggregated host species, it adjusts its
behavior on the basis of recent host encounters because
encounters convey valuable information on local resource
conditions. Information collection and use, therefore,
must be interpreted in an ecological context, by quanti-
fying the fitness value this information represents to the
forager (see Yoccoz et al. 1993).

In our model, the ecological costs of learning include
direct costs, such as increased travel to sample more
patches, but also opportunity costs: during the extra time
the forager travels, it does not forage, and it may risk
leaving a good patch prematurely. Sampling costs typically
increase when the forager needs to travel far between
patches or when patch quality varies so much that the
forager needs to visit many patches to obtain a reliable
estimate of the resource level in the habitat. Despite being
simple mechanisms, such ecological costs of gathering in-
formation are seldom considered explicitly in foraging
models (but see Eliassen et al. 2007; Stephens 2007). Most
models have instead reflected a fixed investment in cog-
nitive and sensory machinery by assuming that learning
costs are independent of the ecological conditions or by

assuming a constant perception error (e.g., Richards and
de Roos 2001; Collins et al. 2002).

The emphasis given to new experiences and the rate of
forgetting older ones may represent adaptations to char-
acteristics of the natural environment (McNamara and
Houston 1987; Mangel 1990; Hirvonen et al. 1999; Schac-
ter 1999). The ability to modify behavior on the basis of
experience shows large genetic variability between popu-
lations and species (Dukas 2004). In a recent study on
bumblebees, learning speed varied between colonies by a
factor of nearly five, and this variation directly affected
foraging performance (Raine and Chittka 2008). In Dro-
sophila, differences in larval foraging mode and learning
abilities are linked to a natural polymorphism in a single
nucleotide (de Belle et al. 1989). “Rover” larvae are more
mobile than the “sitter” type and have superior short-term
learning performance but poorer long-term memory.
These characteristics may be adaptations to variable and
more stable environments, respectively (Mery et al. 2007).
Evolutionary changes in memory characteristics and learn-
ing rates may also occur within a few generations in lab-
oratory populations (Mery and Kawecki 2002).

The dynamic structure of the costs and benefits of learn-
ing and the presence of genetic variation in learning abil-
ities beg the question, Under what ecological conditions
should enhanced learning abilities evolve? The value of
learning is generally assumed to be highest in variable
environments, whereas the process of information acqui-
sition relies on some persistence in order to be efficient
(Eliassen et al. 2007; Stephens 2007). We present a frame-
work in which the costs of learning emerge from active
sampling behavior and fitness benefits may result if the
forager can utilize the acquired information to alter its
behavior. We compare a set of strategies that vary in the
patch and habitat information that they use. Under dif-
ferent environmental conditions, we can thereby quantify
the strength of selection in favor of learning and the fitness
potential for improving patch or habitat assessment rules.
We ask, Under what conditions would we predict that a
forager should try to learn differences among patches or
trends over time? How much emphasis should learners
put on recent, as opposed to past, experience? In short,
we try to map the ecological landscape for the evolution
of learning in foraging behavior.

Model Description

We model a forager that searches for resources distributed
in well-defined patches within the habitat. Time is divided
into discrete time steps in which individuals either search
for resources in a patch or move between foraging patches.
By harvesting a patch, the forager reduces the local re-
source level, thus decreasing the probability of further re-
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Figure 1: The patch assessment problem: resource level as a function of
a forager’s search time in a patch (solid line). Habitats differ in encounter
stochasticity: for A, 0.5 for B, and 0.1 for C. The dashed linej p 1.0
shows the resource level r∗ at which a prescient forager, having complete
and free patch information, leaves the patch. The dotted line shows the
optimal search time t∗ after which a constant-time forager leaves (rep-
resenting evolved static behavior). An assessment forager will leave the
patch whenever the time to accumulate one resource unit (indicated by
the alternating gray and black line along the X-axis) exceeds the patch-
leaving threshold t.

source encounters. Individuals do not interact, so resource
depletion in a patch is unaffected by other foragers. Be-
havior determines the long-term intake rate, and we use
the energy gain during a season of constant length as the
fitness measure. With this model, we investigate the value
of learning by studying patch-leaving strategies that differ
in their use of information.

We focus on foragers that use resource encounters to
estimate patch quality and integrate this information to
track changes in mean resource conditions in the habitat.
Following the logic of the marginal-value theorem, for-
agers should leave a patch when they have depleted it to
a state where resource encounters would be higher else-
where. Patch-leaving decisions are based on the time n it
takes to accumulate one unit of resources. When n exceeds
a patch-leaving threshold t, the forager leaves the patch:

stay if n ! t
.{leave if n ≥ t

When there is one random and independent search per
time step, this is identical to a giving-up-time (GUT) rule
(e.g., Iwasa et al. 1981; Green 1984). When food items are
large, the time it takes to accumulate a given amount of
resources will vary, and n will be highly stochastic. A simple
GUT rule may therefore arrive at suboptimal patch-leaving
decisions in highly stochastic environments (Oaten 1977;
Iwasa et al. 1981; Green 1984). When food items become
infinitely small, food intake approaches a constant flow,
with little or no variance in n. Between these two extremes
is a continuum of foraging rates from highly stochastic to
deterministic and rate based. Stochasticity thus affects the
information quality of n and thereby influences a forager’s
ability to assess the current resource level in a patch (fig.
1).

Behaviors such as patch residence times and travel fre-
quencies emerge from the patch-leaving strategies. There
are no metabolic or predation costs (for effects of pre-
dation on learning, see Eliassen et al. 2007). For every
parameter combination, results based on the simulated
behavior of 2,000 individuals over a foraging season of
4,000 time steps are shown. We study strategies that vary
in the way they use information and differ in their access
to free information. By comparing the performance of
these strategies, we investigate the emergent parameters of
the learning rule and quantify the potential value of in-
formation and learning in different ecological settings.

The Foraging Habitat

We study foraging in different ecological settings by letting
patches vary along three ecological dimensions.

1. Temporal change. In many natural systems, resource

conditions change in a consistent manner as seasons pro-
gress, for instance, because of prey growth, temperature,
or precipitation. We assume that the average resource level

changes continuously throughout the foraging periodR(t)
by an increment g every time step t:

R(t) p R � gt,0
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where R0 is the mean resource level at the start of a season.
The linear trend lasts throughout the whole season, and
we vary the rate and direction of the temporal trend.

2. Spatial heterogeneity. Patches in the habitat vary in
resource level according to a normal distribution. With a
constant variance-to-mean relationship e, the resource
level in an unexploited patch i at a time t is

�R (t) p R(t) � Z �R(t),i i

where Zi is a random variable with standard normal dis-
tribution (picked only once and characteristic of each
patch i).

3. Stochasticity in resource encounters. A forager’s prey
intake may grade from almost constant flow (e.g., an aphid
feeding on nectar) to highly stochastic resource encounters
(such as the fox searching for reindeer carcasses). We con-
sider different resource environments along this contin-
uum by letting the resource be distributed from few and
large items to many and small. The total amount of energy
in the environment remains the same, and in a given hab-
itat all items are of equal value q. We assume handling
time to be proportional to energy content q and that a
forager can handle a maximum of food items perN p 1/q
time step. Each time step is therefore divided into N in-
dependent searches, and the maximum energy that can be
obtained in a time step is 1.

The probability that the forager will encounter a re-
source in each of its N searches depends on the current
resource level ri(t) and the search efficiency a (Mangel
2006):

p(r (t)) p Pr (encounter; r (t))i i

�ar (t)/Nq �ar (t)i ip 1 � e p 1 � e .

The resource level in patch i at time t is r (t) p R (t) �i i

after a forager has encountered k units of resource. Tok
retain the numerical approximation of the discrete-time
model, the encounter probability is the same for all N
searches within a time step. The time to accumulate a
certain amount of resources will be more variable when
foragers search for larger items (q close to 1; fig. 1). This
is because the number of resources x encountered during
a time step follows a binomial distribution, with N trials
and probability of success . The variance in the num-p(r (t))i

ber of encounters is hence . For a givenNp(r (t))[1 � p(r (t))]i i

resource level ri(t), the variance in resource intake I will
be proportional to q:

1
2Var (I) p q p(r (t))[1 � p(r (t))]i i( )q

p qp(r (t))[1 � p(r (t))].i i

Hereafter, we denote encounter stochasticity .1/2j p q

Obtaining Patch Information

Foragers that adjust their patch residence time to the re-
source level in the patch need to update their information.
We consider two types of patch information.

1. From encounters. Assessment foragers use the time n
it takes to accumulate one resource unit (qN) to estimate
patch quality. Since foragers randomly search for food, n
will, on average, decline when there are more resources in
a patch. In environments with large food items of one
resource unit ( ), n equals the time between resourceq p 1
encounters. For , the search time n is summed overq ! 1
N successful encounters (fig. 1).

2. Known. Prescient foragers (sensu Valone 1991) have
full and freely available information about the current re-
source level.

Obtaining Habitat Information

To make a decision whether to leave a patch, a forager
compares its patch information with a leaving threshold.
We consider three ways in which foragers arrive at this
threshold.

1. Genetically fixed. Foragers may use a genetically in-
herited patch-leaving threshold that remains constant
throughout the whole foraging season. For every param-
eter combination, we calculated the fixed patch-leaving
threshold tT that resulted in the best average performance,
using stochastic dynamic programming (Houston and Mc-
Namara 1999; Clark and Mangel 2000; details in the ap-
pendix in the online edition of the American Naturalist).

2. Learned. Learners may estimate changes in resource
conditions by accumulating patch quality information. A
linear-operator rule (McNamara and Houston 1987; Man-
gel 1990) determines how past and present information
are weighted relative to each another. The new estimate
( ) is a weighted average of the previous estimate (tp)tp�1

and the average time between encounters in the recent
patch, including travel time :v

k
1

t p (1 � g)t � g v � n .�p�1 p j( )k jp1

The learning factor g determines the relative weight given
to new experiences, k is the total resource intake in the
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Table 1: Foraging strategies with different levels of patch and habitat information

Patch information

Habitat information

Genetically fixed Learned Known

Ignored Constant time (C)
From encounters Fixed threshold (T) Learner (L) Farsighted (F)
Known Fixed prescient (PT) Prescient learner (PL) Omniscient (O)

patch, and nj is the search time to accumulate each resource
unit. Information gathering and foraging overlap, but
learners often emphasize patch sampling early in the sea-
son and apply this information later to enhance foraging
performance (Eliassen et al. 2007).

The initial patch-leaving threshold t0 and the learning
factor g are assumed to be genetically inherited traits
adapted to the prevailing environmental conditions. We
determined the parameter combination of t0 and g that
maximized lifetime resource intake by numerical simu-
lations. Note that with no learning ( ), the strategyg p 0
is identical to a fixed-threshold rule with .t p tT 0

3. Known. Farsighted foragers do not estimate the re-
source level in the habitat but receive free information
about the best patch-leaving threshold tF(t) when they
enter a new patch at time t. We call them farsighted because
they have free long-range information about their envi-
ronment. We find the optimal tF(t), which maximizes the
forager’s expected future resource intake, by using sto-
chastic dynamic programming (details in the appendix).

The Behavioral Strategies

We quantify the value of learning as the difference in for-
aging performance between (1) a fixed-threshold forager
that compares the required time to encounter one resource
unit with an evolved, static patch-leaving threshold and
(2) learners that perform the same local patch assessment
but learn from past experiences and estimate habitat con-
ditions (see Stephens 1989). Foragers may potentially im-
prove the estimation method for both patch quality and
habitat averages, and we assess the scope for improvement
by comparing the foraging performance of learners with
that of foragers that have access to free information (table
1 and, in the online edition of the American Naturalist,
table A1). As an upper limit, the omniscient strategy, which
has free information on both patch and habitat conditions,
represents the best possible behavior in a given environ-
ment. Strategies with other combinations of patch and
habitat information are given in table 1. Computational
details on how to calculate the different strategies are pre-
sented in the appendix.

Results

The costs and benefits of information acquisition are not
imposed in the model but emerge from ecological pro-
cesses. We first evaluate how different patch-leaving strat-
egies perform in environments that vary in levels of en-
counter stochasticity and spatial heterogeneity. Of special
interest is the patch assessment strategy that can acquire
information on resource conditions through regular for-
aging behavior. When average resource conditions vary
over the foraging season, patch information can be used
to estimate changing habitat conditions. This learning
challenge is our next focus. Finally, we explore when learn-
ing strategies may evolve along the general ecological di-
mensions of spatial variability, encounter stochasticity, and
temporal trends.

Patch Information

For high encounter stochasticity, the time it takes to ac-
cumulate a given amount of resources may deviate con-
siderably from expectations (fig. 1A). This reduces the
quality of patch information that foragers may obtain.
When , the assessment rule equals a giving-up-timej p 1
(GUT) rule and has relatively poor performance (fig. 2).
In contrast, when stochasticity is low ( ), patch as-j K 1
sessment approaches a rate-based strategy (fig. 1C). Under
these conditions, a forager’s performance is close to that
of a prescient forager (fig. 2), which knows the exact re-
source level in the patch. Between these two extremes, the
performance of the patch assessment rule decreases toward
higher encounter stochasticity (fig. 2). It might seem sur-
prising that a strategy that uses information (assessment
foragers) performs worse than an ignorant strategy (con-
stant-time foragers). Flexible strategies that use informa-
tion may, however, make mistakes. Under high stochas-
ticity, the efficacy of assessment is low and mistakes are
frequent (fig. 3A).

The value of patch assessment not only is influenced
by the risk of making mistakes (fig. 3A) but also depends
on the utility of the acquired information. The more var-
iation there is among patches, the more important is it to
discriminate between good and poor patches (fig. 3B). As
a consequence, the assessment strategy is more profitable
in heterogeneous environments (high spatial variability)
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Figure 2: Effect of encounter stochasticity: foraging performance of fixed-
prescient (dashed line), fixed-threshold (solid line), and constant-time-
rule (dotted line) foragers in a temporally stable habitat ( ,R p 30 e p

). All strategies use optimal parameter values, so the difference between2
them is due to information quality and information use. The value of
patch assessment is indicated by the dark gray area, while the light gray
area shows the potential benefit of improving the patch assessment rule.

Figure 3: Role of patch assessment in foraging efficiency . The value of obtaining patch information in a temporally stable environment is a function
of encounter stochasticity j and spatial heterogeneity e ( ). In A, the efficacy of assessment is given as the performance of fixed-thresholdR p 30
foragers relative to that of fixed-prescient foragers with full patch information. In B, the potential utility of full patch information is the difference
between fixed-prescient and constant-time foragers. In C, the realized value of patch assessment is the performance of fixed-threshold foragers
relative to that of constant-time foragers. Patch assessment could potentially evolve for combinations of encounter stochasticity and spatial variability
above the zero isocline (C, thick line). The white dotted line marks the spatial variability used for the results presented in figure 2. The contour
plots are based on average performance of 2,000 individuals tested for each of 182 parameter combinations of e and j. For details on strategies and
concepts, see table 1 and, in the online edition of the American Naturalist, table A1.

and when resources are encountered at a regular rate (low
encounter stochasticity; fig. 3C).

Habitat Information

We now turn to the second property of the patch-leaving
decision: the forager’s perception of conditions in the hab-

itat. Because the model environment is constant between
generations, genetically fixed strategies may represent per-
fect adaptations. We therefore allow the resource levels
within the habitat to show a seasonal trend. It is here that
learning from past patch experiences may play a role. Our
focus is foragers that use the assessment strategy to esti-
mate the resource level in a patch and then compare this
estimate with different sources of habitat information. The
best such strategy is that of the farsighted forager, which
has free and exact information about the average habitat
quality. As patches become better over time, this forager
will reduce its patch-leaving threshold because it then pays
to stay only for the initial harvest period and then leave
for an unexploited patch (fig. 4). In contrast, learning
foragers estimate these long-term changes from foraging
experiences and update their strategy accordingly; their
patch-leaving thresholds are similar to those of farsighted
foragers but deviate notably early in the season, when
patch-sampling effort is most pronounced (Eliassen et al.
2007). Learners thus invest travel time (lost opportunity)
when patches are less good to optimize behavior later in
the season, when foraging rates are higher (improved util-
ity). This also explains why learning is not adaptive in this
model when resources decline over time: early patch sam-
pling then is costly, and the linear-operator rule is out-
performed by fixed-threshold strategies.

With more stochasticity (j), each resource encounter
provides less-accurate patch information, which necessi-
tates repeated sampling. It becomes advantageous to stay



484 The American Naturalist

Figure 4: The habitat information problem: patch-leaving thresholds of learning (solid line), fixed-threshold (dotted line), and farsighted foragers
(dashed line) as functions of time in the foraging season. The three panels represent habitats with different resource encounter stochasticity j. The
average resource level in the habitat increases with time ( , , , , , ). On the contour plot in theg p 0.01 e p 0 R p 10 a p 0.01 v p 25 T p 4,0000

background, the intensity of the gray shading increases with long-term intake rate of foragers utilizing that patch-leaving threshold at that time of
the season (fitness landscape).

Figure 5: Value of learning and scope for improvement: long-term intake
rates of omniscient (dotted line), farsighted (dashed line), learning (solid
line), and fixed-threshold (dash-dotted line) foraging strategies as func-
tions of encounter stochasticity. The value of learning (dark gray area)
and the potential value of improving patch (light gray area) and habitat
(hatched area) information quality are found as the difference in resource
intake between foragers utilizing various levels of environmental infor-
mation (table A1 in the online edition of the American Naturalist). Re-
source conditions change temporally through the foraging season (g p

, ), but there is no spatial variance among patches ( ).0.01 R p 10 e p 00

a bit longer (fig. 4), as opposed to leaving a potentially
good patch too early. Low encounter stochasticity poten-
tially yields higher intake rates, but in this environment
intake rates drop more quickly if the patch-leaving strategy
deviates from the optimal threshold (fig. 4).

Integrating Patch and Habitat Information:
The Role of Learning

The value of learning depends on (1) the accuracy of patch
assessment, (2) the opportunity cost related to information
sampling, (3) the proficiency of the learning rule, and (4)
the utility of updated information. The importance of
these elements can be interpreted from comparisons with
a nonlearning strategy that assesses patch quality but uses
a fixed patch-leaving threshold and with the omniscient
strategy that represents the optimal behavior uncon-
strained by information.

1. When the accuracy of patch assessment is high (low
encounter stochasticity), the performance of the learning
strategy will approach that of omniscient foragers (fig. 5).
With increasing encounter stochasticity the value of learn-
ing decreases, mainly because of poor patch assessment,
at least when spatial variability is low (figs. 5, 6).

2. The opportunity cost increases with spatial variability
because more patches must be sampled to obtain a reliable
estimate of the average habitat conditions (fig. 6A). There
is hence a trade-off between the quality of the learned
habitat information and the time spent traveling to collect
it (Eliassen et al. 2007). In much the same way, poor patch
estimates select for longer memory records, so that ex-
periences are averaged over more patches (fig. 6B). The
opportunity cost is also influenced by the temporal change

in resource conditions. It will be low when sampling can
be done during low resource availability early in the season
to improve foraging rates later, when foraging conditions
are better (fig. 6C).

3. The proficiency of the learning rule is high when the
integration of patch experiences into a representative es-
timate of the habitat quality is straightforward. That is the
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Figure 6: An adaptive landscape for the evolution of learning. The value of learning (A, C) and the weight given to recent information, that is, the
learning factor g (B, D), as functions of three ecological variables: (1) the level of encounter stochasticity j (X-axis), (2) the spatial variance e among
resource patches in the habitat (Y-axis in A, B), and (3) the level of temporal change g through the foraging season (Y-axis in C, D). Learning has
no positive effect on fitness for combinations of the environmental parameters in the white areas, and foragers adopt an innate fixed-threshold
strategy. In A and C, the labels indicate the relative difference in long-term intake rate between learners and fixed-threshold foragers; the value of
learning increases with the intensity of the gray shading. In B and D, adaptive-learning factors are given, with dark gray corresponding to high
learning factors. Each contour plot is based on the average performance of 2,000 individuals per strategy tested for 182 parameter combinations
( , , in A, B; in C, D). Along the white dotted line, the spatial and temporal variances are the same.v p 25 a p 0.01 g p 0.01 e p 0.5

case when encounter stochasticity is low (each patch as-
sessment is close to the true value for that patch) and
spatial variability is low (each patch estimate is close to
the average habitat value). Under these conditions, the
learning factor is high and foragers quickly adjust their
habitat estimates (fig. 6B). The proficiency of the learning
rule is also high when there is little temporal change (the
habitat estimate requires slower updating). However, when
there is no temporal change, a fixed strategy can do better,
and there is no value of learning (fig. 6D).

4. The utility of updated habitat information generally
increases with the level of temporal change (fig. 6C). The
utility of information can be interpreted as the gradient

in intake rates that updated information will allow a for-
ager to climb (compare the fixed threshold with the other
two strategies in fig. 4). Possessing accurate information
is most valuable when the optimal patch-leaving strategy
is constantly changing, and deviating from the best strategy
involves high fitness costs. Therefore, learning factors in-
crease as the temporal change becomes stronger and more
important to keep track of.

Combining these four elements, we arrive at several
predictions.

1. The integration from patch to habitat information
(the learning process itself) is most proficient when the
utility of information is low, which means that the habitat
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information can readily be replaced by a fixed-threshold
strategy. That the learning process is efficient is therefore
not a good predictor of when the learning process is im-
portant or likely to evolve.

2. Learning factors generally increase when the temporal
change is more rapid, because only the most recent esti-
mates will reflect the current environmental conditions
(fig. 6D). Spatial variability and encounter stochasticity
will, on the other hand, introduce noise into the learning
process and generally favor lower learning factors to av-
erage over more experiences (fig. 6B).

3. The major difficulty in integrating from patch to
habitat information depends on the quality of patch in-
formation, as can be seen from the areas for potential
improvement in figure 5. The performance of the patch
assessment rule grades from inaccurate in highly stochastic
environments to relatively accurate in environments with
low stochasticity. When patch assessment is difficult, for-
agers need to sample more patches (increased opportunity
costs) and possibly reduce their rate of information up-
dating (reduced proficiency). The utility of updated habitat
estimates also decreases, as illustrated by the performance
of the farsighted foragers (fig. 5), since foragers are unable
to take advantage of accurate habitat information when
encounter stochasticity is high. As a corollary, one would
expect to find a range of adaptations that improves the
mechanisms by which foragers estimate the quality of a
patch, whereas there is less scope for improvement in the
integration from patch to habitat information (see
“Discussion”).

4. Learning is most valuable when it is optimal to alter
the patch-leaving strategy because of temporal changes in
resource conditions (fig. 6C). In environments with more
spatial variability, foragers obtain less accurate estimates
and consequently make more suboptimal patch-leaving
decisions. The costs of departing from the optimal patch-
leaving threshold is especially high in the least stochastic
environments (fig. 4). As spatial variance increases, for-
agers consequently adopt a fixed strategy in these envi-
ronments (fig. 6B). This illustrates that it is not the quality
of information per se that determines the value of utilizing
it but rather the fitness consequence of responding to that
information.

Discussion

The learning strategy must first assess the resource level
in the patch and then combine several patch assessments
into one expectation value for the habitat as a whole. There
are two advantages of modeling these steps mechanistically.
First, the indirect costs of learning, such as more travel
and lost foraging time, emerge from individual behavioral
decisions, depending on environmental conditions. This

contrasts with earlier models, which have commonly im-
posed fixed information costs or used nonadaptive learn-
ing rules to study how forager distribution or performance
may be affected by limited knowledge (e.g., Green 1984;
Bernstein et al. 1988; Collins et al. 2002). Second, we have
shown that learning does not necessarily evolve when it
is easy, cheap, or fast; learning also must provide an ul-
timate fitness benefit that more than outweighs the costs.
This extends earlier conceptual models that focused on
how foragers most efficiently estimate environmental pa-
rameters but without considering the utility of that
information or the optimal level of uncertainty, given
sampling costs (McNamara and Houston 1985, 1987; Rod-
rı́guez-Gironés and Vásquez 1997; Hirvonen et al. 1999).
By directly modeling the mechanisms, our approach can
combine the efficiency and utility aspects of learning.

The indirect costs and the ultimate benefits of infor-
mation acquisition change in complex ways with different
types of environmental variability. Whether learning is
adaptive depends on all three ecological dimensions we
tested: stochasticity in resource encounters, spatial vari-
ability between patches, and temporal trends in the habitat
as a whole. Our modeling framework also highlights what
part of a foraging strategy has the greatest potential for
improvement; in other words, theory can show us where
we should particularly look for evolutionary adaptations.

The Value of Information

By optimizing foraging strategies that had some or all of
the information for free, we could quantify the value of
that information: How much did foraging improve if the
forager had accurate patch or habitat information? In the
case with no spatial variability, the most valuable infor-
mation was the patch assessment (fig. 5). If patch infor-
mation is better, it would also be easier to estimate the
correct habitat value. In principle, there are two ways in
which patch assessments can be improved. A forager may
utilize information on search times and resource encoun-
ters in a more efficient way, for instance, by using Bayesian
updating rules (Iwasa et al. 1981; McNamara 1982; Olsson
and Holmgren 1998; Olsson and Brown 2006). Animals
may also use other sensory cues to assemble more-accurate
information from several sources (Persons and Uetz 1996;
van Alphen et al. 2003). These cues can be environmental
characteristics that are correlated with patch quality, such
as habitat features or co-occurring species, or social cues
based on the behavior of conspecific foragers (Valone 1989;
van Alphen et al. 2003). Integrating information from dif-
ferent sources could be especially rewarding at high levels
of encounter stochasticity.

The small difference in foraging performance between
farsighted and learning foragers represents the fitness ben-
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efit that can potentially drive evolution toward better
learning strategies. Although the linear-operator rule is
very simple, there was thus little scope for replacing it with
a more sophisticated learning rule. This partially contrasts
the recent findings of Groß et al. (2008), who showed that
the performance of linear-operator rules may deteriorate
over time in a multiarmed-bandit decision problem. In
their model, the drop in performance was due to reduced
frequency of sampling alternative options. We do not ex-
pect the same effect in our model, however, because for-
agers directly affect resource levels in their patches and
will switch between locations as resources become de-
pleted.

Learning Strategies and Memory

Studies in cognitive psychology illustrate how the rate of
information loss may adaptively vary in response to the
temporal characteristics of the problem an individual
needs to solve (Anderson et al. 1997; Jones and Sieck
2003), and our modeling shows that different ecological
conditions select for different learning rates. Rapid tem-
poral change makes recent patch visits more informative
and therefore favors short-term memory (see also Mc-
Namara and Houston 1987; Hirvonen et al. 1999). Spatial
heterogeneity breaks down this temporal correlation and
selects for longer memory records (see also McNamara
and Houston 1987; Nishimura 1994). Learning incurs
lower costs when foragers can easily access information of
high quality but has higher value when simple, inflexible
strategies perform poorly. As Stephens (2007) notes, learn-
ing is an adaptation to predictability as much as it is an
adaptation to change.

In general, our results indicate that updating rules rap-
idly, which puts an emphasis on recent experiences, may
be most prevalent in nature. We arrive at this conclusion
because learning rules that are updated slowly perform
best in relatively stable environments (see also Hirvonen
et al. 1999; Fortin 2002), where the value of learning is
generally low. In such cases, keeping a long-term memory
may impose costs that outweigh the benefits of learning
altogether (Mery and Kawecki 2005). Empirical studies
show that patch time allocation is often influenced by
recent experiences of travel time (e.g., Kacelnik and Todd
1992; Cuthill et al. 1994; Thiel and Hoffmeister 2004) and
patch quality (e.g., Wildhaber et al. 1994; Schilman and
Roces 2003; Outreman et al. 2005; Thiel and Hoffmeister
2006). In natural environments, the distribution of re-
sources may vary on multiple scales (Fauchald 1999);
hence, heavy reliance on recent experiences may be an
adaptation to an environment with strong temporal cor-
relation between similar foraging events (Real 1991; Jones
and Sieck 2003). When foragers adjust only slowly to tem-

poral change, behavioral alterations are more subtle and
harder to observe (Cuthill et al. 1994; Thiel and Hoff-
meister 2006). In such cases, it requires intensive study
over longer time periods to achieve the statistical power
needed to differentiate slowly updating behavioral trends
from fixed strategies. This also contributes to explaining
why slow learning is poorly represented in the literature.

Assessment and Errors

According to Weber’s law, a forager will show larger var-
iance in memorized searching times as time intervals in-
crease (Shettleworth 1998). This would enhance the prof-
itability of mechanisms relying on estimates over shorter
time periods, because the forager can more accurately dis-
criminate time differences (Stephens 2002). In the model,
we assumed that foragers were able to assess search time
perfectly. This is an obvious simplification that may affect
the relative profitability of the different patch assessment
mechanisms. In particular, the constant-time rule that re-
lies on the total residence time in the patch would be more
prone to errors than the patch-leaving rule, which instead
uses time between resource encounters.

All strategies, even the constant-time rule, are adapted
to some aspects of the resource conditions in the habitat.
Our modeling environment has seasonal variation in re-
source levels but no temporal change or variability on
longer timescales. In this way, the inflexible constant-time
foragers and the nonlearning fixed-threshold strategy will
be perfectly adapted to the average habitat conditions
within a season, given enough time for adaptation to take
place. Assuming that all innate strategies are perfectly
adapted to an environment that does not vary between
years places the cost of information on the evolutionary
timescale. Experimental studies, however, indicate that in-
nate preferences may be hard to obtain, in which case the
advantage of learning may be more permanent (Mery and
Kawecki 2004). Learning may also be profitable when re-
source conditions change between generations and may
have a transient advantage under directional selection to-
ward new optimum strategies (Stephens 1993; Papaj 1994).
Together, these observations suggest that our estimated
value of learning is conservative.

To summarize, our analysis illustrates that even though
a forager is capable of learning, it may not be beneficial
to explore all types of resource patterns or learn under all
ecological conditions (see also Stephens 1991, 1993; Nishi-
mura 1994). We have also shown the importance of in-
cluding the mechanisms by which information is gathered,
interpreted, and remembered. Understanding how these
mechanisms operate and their adaptive value may give
further insights into how and when to learn from ecolog-
ically emerging information.
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