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We  present  a  new  individual-based  approach  to  model  populations  of largely  inhomogeneous  densities.
By  monitoring  different  populations  at a spatial  scale  which  is  inversely  proportional  to the  maximum
expected  concentration,  the  Scaled  Subspaces  Method  solves  the problem  of demographic  explosion  of
the most  numerous  species.  It is intuitively  similar  to  the  experimental  practice  of changing  the  magni-
fication  of  a microscope  depending  on  the  size-class  of organisms  inspected,  and  retains  the possibility
for  uniform  biological  descriptions  across  scales.  We  use this  method  to  simulate  a pelagic  microbial
mixotrophic  food  web,  where  the  most  abundant  species  has  population  densities  up  to  five orders  of
magnitude  higher  than  the  rarest  species.  The  model  generates  biologically  plausible  and  highly  con-
sistent  predictions  of  biomass  distribution  across  this  density  spectrum.  Individual-based  community
models  are  affected  by  the  possibility  of  artificial  extinctions.  We  discuss  theoretically  and  confirm
experimentally  this  possibility,  and  show  that  this  problem  can  be overcome  through  the  use  of  large

populations,  genetic  mutations,  and periodical  random  reintroduction  of  lost  species  or  traits.  We  also
show  that  the  proposed  individual-based  model  produces  the  same solutions  as  a state-variable  model
of the  same  ecological  scenario.  This  indicates  that  the  predictions  of  the  two  models  are  independent
of  implementation  issues,  and  allows  using  them  interchangeably  according  to  convenience.  Overall,  the
study proves  the  viability  of  the  Scaled  Subspaces  Method,  and  provides  useful  insights  on  its functioning
and  parameterization.

© 2013 Elsevier B.V. All rights reserved.
. Introduction

Modelling biological systems often implies the representation of
roups of organisms of different size, density, and behaviour. The
iterature can be broadly divided into two main approaches: the
tate-variable (Grünbaum, 1994; Woods, 2005) and the individual-
ased (DeAngelis and Gross, 1992; Grimm and Railsback, 2005)
ethods. These two approaches have a long history that has roots

ack in the field of fluid dynamics modelling, and are characterised
y a complementary view of how to represent complex systems.

State-variable models regard populations as homogeneous

ggregates, and describe the development of their density distribu-
ion (Grünbaum, 1994). According to the state-variable approach,
he biological agents are whole functional groups of individuals
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(Woods, 2005). The dynamics of the system are usually described
using differential equations that are parameterized with biological
traits estimated from population averages.

Individual-based models are founded on the basic assumption
that organisms are not identical, and that their diversity affects the
population dynamics (DeAngelis et al., 1980, Beyer and Laurence,
1980; Adioui et al., 2003; Grimm and Railsback, 2005). In the
individual-based approach, biological systems are resolved at the
level of organisms, which are the agents (Woods, 2005). The diver-
sity in individual behaviour is determined by a number of traits,
some of which may  be transmitted to future generations through
the offspring (Huse and Giske, 1998; Giske et al., 2003). The dynam-
ics of the system emerge from the evolution of and interactions
between the single agents. The life history of each organism is
described by ordinary or stochastic differential equations that
determine the trajectory in space and time of a number of state
parameters (DeAngelis and Gross, 1992).
The strength of the state-variable approach is its relatively low
computational complexity, and the ease of representing popu-
lations of largely diverse density. For this reason, state-variable
models have been most common in the literature up to now
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Woods et al., 2005; Hellweger et al., 2007). The success of this
pproach is based on how well three fundamental assumptions
re verified, namely, that all individuals can be represented by the
verage values of their traits, that they experience uniform con-
itions, and that the population is large enough that the effects
f demographic stochasticity are negligible. Unfortunately, homo-
eneity in the environmental conditions of biological systems is
sually encountered only at small spatial scales, which can host
nly small populations (Donalson et al., 2004). Other drawbacks
f state-space models are that they do not consider intra-group
ariability, which is known to play an important role in shaping
cosystems (Grünbaum, 1994; Loreau et al., 2001; Thygesen et al.,
007). Lack of intra-group resolution also prevents the encoding
nd evolution of genetic traits. In the case of more complex bio-
ogical models, it may  also be difficult to express analytically the
ystem processes and population behaviours (Hellweger and Bucci,
009).

The strength of the individual-based approach is that it accounts
or individual variability (Grimm and Railsback, 2005), and that
he traits are explicitly represented and may  be transmissible
etween generations (Huse and Giske, 1998; Giske et al., 2003).
he individual-based approach also allows the life history of orga-
isms to be modelled. It is most useful when intra-group diversity

s important for understanding community and system dynamics,
nd in cases where the system dynamics can be shaped by events at

 small or individual scale (e.g. a mutation event in a virus spreading
odel). It is also useful for representing complex processes, as the

ystem dynamics become an emergent property of the model. The
ain drawback of the individual-based approach is the possibility

f demographic explosion, which may  quickly exhaust the avail-
ble computing resources. Additionally, trait-based models need a
tatistical interpretation of the results.

The problem of unmanageably large populations is unavoidable
hen individuals of largely different size scales are to be repre-

ented. For example, in an ecosystem model simulating an area
arge enough to host a statistically relevant number of elephants,
he number of ants would count to billions. Large numbers are
lso needed to simulate individuals in populations undergoing high
ortality rates, such as marine larvae (DeAngelis et al., 1980; Beyer

nd Laurence, 1980) and plant seeds.
The simplest approach to deal with populations of largely dif-

erent size is to use individual-based representations only for the
arget species, and use a state-variable representation for their

uch smaller and more numerous prey and any other relevant
unctional group (Megrey et al., 2007). This approach is suitable
hen only a single component of the ecosystem is the focus of the

nvestigation. To study many ecologically and economically impor-
ant species, whole or large parts of the ecosystem must be included
t the level of individual interactions. A cost/benefit analysis is also
eeded to decide at which trophic levels to restrict the representa-
ion of intra-group diversity and traits (Fath and Jørgensen, 2001).
n the case where ecological dynamics may  impose trait changes
n populations of highly varying abundances (e.g. Thingstad, 2000,
oshida et al., 2003, Waite and Shou, 2012), a method that repre-
ents a sufficient but manageable number of individuals in each
opulation is necessary.

To represent large numbers of organisms, some authors parti-
ion large populations into homogeneous sub-groups of organisms
alled ‘super-individuals’ (Scheffer et al., 1995; Bartsch and
oombs, 2004; Parry and Evans, 2008), ‘ensembles’ (Woods and
nken, 1982; Woods, 2005), or ‘cohorts’ (DeAngelis et al., 1993).
hese sub-groups act as a unit representative of several similar

ndividuals, and become the biological agents of the model. This
pproach has been successful in many applications (Woods and
nken, 1982; Rose et al., 1993; Carlotti and Wolf, 1998; Thorbek
nd Topping, 2005; Hellweger and Bucci, 2009). However, in the
elling 251 (2013) 173– 186

super-individual approach, regular bookkeeping is needed to limit
or keep the number of agents constant. This bookkeeping effort
introduces computational costs, and may  lead to computational
artefacts that could affect biodiversity unpredictably. For instance,
if the number of agents needs to be reduced, the two most similar
super-individuals in the population may  be merged. Alternatively,
the least representative super-individual may  be merged with
another. Rare species are more likely to be preserved in the first
case than in the second. Also, the non-uniform representativeness
of the super-individuals (i.e. some super-individuals represent a
large number of organisms, others only a few) can affect the model
dynamics differently depending on which agent is selected for a
given action.

This paper presents a new individual-based method to model
functional groups of largely different size and density. The proposed
approach uses a multiple scaling technique to limit the size of the
individual populations that are modelled. The idea is to restrict the
scale of the representation on increasingly smaller spaces as the
potential for population abundance increases. Dynamics between
different populations (e.g. predator–prey interactions) are resolved
using the density of the individuals at the different size scales.
Although first sketched by Scheffer et al. (1995),  to the best of
our knowledge, this method has never been implemented and
tested. The Scaled Subspace Method may  be more intuitive for
biologists than the super-individual approach, as it reflects exper-
imental practice, where microscope magnifications (“simulated
subspaces”) are adjusted to the size (and hence abundance) of the
organisms studied. Also, it avoids potential artefacts due to book-
keeping and non-uniform representativeness of super-individuals.

The proposed method was  devised for a pelagic microbial food
web, which will be used as a case study. The major dynamics of our
model are the abundances of the populations and the trait changes
occurring within each population.

The agents are characterised by two traits: size and trophic
mode. The difference in size amongst the various species ranges
over several orders of magnitude. Because of their population het-
erogeneity, high numbers, high mortality rates, and non-linear
biological responses, microbes are a good application case for
individual-based modelling. Hellweger and Bucci (2009) cite 46
examples of individual-based models of microbial systems, ranging
from simulations of marine and freshwater communities, wastewa-
ter treatment plants, biofilms, bacteria in food, and digital artefacts
(e.g. computer viruses). As microbial food webs span several orders
of magnitude in cell size, the scale-independent method proposed
here is particularly useful to model such food webs on an individual
basis.

Microbes in our model either acquire nutrients directly from the
sea (osmotrophs), or from eating other organisms (phagotrophs), or
they combine the two approaches in different degrees (mixotrophs).
Mixotrophs are an interesting case study for individual-based mod-
elling because of the large range of strategies in nature. They
are also important ecologically, since they contribute significant
amounts of primary production and bacterivory in marine envi-
ronments (Havskum and Riemann, 1996; Zubkov and Tarran, 2008;
Hartmann et al., 2012). However, due to the heterogeneity of sizes
and behaviours, the modelling of mixotrophs has been so far limited
to fairly broad state-space approaches.

Section 2 introduces the proposed method, whilst Section
3 presents the microbial food web  model. Section 4 presents
an equivalent state-variable model, and Section 5 discusses the
differences between the proposed individual-based and the state-
variable model. Section 6 presents the experimental results

obtained using the proposed model, and compares these results
with those obtained using the state-variable model. Section 7 dis-
cusses the main issues concerning the model. Section 8 concludes
the paper and gives indications for further work.
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. The Scaled Subspaces Method

This section describes the proposed individual-based modelling
pproach.

.1. The microbial food web

As mentioned in the introduction, we have used the Scaled Sub-
paces Method to model a pelagic microbial food web.

As they vie for resources, microbes can either evolve to max-
mise their uptake ability for dissolved nutrients (osmotrophs),
r specialise in acquiring nutrients from other organisms
phagotrophs). Mixed strategies increase the capability of an organ-
sm to survive occasional shortages of one food source. As pointed
ut by Thingstad et al. (1996),  “eating your competitor” is also a
ay for mixotrophs to win the struggle for resources. However,
ixotrophy is assumed to imply efficiency costs due to the neces-

ity of maintaining the double nutritional machinery (Tittel et al.,
003; Flynn and Mitra, 2009).

One strategy to avoid being eaten is to increase in size, becoming
oo large to be ingested by the predator(s). However, this implies
n efficiency trade-off (Thingstad et al., 2010), as small cells are
hought to be more efficient at gathering resources at low concen-
ration where uptake rates are diffusion limited, whilst large cells
ypically require high concentrations to establish.

The study of the above trade-offs motivated the design of
he individual-based model. Each agent represents one biologi-
al organism, and is characterised by two traits: the size and the
oraging mode.

The main obstacle to implementing a trait-based model is the
arge difference in density of the various microbial species, which
overs several orders of magnitude. The proposed approach was
evised to solve this problem.

.2. Scaled Subspaces Method

The idea is to follow different populations at different spatial
cales, in order to constrain the maximum number of individuals
er population. That is, the scale of description of the model is set
t large sections of the environment (volumes) for large species,
nd gradually reduced to smaller volumes for increasingly smaller
rganisms. The members of each population are defined by a mass
nd diameter that varies within a given interval, whilst the trophic
ode varies in the continuous interval between pure osmotrophy

nd pure phagotrophy.
The proposed system can be thought of as being visualized as a

icroscope, where the field of vision is narrowed down as smaller
rganisms are observed (Fig. 1).

In this particular implementation, the microbial food web  is
ssumed to be closed, and the nutrients to be instantaneously
ecycled. For the sake of simplicity, the mineral nutrient pool is
imited to only one element (phosphorous). The concentration ıP
f the total phosphorous present in the system is a fixed parameter,
nd the microbial community is partitioned into a fixed number ˙
f size groups. For each group i, the population size ni is allowed to
ary from 0 to a maximum number N of organisms. In this study, N
s the same for all size groups, that is, N is a fixed system parame-
er. Each size group i is then modelled in a subspace volumei of the
verall environment so that its abundance ni cannot exceed N:

olumei = N · min  massi
ıP

, (1)
here minmassi represents the lower bound for the mass of the
embers of size group i. According to Eq. (1),  small organisms

those with higher potential for population abundance) are mod-
lled in small volumes. When a population monopolises all the
Fig. 1. Larger populations are followed in smaller regions of the overall environment
in  order to limit the total number of individuals modelled.

available phosphorous ıP in the system, it reaches the size limit
N.

The phosphorous biomass concentration ıi of a given size group
i at any moment in time is the sum of phosphorous in all individuals,
adjusted for the fraction of the total environment used by its sub-
space:

ıi =
1

volumei

ni∑
j=1

mij, (2)

where ni is the population size of group i, and mij is the actual weight
in phosphorous of individual j belonging to group i.

3. Microbial food web  model

This section describes the model of the microbial community.
The notation and equations are given in Tables 1–6.

3.1. Agents

The agents represent microbes of mass ranging from
mass1 = 1.6 × 10−8 to about 33 nmol P. They are assumed to
be spherical (Harte, 1998), of diameter varying from diam1 = 0.5 to
640 �m.  They are characterised by two traits: the standard mass
(typical weight in phosphorous) and trophic mode.

The standard mass of an individual belonging to size group i
doubles at each successive size class, giving a logarithmic cell mass
distribution:

massi = mass1 · 2i−1 (3)

The diameter is calculated from the standard mass assuming
spherical cells:

diami = diam1

(
massi
mass1

)1/3
= diam1 × 2(i−1)/3 (4)

The actual mass of an individual is allowed to vary between
(1/2) · massi and 2 · massi (Fig. 2).

The feeding strategy is allowed to vary from pure osmotrophy to
pure phagotrophy. For each individual, the feeding mode is encoded
in a trait fij, which takes any value in the 0–1 range, where 0 denotes

pure osmotrophy and 1 pure phagotrophy.

Nutrient (ϕij) and prey ( ij) uptake rates are defined by Holling
type II functions with saturation at high resource concentration
(Holling, 1959). The functions are given in Eqs. (5) and (6),  Table 2.
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Table 1
Individual agents—notation.

diami standard diameter of individuals of size class i
fij feeding mode of individual j of size class i
i,k,z class
j,h Individual
massi standard weight of individuals of size class i
massp0 mass of the smallest predator
maxUPij maximum P uptake rate per unit of cell mass of individual j of size

class i
maxUVij maximum prey mass intake rate per unit of weight of predator j of

size  class i
mij weight of individual j of size class i
minmassi ,
maxmassi

minimum and maximum mass of individuals of size class i

mutRate mutation rate [0,1]
r optimal predator–prey ratio
[v0i, vLi] range of size classes of organisms on which individuals of class i

prey upon
w width w of the bell-shaped predation curve
˛1 nutrient affinity of the smallest osmotroph
˛ij nutrient (P) affinity per unit of cell mass of individual j of size class i
ˇ1 clearance rate of the smallest phagotroph
ˇij water clearance rate for prey per unit of mass of predator j of size

class i
�0 prey assimilation efficiency
ık prey biomass density of size class k
� metabolic loss rate per unit of weight
�ik size preference factor of predators of group i for prey of size group

k
�  optimal predator–prey ratio in size classes
�  efficiency trade-off between mixotrophy and osmotrophic or

heterotrophic specialization
ϕij nutrient uptake rate per unit of cell mass of individual j of size

class i
 ij total prey biomass uptake rate per unit of mass of predator j of size

class i
 ijk biomass uptake rate per unit of mass of predator j of size class i for

prey of size group k

F
a

t
e
t

Table 3
Environment and subspaces—notation.

D number of individuals that duplicate
DIP dissolved inorganic phosphorous in the system
D · M− number of mutants lost to neighbouring classes
M+ number of mutants acquired from neighbouring classes
Ni = N maximum population size of size class i
na number of individuals of class z created by reintroduction

procedure.
ni population size of size class i.
T total P collected from individuals if reintroduction procedure is

applied.
[p0i, pLi] range of size classes of organisms which prey upon the members

of  group i
volumei volume of subspace where size class i is modeled
ıP density of total phosphorous (P) biomass present in the system

s number of individuals dead due to starvation

v

T
I

ω width w of the bell-shaped predation curve in size classes
	  tax (% of body mass) levied on individual if reintroduction

procedure is applied

ig. 3 shows the functional response curves for a pure osmotroph
nd a pure phagotroph.
Predators do not assimilate the whole phosphorous content of
heir prey. A yield (�0) is incorporated in Eq. (6) to account for the
ffects of sloppy feeding and other inefficiencies. At each time step,
he total amount of waste produced by each predator per unit of

able 2
ndividual agents—equations.

ϕij = ˛ij · DIP

1 + (˛ij · DIP/ max  UPij)

 ij = �0 ·
k=vL∑
k=v0

 ijk = �0 ·
k=vLi∑
k=v0i

(
�ik · ˇij · ık

1 + (ˇij · �ik · ık/ max  UVij)

)
0 ≤ �0 ≤ 1 

dsij = (1 − �0) ·
k=viL∑
k=vi0

massk ·  ijk

˛ij = ˛1 ·
(
massi
mass1

)−2/3

·
(

1 − fij
)

= ˛1 ·
(
diami
diam1

)−2

·
(

1 − fij
)

ˇij = ˇ1 ·
(
massi
massp0

)−2/3

· fij = ˇ1 ·
(
diami
diam1

)−2

· fij

max  UPij = max  UP1 ·
(
massi
mass1

)2/3

·
(

1 − fij
)�

max  UVij = max UVp0 ·
(
massi
massp0

)2/3

· f �
ij

�ik = e−(i−k−�/ω)2

�mij =
(
 ij + ϕij − �

)
· mij · �t  

mkh = mij
2

· volumek
volumei

k =
{
i − 1, i + 1

}
fmk = fij + ı 


i

total biomass lost due to predation per time step
˙  number of subspaces (one for each size group)

biomass is obtained by considering all eaten prey (Eq. (7), Table 2).
This unassimilated prey content is immediately remineralised into
the dissolved inorganic phosphorous (DIP) pool.

The nutrient affinity ˛ij and prey clearance rate ˇij (Eqs. (8) and
(9), Table 2) define the slope of the functional response curves (Eqs.
(5) and (6),  Table 2) at low resource concentrations. Their decrease
with the square of the cell diameter implements the size penalty
postulated by Thingstad et al. (2010).

At high resource concentrations, the phosphorous and prey
uptakes asymptotically approach the maximum rates maxUPij and
maxUVij. The maximum intake rates depend on the cell traits
(standard mass and foraging mode), and on � (Eqs. (10) and (11),
Table 2).

The third factors on the right hand sides of Eqs. (8)–(11) reflect
the decrease in resource uptake efficiency and maximum uptake
rates of mixotrophs compared to osmotrophic and heterotrophic
specialists (Tittel et al., 2003). The magnitude of the efficiency loss
is adjusted via the parameter �. Fig. 4 depicts the effect of � on ˛ij
and ˇij.

Predators of a given size class i eat prey within a fixed range
[v0i, vLi] of size classes (Eq. (6),  Table 2). They have maximum pref-

erence for individuals smaller by a diameter ratio r (� size classes),
where r is a fixed system parameter. The preference factors �ik ∈ [0,
1] for predators of size class i for prey of size class k ∈ [v0, vL] are

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)



M. Castellani et al. / Ecological Modelling 251 (2013) 173– 186 177

Table 4
Environment and subspaces–equations.


v
i

=

(
pLi∑
k=p0i

nk∑
j=1

massj ·
 kji

volumek

)
· volumei · �t  (16)

ni (t + �t) = ni (t) − 
v − 
s + D ·
(

1 − M−
)

+ M+ (17)

T  =
˙∑
i=1

ni∑
j=1

	 · mij
volumei

(18)

nz = T  · volumez
massz

(19)

Table 5
State-variable model—notation.

i,f size group and trophic mode of a module
maxUVif maximum prey mass intake rate per unit of predator mass, defined

as  in Eq. (11), Table 2
[v0, vL] range of size classes on which species �if preys upon
ˇif water clearance rate, defined as in Eq. (9),  Table 2
0  < �0 yield
ıjk biomass density of prey of species �jk 


v
ik

loss rate per unit of cell
mass due to predation

� metabolic loss rate
�if state-variable model module (species)
�ij preference factor for predators of size class i for prey of class j,

defined as in Eq. (12), Table 2
ϕif nutrient uptake rate per unit of cell mass
 if prey uptake rate per unit of cell mass
 ifjk mass uptake rate per unit of predator weight for prey of size group

j  and trophic mode k

Table 6
State-variable model—equations.

mif (t + t) = mif (t) +
(
 if + ϕif − 
v

if
− �
)

· mif (t) ·  t  (20)

 if = �0 ·
j=vL∑
j=v0

k=32∑
k=0

 ifjk = �0 ·
j=vL∑
j=v0

k=32∑
k=0

(
ˇif · �ij · ıjk

1 + (ˇif · �ij · ıjk/maxUVif )

)
(21)

l∑ 32∑

d
r
f
l

o
m
o
a

o
i
m
t

Fig. 3. Examples of food intake rates: osmotrophy and phagotrophy.

Fig. 4. Effect of parameter � on resource use efficiency  ̨ = k · (1 − f)� ,  ̌ = k · f� , k = 1.

v
if

=
j=s k=2

 jkif (22)

istributed in bell-shaped fashion (Fig. 5) around the optimal size
atio r (Eq. (12), Table 2). Prey are consumed irrespective of their
eeding mode. That is, pure phagotrophs are eaten with the same
ikelihood as pure osmotrophs.

At each time step, an individual gains mass according to its
smotrophic and phagotrophic intake, and loses mass due to
etabolic costs at a constant rate � (Eq. (13), Table 2). The rate

f metabolic loss is assumed to be a fixed fraction of body mass
cross all species.

If  the mass mij of an individual drops below (1/2) · massi, the
rganism dies of starvation. In this case, all the remaining mass is

mmediately reconverted into the inorganic nutrient pool. If the

ass reaches 2 · massi, the organism reproduces by duplication. In
he standard case, two  new cells are formed with half the mass of

Fig. 2. Range of cell sizes (diameter) and corresponding average masses.
Fig. 5. Visualisation of predator–prey size and class relationship.
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Fig. 7. Flow of biomass between two  sample classes and the DIP pool. The
phagotrophs and mixotrophs of size class i prey upon the individuals of class j
(predator–prey ratio is �). The total biomass intake of the predators of class i is

needs.
ig. 6. Iterative procedure to calculate the number of individuals killed due to pre-
ation.

he parent cell. Namely, the new cells are initialised with a weight
qual to the standard mass massi of its size class. The new cells
nherit the trophic mode of the parent. However, occasional genetic

utations may  alter the traits (size and foraging mode) of the dupli-
ated individuals.

The probability of mutation mutRate ≤ 1 is a fixed system param-
ter. At every duplication event, a random number rand ∈ [0, 1]
s sampled. If rand < mutRate, the new individual undergoes with
qual probability mutation of either the size or the feeding mode.

If a new individual undergoes a mutation in size, it will join with
qual probability either the next smaller or the next larger size class
Eq. (14), Table 2). Eq. (14) accounts for the different volumes of
he subspaces of origin and destination of the mutant, and scales
he mass of the mutated individual up or down to keep the total
hosphorous density ıP constant.

If a new individual undergoes a mutation in trophic mode, the
hange ı in the parameter fij occurs within a limited range [−�,
] from the mother trait (Eq. (15), Table 2), where � is a system
arameter (Table 7).

.2. Subspaces

Each size group i is modelled within a sub-space of the overall
nvironment. The volume (volumei) of this sub-space is calculated
s in Eq. (1),  and kept constant throughout the simulation. The two
ain features of a subspace are its volume and the total biomass

ensity of the hosted population.
In each time step, predation from other size classes may  lead

o mortality. The biomass 
v
i

of size class i eaten by predators of a
articular size class follows Holling Type 2 curves (Eq. (6),  Table 2).
ummation over all predator classes gives the total amount eaten,
v
i

(Eq. (16), Table 4). Individuals of a prey class are killed ran-
omly until the number of individuals (
v) corresponds to the killed
iomass (
v

i
) (Fig. 6).

At the end of every time step �t, the population size ni of class i
s updated (Eq. (17), Table 4). Eq. (17) takes into account the num-
er of individuals dead due to starvation (
s) the number of new

ndividuals created by cell duplication events (D), and the number
f mutants lost to (D · M−) and acquired from (M+) neighbouring
lasses. The size class biomass density is then recalculated as in Eq.
2).

.3. Environment

The environment is composed of the  ̇ subspaces, where the
ifferent size groups and the DIP pool are modelled (one subspace
or each size group). The environment is assumed to have uniform
ensity in terms of spatial distribution of the populations and DIP
ontent.

The DIP pool is depleted by the activity of the mixotrophs

nd osmotrophs, and is replenished by the excretions, detritus,
nd dead bodies produced by the  ̇ populations. The only direct
nteraction between populations is given by the predation of large
 ij , corresponding to 
v class j individual killed. Osmotrophs and phagotrophs of
the two classes consume DIP. The DIP pool is refilled by the detritus, excretions, and
dead bodies produced by the two classes.

individuals on smaller organisms. Fig. 7 visualises the biomass flow
within the system for two  sample species.

In biological systems, spatial heterogeneity allows species to
survive in some areas when unfavourable conditions may  lead to
their extinction elsewhere. The surviving populations may  then re-
colonise the empty niches and thrive when conditions change. An
extra procedure was designed to simulate the possible reintroduc-
tion of locally extinct species.

The additional procedure introduces individuals of a randomly
picked size class at fixed time steps. If conditions are favourable, the
new individuals form a stable population. This process simulates
occasional invasions of alien species in ecological subsystems. It
works as follows: each living individual is “taxed” of a small fraction
	 of its body mass (Eq. (18), Table 4). This tax simulates the loss of
individuals that moved to neighbouring regions outside of the mod-
elled area. It is then used to create nz new members of a randomly
selected size class z (Eq. (19), Table 4), simulating the immigration
of individuals from contiguous areas. The foraging mode of these
new agents is randomly initialised.

4. State-variable model

To evaluate the reliability of the proposed modelling approach,
two conditions need to be checked: that the predictions on the
emerging food web structure are biologically realistic, and that they
are not affected by computational artefacts.

Unfortunately, accurate quantitative descriptions of pelagic
microbial communities are still lacking. Yet, qualitative evaluations
on the plausibility of the model predictions are possible.

To ascertain the presence and extent of computational artefacts,
the results of the individual-based model are compared with those
of an equivalent state-variable model. If the differences are large,
the results of the two models will have to be treated with caution
until the issue is further resolved. If the two  models yield similar
predictions, the results can be assumed to be independent of imple-
mentation issues. In case the two  models perform comparably, it
will also be possible to use them interchangeably according to the
The state-variable model is composed of a matrix of  ̇ × 32
modules, dividing the food web into  ̇ size classes and 32 classes
of feeding modes. The  ̇ size classes correspond one-by-one to
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Table 7
Standard settings for the system parameters of the individual-based (IBM) and state-variable (SV) models.

Parameter Symbol Value Model

Main loop
total phosphorous concentration ıP 500 (nmol-P/L) IBM/SV
number of size groups Ns 32 IBM/SV
max  number of individuals per group N 10000 IBM
mass  smallest individual mass1 1.6·10−8 (nmol-P) IBM/SV
diameter smallest individual diam1 0.5 (�m) IBM/SV
mass  increment factor between successive size groups 2 IBM/SV

nutrient affinity smallest osmotroph (per unit of biomass) ˛0 0.7
(
L
h

· 1
nmol−P

)
IBM/SV

max  uptake rate smallest osmotroph (per unit of biomass) maxUP0 0.16
(
nmol−P
h

· 1
nmol−P

)
IBM/SV

water  clearance rate smallest phagotroph (per unit of biomass) ˇ0 0.0008
(
L
h

· 1
nmol−P

)
IBM/SV

max  prey biomass intake rate smallest phagotroph (per unit of biomass) maxUV0 3.125
(
nmol−P
h

· 1
nmol−P

)
IBM/SV

yield �0 0.3 IBM/SV
mixotrophy trade-off � 0.3 IBM/SV
optimal predator–prey ratio � 4 (6 size classes) IBM/SV
width predator–prey size window ω 1.26 (1 size class) IBM/SV
mutation rate mutRate 0.02 IBM
width of feeding mode mutation � 0.1 IBM
general loss rate � 0.001 (1/h) SV
metabolic loss rate � 0.001 (1/h) IBM
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Initialisation procedure
fraction of total P into DIP 

“noise” in mass distribution amongst classes 

he size classes used in the individual-based model, whilst the 32
eeding modes cover at fixed steps of 0.03125 the range from pure
smotrophy (0) to pure phagotrophy (1).

The increment of biomass is determined for each module
species) �if by the nutrient and prey uptake, loss due to preda-
ion, and metabolic losses (Eq. (20), Table 6). Analogously to the
ndividual-based model, nutrient and prey uptake as well as loss
ue to predation follow Holling Type 2 functional responses (Eq.
5),  Table 2, and Eqs. (22) and (23), Table 6, respectively).

The differential equation of the state-variable model (Eq. (21),
able 6) is integrated using the MATLAB ODE23 implementation
f the explicit Bogacki and Shampine third-order Runge-Kutta
ethod (Shampine and Reichelt, 1997).

. Differences between individual-based and state-variable
odel

The equations defining the dynamics of the two  models are the
ame. They differ only in the fact that in the individual-based model,
hey apply to one individual, whilst in the state-variable model,
hey apply to the whole biomass of the functional group. This dif-
erence accounts for the fact that the agents are individuals in the
ormer and whole species (modules) in the latter.

The trait-based model discretises the biomass of one size class
nto several units (the agents), whilst the state-variable model dis-
retises the trophic structure of the size classes into 32 functional
roups. That is, in the state variable model, the ‘feeding mode’
s discretised into regularly spaced steps within each of the size
lasses.

The above differences can be minimised choosing large pop-
lation sizes, and partitioning the functional groups of the
tate-variable model into finely divided classes of feeding modes.
n both cases, the correct parameterization needs to trade-off rep-
esentation power for efficiency.

In the state-variable model, biomass is a continuous variable
or each size group. As a result, the mass content of a group may
appen to drop below the mass equivalent of one organism. In

his case, unless explicitly stated in the model implementation, the
pecies does not become extinct. In the individual-based model,
he biomass is discretised in individual units. Once its biomass is
elow (1/2) · massi it dies, and once the last individual has died,
0.001 IBM/SV
0.1 IBM/SV

the species is lost. This dissimilarity makes the populations of the
state-variable model more robust to environmental fluctuations.
This is one of the fundamental differences between individual-
based and state-variable representations, and is independent of the
implementations chosen in this study.

The discretisation of the biomass in individual units in the
individual-based model has also consequences on the effects of
predator–prey interactions. That is, in a state-variable model a
predator may  consume an amount of mass equivalent to a fraction
of a prey (e.g. a lion eats half a gazelle); the remaining fraction of
prey still survives and contributes to the total biomass of its species.
In an individual-based model, the partly eaten prey cannot survive,
and the remains are usually discarded as detritus. As a consequence,
the activity of predators has a greater impact on the prey popula-
tion in individual-based models. In the proposed individual-based
model, the discarded remains correspond to at most a fraction of
one individual (see Eq. (16), Table 4). Even though this amount may
be considered small in a large population, in a small population or
over several time steps, it might lead to appreciable discrepancies
between the predictions obtained using the individual-based and
the state-variable model.

In the proposed study, genetic mutations are used only in the
individual-based model. This feature is expected to blur the shape
of the emergent population structure. It was created to promote
innovation in species, and partly compensate for the likelihood
of extinction events in individual-based models. Mutations may
in fact reinstate extinct species, reducing the loss of population
diversity in individual-based systems.

6. Experimental tests

This section describes the experimental settings and results.

6.1. Experimental settings

For the parameters of the two models, the standard setting and
the dimensions are given in Table 7.
Initially, 0.1% of the total phosphorous concentration consti-
tutes the DIP pool, and the rest is shared amongst the size groups.
This scenario simulates an oligotrophic environment, which is the
typical state of pelagic ecosystems.
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The maximum hourly phosphorous uptake rate for the smallest
smotroph (maxUP0) is set equal to one sixth of the cell’s weight,
ielding a duplication time of six hours in absence of food limita-
ion. The maximum prey uptake rate for the smallest phagotroph
maxUV0) is set equal to 200 individuals per cell per hour. This
uantity is converted into units of prey mass per unit of predator
ass as follows:

ax  UV0 = mv

mp
· 200 = mv

mv · 2�
· 200 = 1

2�
· 200 (23)

here mp and mv are the weights in phosphorous of respectively
he predator and the prey, and � is the size ratio of predator to prey
henceforth called predator–prey ratio).

The above values were set in accordance with experimental
bservations on the maximum nutrient affinity (Lignell et al., 2013)
nd uptake rate (Kemp et al., 1993) for pure osmotrophs, and max-
mum clearance rate (Lignell et al., 2013) and prey uptake rate
Vaquè et al., 1994) for pure phagotrophs. Other parameters like
he mixotrophy trade-off and predator–prey ratio are at present not
nown precisely (Stoecker, 1998), and were set heuristically. The
ensitivity of the predictions to these less understood parameters
s the object of a separate study.

Four groups of experiments were run to investigate the sensitiv-
ty of the predictions to the choice of the main model parameters.
n all cases, 10 independent runs were executed per model config-
ration. For each run, the system was let to evolve for 10 years with
ime steps of 5 min. At the end of the evolution period the emerg-
ng populations were monitored for one additional year, where the
iomass distribution was sampled every five days. A final map  of
he average biomass distribution amongst size classes and feeding

odes was generated for the last year. This map  represents the
odel prediction.
The code was implemented in C++, and the tests were run on

n Intel Core2 Duo CPU, 2.54 GHz speed, 4GB Ram, and Windows
 32-bit OS. In all cases unless explicitly stated, the execution time
as less than 20 min  per run.

.2. Sensitivity to initialisation procedure

The first set of experiments was designed to test the sensitiv-
ty of the model predictions to the initialisation of the microbial
ommunity. Three initialisation procedures were tested.

The first procedure (henceforth named ‘deterministic–
eterministic’) distributes the biomass uniformly amongst the
ize classes, and uniformly amongst the individuals within the
ize classes. That is, each agent is initialised with a weight in phos-
horous equal to the class standard massi (Eq. (3)). This uniform
istribution of biomass amongst the logarithmically spaced size
roups simulates the natural state of planktonic systems (Sheldon
t al., 1972).

The second procedure (henceforth named ‘deterministic–
andom’) distributes the biomass uniformly amongst the size
lasses, and initialises the mass of each individual randomly within
he interval [minmassi, maxmassi] Section 3.2).

The third procedure (henceforth named ‘random–random’) dis-
ributes the biomass randomly amongst classes, and randomly
mongst the individuals. For each class, the initial biomass is drawn
ith uniform probability within ±10% of ıP/˙.,here ıP and  ̇ are

espectively the total phosphorous in the system, and the number
f size classes (Section 2.2).

Fig. 8 shows the statistical mean of the predictions obtained in
0 independent runs for each of the three cases. The microbial com-

unity is divided into 32 size classes (Table 1), each characterised

y a specific diameter and mass (see Section 3.2 and Fig. 2). For
ach size class, the emergent population is grouped into 32 classes
ccording to the feeding mode. The map  represents thus a 32 × 32
Fig. 8. Comparison of initialisation procedures. Model parameters as in Table 7.

matrix of size and foraging mode classes. The mass distribution
is plotted versus the average cell mass of the size classes and the
feeding mode.

The plots show very similar results, with stable populations of
mixotrophs emerging roughly within the 2–4 �m diameter range.
The evolved mixotrophic populations are in the size range of bacte-
ria (0.2–2 �m)  and nanoflagellates (2–20 �m).

Populations of pure osmotrophs emerge in a size range within
the smallest allowed diameter (0.5 �m)  and 3 �m circa.

Two populations of pure phagotrophs appear: one of ca. 2–3 �m
diameters, and the other of ca. 4–13 �m diameters. The latter pop-

ulation is within the size range of dinoflagellates (5–2000 �m). The
group of largest phagotrophs preys on the microbial communities
in the 2–4 �m range (the predator–prey ratio was set to 4), whilst
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ig. 9. Sensitivity of the results to the variation of the number and maximum popula
nitialisation procedure is used.

he population of smaller phagotrophs preys on the smallest classes
f osmotrophs.

The significance of the differences between the maps of
iomass distribution obtained using the three initialisation pro-
edures was analysed pixel-by-pixel using the Mann–Whitney
-test. The analysis confirmed the high similarity of the results.

he two most dissimilar maps were those obtained using
he deterministic–deterministic and deterministic–random methods,
here the biomass values differed significantly in 13 pixels (1.27%

f total map).
ze of the size classes. Model parameters as in Table 7, the deterministic–deterministic

Given the substantial equivalence of the different initialisation
routines, the deterministic–deterministic method will be used as the
standard procedure henceforth.

6.3. Sensitivity to model configuration
The second set of experiments (Fig. 9) was devised to investigate
the robustness of the predictions to variations of model parameters
such as the number of size classes (˙), and the maximum class size
(N).
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Fig. 10. Sensitivity of the results to variations of the mutation rate. Model parameters as in Table 7, the deterministic–deterministic initialisation procedure is used.
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The emergent populations are substantially similar regardless
f the number of size classes. Due to the lower resolution, the map
elative to the case  ̇ = 16 has a better delineated shape. As ˙
ncreases, the microbial community breaks down in an increasing
umber of smaller populations.

The relationship between the maximum population size N and
he algorithm running time appears to be roughly linear. For
xample, enlarging N from 10000 to 40000 agents per size group
ncreased the execution time from 20 min  to over 90 min.

The use of larger populations reduced the risk of extinction for
he individual species. This favoured the establishment of more
ariegate microbial communities in the tests involving the largest
opulation sizes. A pixel-by-pixel comparison between the pre-
ictions found 43 (4.2%) significantly different pixels between the
aps obtained using N = 5000 and N = 10000, 41 (4%) significantly

ifferent pixels between the maps obtained using N = 10000 and
 = 20000, and 93 (9.1%) significantly different pixels between the
aps obtained using N = 5000 and N = 20000. The significance tests

ere carried out using the Mann–Whitney U-test. The overall

iomass distribution is, however, similar in all the cases, indicating
lso in this case robustness of the model to variations of the system
arameters.
6.4. Effects of mutation and reintroduction of species

The third set of experiments was  designed to assess the effects
of the mutation (Section 3.2) and reintroduction (Section 3.4) pro-
cedures on the model predictions.

Mutation played a decisive role for the maintenance of
population diversity (Fig. 10). Without mutation, mixotrophs dis-
appear and the population clusters into three groups of pure
osmotrophs and three corresponding groups of predators. As
the mutation rate is increased, the plots show a progressively
thicker band of mixotrophs establishing. The populations of
pure osmotrophs and phagotrophs become also more broadly
distributed.

The map  obtained using the standard mutation rate (0.02)
and those obtained using higher rates (0.05 and 0.1) differ sig-
nificantly by 52 (5.07%) and 89 (8.7%) pixels respectively. In all
the three cases, the distribution of the emergent population is
similar.
If performed with sufficient frequency, the reintroduction pro-
cedure (Fig. 11)  can compensate for the loss of species. However,
it introduces a certain degree of ‘noise’ in the individual runs. The
emergent biomass distribution is similar to the standard case.
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ig. 11. Sensitivity of the results to variation of the reintroduction procedure. Mod

.5. Comparison with state-variable model

The fourth set of experiments concerns the comparison of the
redictions obtained using the individual-based model with those
btained using the state-variable model. Following the results of
he theoretical study presented in Section 6, the metabolic loss rate
f the individual-based model was set equal to the general loss
ate of the state-variable model (see Table 7). Good agreement was
ound between the predictions obtained using the two approaches
Fig. 12), with populations of mixotrophs, pure osmotrophs and
hagotrophs emerging at the same size ranges.

. Discussion

The Scaled Subspaces Method models the evolution of popula-
ions of largely diverse traits and density with the same degree of
etail, eliminating the risk of demographic explosion of the most
umerous species. In order to limit the population size, increasingly
maller-sized species are modelled in increasingly smaller spaces,

n the same way microbiologists choose objectives of increasingly
arrower field to observe increasingly smaller organisms on an
ptical microscope. This makes the proposed method intuitively
asy to understand and visualise. Also, when we  are interested in
meters as in Table 7, deterministic–deterministic initialisation procedure is used.

how organism strategies lead to emergent patterns in the topology
of the population within the strategy plane (i.e. the cell size and
trophic mode trait-space), it is important that biological represen-
tations are continuous and equally diverse over all size classes. As
opposed to approaches that combine state variables and individual-
based descriptions (Megrey et al., 2007), our Scaled Subspace
Method allows this.

The Scaled Subspaces Method can be implemented in fast and
compact software code. The effectiveness of the proposed method
was demonstrated in an application of modelling a microbial food
web.

Experimental evidence proved that the Scaled Subspaces
Method generates consistent and realistic population distribu-
tions. It is thus a viable alternative to trait-based approaches using
super-individuals (Scheffer et al., 1995; Woods and Onken, 1982;
DeAngelis et al., 1993) to deal with the problem of unmanage-
ably large populations. With respect to the latter approaches, the
proposed method may  be conceptually and computationally more
simple, as it does not involve bookkeeping efforts (e.g. splitting and

merging of super-individuals) to maintain the population within
given boundaries. This also minimises the possibility of introducing
computational artefacts with respect to biodiversity in the mod-
elling results.
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Fig. 12. Comparison between the predictions obtained using the individual-
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distribution of species, since some of the offspring of the most abun-
ased and state-variable models. Model parameters as in Table 7, the
eterministic–deterministic initialisation procedure is used for both models.

There are similarities between the single individuals used in the
caled Subspaces Method and super-individuals. Agents modelled
n small subspaces implicitly represent several individuals over
he whole system. In this sense, every individual in the scaled
ubspaces can be seen effectively as a representative of many
thers. However, the representativeness (i.e. how many organisms
n agent represents) of each individual is constant in the Scaled
ubspaces Method, whilst it varies with the stochastic events in
pproaches using super-individuals. In the latter, it is often the case
hat several similar super-individuals of highly different size (e.g.
ne large and several small) coexist. Without the need of constant
earranging of super-individuals, the Scaled Subspaces Method
llows one to model with uniform representativeness a large
umber of individual types. This makes the proposed approach

 good candidate for modelling biodiversity at all trophic levels.
he uniform detail in the representation of the species at diverse
ize scales makes the Scaled Subspaces Method particularly useful
o model fractal-like biological systems, where self-similarity is

epeated at largely different scales (Thingstad et al., 2010).

The comparison of the predictions given by Scaled Subspaces
ethod with those given by an equivalent state-variable model
elling 251 (2013) 173– 186

with high resolution in organism size and foraging mode ensured
the independence of the results from implementation issues. The
test also gave the occasion to analyse the expected differences
between trait-based and state-variable models.

The Scaled Subspaces Method implicitly assumes the environ-
mental conditions to be spatially uniform, meaning that the focus
of the model can be narrowed down to a small area without loss
of generality. This was assumed for the simplified representation
of the marine microbial food web  used in this study. In other cases
this assumption may  not be true. A possible way to circumvent
this problem would be to simulate the evolution of communities of
species in different environments in parallel. Each species would be
defined in a subspace where the environmental conditions might
be considered uniform, and plausible rules of interaction should be
devised for those species that are capable of migrating and operat-
ing across different subspaces. The feasibility of this solution should
be weighed against the computational overheads that it would
imply.

The scaling of the subspaces was  here based on the total biomass
in the closed system. In cases where the overall biomass varies
with time, the approach is still applicable as long as the change
is within reasonable bounds. In extreme cases, where the total
biomass changes of several orders of magnitude, the size of the
subspaces could be adjusted at periodic intervals, or when one
or more populations reach a pre-set upper or lower size thresh-
old. Such adjustments are possible as long as the fluctuations of
nutrients are not too frequent. In particularly variable ecosystems,
where the total biomass changes rapidly of several orders of mag-
nitude, other approaches such as the use of super-individuals are
computationally more efficient.

In general, the scaling of the subspaces may  take into account
other criteria than the potential for population abundance. For
example, where some species have a greater potential for hetero-
geneity (e.g. they have more traits), the scaling of the subspaces may
take into account additional or alternative considerations, such as
the possibility of population diversity.

Beyond the uniformity of the environmental conditions, the only
other assumption made in the Scaled Subspaces Method is that the
effect of the interactions of each species with the other species and
the environment can be computed from the population (biomass)
density. The details of the interactions may  be expressed analyt-
ically as in the proposed application, or probabilistically on an
individual-to-individual basis. The trait-based paradigm allows the
representation of any level of high intra-class and inter-class diver-
sity. As long as the impact of the populations on the ecosystem can
be expressed in terms of their population density, communities of
species as heterogeneous as ants and elephants can be simulated.

One of the main difficulties in modelling ecosystems is to sim-
ulate a large and virtually unbound world in a limited and closed
system. In this sense, closed ecosystem models are more similar
to laboratory set ups than natural environments. In such kind of
scenarios, with relatively small population numbers and constant
environmental conditions, the extinction of all but a few species
is likely. In nature, the distribution of organisms is inhomoge-
neous, and individuals migrate in and out of local environments.
In the presented application of the Scaled Subspaces Method, we
wanted to simulate mechanisms found in the open sea where
abundant species disperse to neighbouring areas, and where other
species enter and re-colonise local environments when conditions
are favourable. As an extension for the new method, the reintro-
duction procedure was  designed for this purpose. Mutation also
plays a role in reinstating populations and balancing the overall
dant classes mutate into similar species that got extinct. Mutants
occur naturally, and they may  be able to colonise vacant niches.
Genetic mutations, periodic reintroduction of species, and the use
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f large populations were shown to be effective policies against
he extinction of species in our model. Nonetheless, state-variable
pproaches might offer better protection from group extinctions
hen the populations are known to undergo large oscillations in

ize. In general, the maintaining of population diversity in closed
nd bound environments is a common problem to all individual-
ased discrete approaches.

Mixotrophs seem more at risk of extinction in our model than
ure foraging specialists. However, this result was  found to depend
n the particular value chosen for the mixotrophy trade-off � (not
hown). In general, the issue of the sensitivity of the model pre-
ictions to variations of the biological parameters has not been
ddressed in this study. Many of the parameters listed in Table 7 and
llometric relationships defined in Tables 2, 4 and 6 are only best
stimates. Sensitivity to biological parameters is subject to another
tudy, where the proposed model is used to help understand the
ffect of these variables on the structure of the emerging food
eb.

It can be argued against the biological realism of the mutation
nd reintroduction procedures used in this study. We  believe that
hey are reasonably “natural” as long as open marine environments
re to be modelled. The rate and extent of the mutation and reintro-
uction events used in this study may  possibly not be biologically
ccurate, and the model may  conceivably be parameterized more
ealistically. Indeed, more than suggesting a fixed set up, our tests
imed to highlight the role of mutation and reintroduction on the
volution of the ecosystem modelled.

In general, this paper presented a first documentation of the
pplicability and reliability of the Scaled Subspaces Method in case
f microbial food webs, which are fundamental to all ecosystems.
icrobial food webs are particularly well suited for the Scaled Sub-

pace Method due to their self-similarity and different densities
t many scales. The precise boundaries and details of the methods
ange of application need to be thoroughly investigated.

. Conclusions and indications for further work

This paper presented the Scaled Subspaces Method, a new
rait-based approach that addresses the problem of demographic
xplosion in models composed of populations of inhomogeneous
ensity. The method was applied to a model of a pelagic micro-
ial mixotrophic food web, where the population density of the
pecies of smallest size is several orders of magnitude higher
han the density of the largest species. For each size group, the
ndividuals are monitored at different size scales. The small-
st individuals are monitored at scales small enough to contain
nly a limited number of agents. With this we  keep com-
utational costs low, whilst still allowing equal diversification
f species at all levels. Also, computational artefacts that may
ccur through bookkeeping and non-uniform representativeness
n super-individuals, is avoided. It hence represents a beneficial
lternative method to the super-individual approach for complex
ystems.

Experimental evidence shows that the proposed model
roduces biologically plausible and consistent predictions of
iomass distribution in the foraging mode and cell size trait-space.
imilar results were found for other settings of the biologi-
al parameters not documented in this paper. The predictions
ttained using the proposed individual-based model matched well
hose obtained using a classical state-variable model. This shows
hat the results are independent from computational artefacts

nd implementation issues, and allows using the two  models
nterchangeably. The comparison of the two approaches was com-
lemented by a thorough analysis of the differences between

ndividual-based and state-variable representations.
elling 251 (2013) 173– 186 185

The main issue concerns the possibility of extinction of species
in the proposed method, which is inherent to all individual-based
models, and does not depend on the representation method used in
this study. The problem can be alleviated by simulating the creation
of new individuals via genetic mutations, or by reintroduction of
lost species. The frequency of the mutation or reintroduction events
should take into account the need to create and support biologi-
cal diversity as well as biological plausibility. Future work should
investigate the relationship between the mutation and reintroduc-
tion rate and population diversity.

Using large populations helps to prevent group extinctions.
However, the computational overheads of managing a large num-
ber of agents need to be taken in account when setting the size of
populations. State-variable or individual-based approaches based
on super-individuals might be more robust to group extinctions
than the proposed method. Further work should test this hypoth-
esis and investigate the “breaking points” (i.e. extinction events
of entire groups) of the population diversity for the different
approaches.

We found that mixotrophs in our model could successfully
coexist with foraging specialists under a range of parameter sett-
ings. This result agrees well with the reported high abundance of
mixotrophs in pelagic environments (Zubkov and Tarran, 2008;
Hartmann et al., 2012). We hold that the Scaled Subspaces Method
represents a novel, realistic and useful tool to the field of ecological
modelling.
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