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121 INTRODUCTION

Modeling is a useful tool to relate abundance, distributions, fluctuations, and
production of living organisms to variations in the abiotic environment, food conditions,
and predation. Mathematical models integrate the dynamics of several variables into a
single representation via interactions of processes (Wroblewski 1983). Nowadays models
represent a continuum of complexity from simple response curves to complex marine
food webs (Steele 1974; Walsh 1976; Kremer and Nixon 1978). Models are used
prognostically or diagnostically, they serve to test different scenarios, and to understand
the discrepancies between models and data. When models have been sufficiently tested
and are considered robust, they can serve to predict future states.
Zooplankton models are built for three main objectives:

I) to estimate the flow of energy and matter through a defined ecological entity, for
example an organism, a population or zooplankton community

2) to estimate the survival of individuals and the persistence of populations in their
physical and biological environments, and to look at the factors and processes which
regulate their variability

3) to study different aspects of behavioral ecology.

The core of this review is a description of models dealing with marine mesozooplank-
ton. Models dealing with limnic zooplankton, or with fish larvae or meroplanktonic
larvae are also partially described, and are only included to elucidate technical details or
general principles. Models of microzooplankton are not described here. We aim to
present detailed, specific applications of models on bioenergetics or demography of
zooplankton rather than a general mathematical study of modeling. For general
principles we refer the reader to papers and books listed in section 12.2.4.

Models dealing with a range of system components are reviewed in Table 12.1. The
system components can be the internal components of the individual body, the
individuals of a population, the populations of a single species, or the functional
groups of zooplankton species. Process models dealing with physiological functions of
individual organisms or specific links between physiological parameters and biological
functions will also be presented. In section 12.2 we present general strategies for building
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Table 12.1 Overview of the different models and their objectives following the
levels of organization.

Type of models Objectives
Process models to define rate expressions or parameterization
Models of individuals to calculate individual budget and growth

Models of groups of individuals  to simulate their trajectories in the physical environment
to simulate individual variability in behavior, growth and
development

Models of populations to simulate population dynamics,
to simulate dispersion of a population in a physical
structure

Models of metapopulations to simulate interactions between species

to simulate succession of species

Models of ecosystems including  to simulate the role of the zooplankton community in the
zooplankton communities functioning of an ecosystem

models, writing the mathematical relations and applying numerical methods to integrate
the equations of the mathematical expressions of the model.

The rest of this chapter is devoted to the presentation of models relating to different
levels of biological organization: individual (section 12.3), population (section 12.4) and
community (section 12.5). Models coupling biological entities (individual, population,
functional groups of zooplankton) with the physical environment to simulate spatial
dynamics are presented in section 12.6.

122 MODELING APPROACHES AND TECHNIQUES

12.2.1 Steps of model building

The first step in building a model is to be clear exactly what the objectives are. These
objectives will determine the scope of the model, as well as the kind of model to use and
the output required from the model. The general method for building a model of a
complex system is to identify simpler components of the system and to describe the
interactions among these components and external variables of the system and among
the components themselves (Wroblewski 1983).

CHOICE OF STATE AND FORCING VARIABLES

The first step is the identification of the components (functional units, or compartments or
subsystems) of the system, and depends on the purpose of constructing the model. The
level of complexity in the representation of the system (number of components, number
of interactions in the model) depends on what we really understand, on the available
knowledge for building specific details of a model, and on the capacity to represent
details at the same level for the different parts of the system. In choosing the
components, modelers must attempt to reduce the complexity of nature to manageable
portions, whilst retaining sufficient structure to model processes that are of interest to
them. There is no golden rule for doing this and, to a large extent, success will be judged
by the ability of the model to predict observations and increase understanding. Adding
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more compartments to a model adds to the dynamic complexity and can make model
interpretation difficult. Thus, a stepwise approach is recommended, beginning with a
model containing the minimum number of compartments required to tackle the problem
in hand, and only adding further components as necessity dictates.

Determining the appropriate model is sometimes more difficult than parameter
estimation. The pertinent variables (quantities that may vary with time and space) fall
into two categories. First, the internal variables (or state variables) are those related to
processes governing the system dynamics, for example the internal compartments of the
body of an organism, the developmental stages of a population, and the trophic levels of
an ecosystem model. Second, the external variables control some of the internal variables
of the system. Temperature, light, and food concentration are typical external forcing
variables of biclogical systems.

CHOICE OF MODEL UNITS

The next choice that must be made is the units or currencies of the model. For example
carbon, nitrogen, phosphorus, or dry weight can be used if the variable is mass, whereas
densities or numbers of individuals can be used if the variable is abundance. The choice
of units will depend on the problem being studied. Many models have mixed units.
Element ratios are usually assumed constant but Anderson (1992) presents a model for
studying the influence of the modeled C:N ratio.

CHOICE OF MATHEMATICAL FUNCTIONS TO MODEL THE INTERACTIONS BETWEEN
VARIABLES

The study of interaction patterns is frequently helped by the use of various types of
diagrams. Each variable is connected to other internal or external variables. The way in
which each variable changes through the influence of one or more of the others must be
known and the interactions described by mathematical functions. An important step is
to determine the specific forms of these functions. In biological modeling, the relation-
ships between variables are mostly established empirically, and the mathematical
functions used to describe these relationships are not always derived from first
principles. Empirical relationships should be used with caution. Each empirical relation-
ship is only valid in certain space-time ranges, and should not be used outside these
ranges without experimental tests. However, modelers frequently neglect this aspect. If
several functions can describe a relationship between two variables, the simpler
mathematical expression, i.e. the one with fewest parameters, should be chosen.

IDENTIFICATION OF PARAMETERS
An important process is the estimation of the values of the parameters (often called
calibration). Such estimates often result from curve fitting of experimental data to the
variables. If the model components represent large biological entities (e.g. the phyto-
plankton and zooplankton compartments of a pelagic ecosystem model), the function
representing the relationship between the variables (e.g. the general grazing of phyto-
plankton by zooplankton) cannot be fitted from data. The form of the function is
extrapolated from more specific studies, and possible parameter values are chosen from
a large range of values due to the numerous species represented in the experiments. Most
of the physiological parameters (e.g. ingestion rates, excretion rates, etc.) are experimen-
tally obtained using small groups of animals of a given species.

Some parameters such as mortality rates are difficult to estimate experimentally.
Because cach situation is unique, one can only guess a mortality rate and examine the
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model solution to see how well it fits the observations. This is called ‘tuning’ the model. It
is a valid modeling technique when all but one set of parameters is well known. For
instance, mortality can initially be set to zero to determine whether observed shifts in
life-history stages of zooplankton could be simulated without mortality.

In more sophisticated methods models can be used for identifying values of
parameters. In this case the properties of the model (its structure, the biological function
used, etc.) need to be well understood. As an example, Jellison ez al. (1995) present a
comparison of cohort models for identifying demographic parameters.

12.2.2 The mathematical description of the system

SYSTEMS OF EQUATIONS

If the system is specified by the values of # state variables, the mathematical model of
the system requires n equations. Equations are built by introducing rules for the
interactions between variables of the system (state variables) and variables outside of
the system (forcing variables). These rules are deduced from particular knowledge of the
processes involved. There is no equivalent in biological models of physical laws such as
the Navier-Stokes equation for fluid dynamics that provide the basis for physical
oceanography; there is no set way to define how material is transferred between
variables. Most of the models reviewed in sections 12.3-12.6 are dynamic simulation
models, which allow time-dependent development of the state variables, either with no
space dependence or with one to three space dimensions. Thus, most of the models
considered here consist of time-dependent differential equations. The state of the system
at any given time ¢ depends upon what the state was at a previous time 7 — dt and upon
the conditions that prevailed and influenced the direction and rate of change from t — dt
up to but not including the instant 7. In some cases, steady state conditions are
considered by solving time dependent equations; usually the equations are not solved
analytically, but numerically using computers. Ordinary differential equations (ODEs)
are much more frequently used than partial differential equations (PDEs). This is a
consequence of the availability of numerous routines for solving ordinary differential
equations and of the greater simplicity of the equations. Reducing the dependence of the
state variables to time or to one space dimension yields ordinary differential equations.
Including more than one independent variable results in partial differential equations
with greatly increased complexity for the numerical solving schemes.

In describing the way in which a dynamic system changes, two distinctions must be
made: (1) continuous versus discrete state variables and (2) deterministic versus
stochastic descriptions.

Biological state variables (e.g. the individual weight of an organism) are continuous,
but many state variables of interest in zooplankton ecology are not continuous (e.g. the
developmental stage of copepods). In the latter case, the value of the variable changes by
discrete jumps. The treatment of discontinuous variables can be diverse, and they can be
treated as though they were continuous if the scale at which we observe the system is
coarse relative to the scale at which the jumps occur.

Biological functions can be built with two components: a deterministic component
and a stochastic component in which the additional effect of variability due to
randomness is added to the deterministic component. Stochasticity is used to represent
known and not well understood effects on a process, and is added to a deterministic
component. When the model is structured to account for such uncertainties in some of
its functiosns, the model is referred to as a stochastic model (as opposed to a
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deterministic model). They yield a probability distribution over the output sample
space. In deterministic descriptions, the behavior of the system is completely deter-
mined by its state and by the specified conditions. As a result, a deterministic
description of a dynamic system and its evolution through time usually gives a
description of a particular trajectory. In a stochastic description, the additional effect
of variability due to randomness is added to the deterministic component. This results
in a distribution of probabilities for each set of possible behaviors. The connection
between deterministic and stochastic descriptions is made by considering the expected
or average behavior.

NUMERICAL METHODS
There are two ways of solving differential equations: analytical and numerical methods.
Many differential equations cannot be solved analytically and must be solved numeri-
cally. Numerical techniques for solving differential equations are inexact, and involve
approximations that allow a solution to be found by iterative calculations. There are
many different numerical methods, but all can be implemented using a range of
computer programs (e.g. Press et al. 1992). A good way to understand the principle of
numerical methods is to use it for equations having a known analytical solution. The
basis of the numerical solution of a differential equation is a difference equation that
relates successive values of the solution at closely spaced intervals with the general form
given by:

d

W s,y (12.1)

with initial value N(0) at time 7 = 0. f is the symbol of a function, N is the studied
variable.
The numerical solution uses the difference equation:

N(t+68) = N(t) + %ét (12.2)

where N(i) is a calculated value which is an approximation to the true value N(7). The
difference equation is iterated starting with the known value N(0) at time 7 =0 to
produce the numerical solution N(6¢), N(26¢) and so on. Thus the numerical method
produces an approximate solution to the differential equation which consists of a series
of values at time intervals determined by the choice of the time increment. In practice the
time increment ¢+ is made small enough to achieve a satisfactory approximation.

One of the simplest approximations of an ODE by a difference equation is called
Euler’s method. The accuracy of the solution obtained by such a simple technique is
related linearly to the step length dz, and generally can be improved by making &1
smaller. However, the smaller the value of &1, the more calculations are required. This
not only increases computer time, but the rounding errors of the computer can start to
become significant, and introduce errors into the solution. There are other practical
numerical methods for solving ODEs (sce Press et al. 1992). An efficient recursive
method approximating a Taylor series expansion is the Runge—Kutta technique.The
fourth order Runge—Kutta method succeeds virtually always and is commonly used in
many models.

For studying advection-diffusion processes PDEs have to be written. It is often
difficult or impossible to find analytical solutions to PDEs, and we are forced to rely on
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numerical approaches. There are many different techniques for obtaining numerical
solutions to PDEs (see Press ef al. 1992 for some that work reasonably well).

In some cases, it is possible to transform a PDE to an ODE (see for instance Sewell
1988, for a review of methods; and see Botsford er al. 1994, for an application). If not,
finite difference methods are the most common applied numerical solution techniques
(see Press et al. 1992). Many algebraic models are in fact discrete approximations to
PDE:s (Sinko and Streifer 1967), and certain integral formulations can also be shown to
be equivalent to PDEs (Streifer 1974). The escalator boxcar train technique (Goudriaan
1986; De Roos 1988) is an example of an approximation to PDEs.

12.2.3 Computer programing and languages

- The choice of which computer language to use for zooplankton modeling is usually
determined by personal preference. However, there are a few practical implications
associated with the choice. Relatively complex models can be developed using spread-
sheet programs, where little active programing is required, and where good graphics are
readily available. However, for increased flexibility and speed, it is often useful at some
stage to write your own programs. The most commonly used programing languages in
zooplankton modeling are BASIC, PASCAL, C, and FORTRAN. Existing computer
routines for applying different numerical methods are available in these four languages.
Many ocean models, particularly 3-D ocean models, are written in FORTRAN, so it is
easier to link your zooplankton model to such a model if it is coded in a similar fashion.
However, for developing individual-based models, an object-oriented language such as
C++ or JAVA might be preferred.

There are various graphical programing languages available that are specifically
designed to facilitate modeling of non-linear, dynamic systems. Among the most
versatile of these languages is the graphical programing language STELLA II (Costanza
et al. 1998; Hannon and Ruth 1997; Richmond and Peterson 1994). Some examples of
models built with STELLA will be mentioned in this chapter.

12.2.4 Further reading

Several recent books are useful for introducing biological oceanographers to ecological
models but the examples given are rarely taken from plankton:

Brown, D. and Rothery, P., 1993. Models in biology: mathematics, statistics and computing.
Wiley, Chichester, 688 pp.

Edelstein-Keshet, L., 1988. Mathematical medels in biology. Random House, New York,
586 pp.

Gold, H.J., 1977. Mathematical modelling of biological systems. An introductory guidebook.
Wiley and Sons, New York, 357 pp.

Concerning the use of mathematical functions for fitting data for plankton processes:

Abramowitz, M. and Stegun, LA., 1972. Handbook of mathematical functions. Dover
Publications, New York, 1046 pp.

Concerning numerical methods and codes of these methods:

Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P., 1992. Numerical recipes in
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FORTRAN. The art of scientific computing. Cambridge University Press, Cambridge,
963 pp. (This is also available for BASIC, PASCAL and C)

Sewell, G., 1988. The numerical solution of ordinary and partial differential equations.
Academic Press, London, 271 pp.

Several books give examples of comparisons between stochastic and deterministic
models of the same modeled system. In addition to those listed above we recommend:

Renshaw, E., 1991. Modelling biological populations in space and time. Cambridge Studies in
Mathematical Biology. Cambridge University Press, Cambridge, 403 pp.

12.3 MODELS OF INDIVIDUAL BIOENERGETICS AND LIFE-HISTORY
TRAITS

To construct a realistic population model one begins by formulating
submodels for the individuals in the population. In order that a population
model be predictive, it must represent the demographic effects of the
physiological processes at the level of individuals (Streifer 1974).

12.3.1 Individual bioenergetics

BUDGET OF INDIVIDUAL ZOOPLANKTON
Several examples of trophodynamic formulations can be found in models of
individuals, populations and ecosystems. The basis of many models of individuals and
population-level individual-based models is the standard bioenergetic supply—demand
function (Beyer and Laurence 1980, 1981; Batchelder and Miller 1989; Carlotti and
Sciandra 1989; Caparroy and Carlotti 1996; Carlotti and Hirche 1997). In this function,
growth is represented as the difference between the amount of food absorbed by an
organism and the metabolic costs of its daily activities. Conover (1978) provides an
extensive review of the different processes of the individual energetic balance of
zooplankton (see also Mauchline 1998, for calanoid copepods). The principal functional
forms used in models of biological energetics will be outlined in this section, and selected
applications in recently published models will be provided.

The general balance equation of input and output fluxes of matter (or energy) in an
organism is;

Growth (G) = Ingestion (I) — Egestion (Eg) — Metabolic losses (ML)
— Release of gametes or eggs (RG)
— Other losses (molts, etc.) (12.3)

where
Metabolic losses (ML) = Respiration(R) + Excretion (Ex) (12.4)

The assimilation efficiency is obtained as:

Assimilation (A4) = (Ingestion — Egestion)/Ingestion (12.5)

Most models of individual bioenergetics consider input—output fluxes of matter.
Ingestion is the process whereby animals acquire organic matter. Assimilation is the



580 MODELING ZOOPLANKTON DYNAMICS

Ingestion related to fluctuations of food concentration

Mayzaud and Poulet (1978) demonstrated a near linear response of five neritic copepod
species to changes in food levels. This lack of saturation was thought to be due to
variations in gut enzyme levels in response to varying phytoplankton concentrations.
Franks et al. (1986) gave a mathematical formulation of this grazing response derived
from Mayzaud and Poulet (1978) as:

I=ILoC(1-e2€) (12.12)

As C gets larger, the formulation becomes linear with slope 7,2, which is the initial slope
of the Ivlev formulation. When C is large, the Ivlev curve shows saturation while the
Mayzaud-Poulet curve does not. When C is small, the herbivore grazing rate is lower
using the Mayzaud-Poulet formulation than the Ivlev. Franks et al. (1986) compared the
effect of the choice of such ingestion functions on the dynamics of herbivore-zooplank-
ton interaction in an N-P-Z (nutrient-phytoplankton—zooplankton) model.

Ingestion related to food quality — grazing on several resources — switching be-
havior One severe limitation of studies in which only a single species of food is utilized
is the possibility that the results obtained do not represent the complete spectrum of
feeding behavior of copepods. The effect of food size on grazing efficiency has been
considered in some models (Steele 1974; Steele and Mullin 1977; Bartram 1980). Bartram
(1980) developed a model involving a general filtration rate and an efficiency of
retention, itself a function of cell size, and tested it experimentally for two copepods.
He applied the model to a population of copepods of different age classes feeding upon
an assemblage of food particles of different sizes. Based on optimal foraging theory,
Lehman (1976) proposed a model for filter-feeding behavior in mixtures of particle types
and used it to evaluate selective ingestion of particles based on their comparative
abundances, size and digestibility. Both these examples illustrate how food quality can
be as important as food quantity in determining ingestion rates of copepods.

In their ecosystem model, Fasham et al. (1990) discuss the problem that arises when
zooplankton modeling deals with parameterizing grazing on multiple prey of different
types. For example in their model, the zooplankton graze on phytoplankton, detritus
and bacteria, and it is necessary to specify how much of each prey is grazed at any time.
One approach to this problem is to define a measure of total food, as:

F =pP+p;D+p;iB (12.13)

where py, pa, p3, are constants determining the zooplankton preferences for various food
types. P is phytoplankton, D is detritus and B is bacteria. A Michaelis-Menten
expression can be used to define the grazing rate on, for example, phytoplankton as:

piP
Gy = gZK+ 7 (12.14)
where g is the maximum specific grazing rate, Z is the zooplankton biomass, and Kis the
half-saturation constant for grazing.
Zooplankton preferences can be constant, but Fasham et al. (1990) chose to assign
preference as a function of the relative proportion of the food based on Hutson’s (1984)
switching expression:

e M)
T Pt (X
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where X, is the concentration of kth food type and p; is defined as the preference for
each of the different food types when the concentrations of these foods are equal. In
their model, the simplest functional expression used is f(X;) = X, which results in the
model zooplankton selecting the most abundant food organism. Another possible
functional type is the normalized limitation function describing zooplankton ingestion
of the ith food type as suggested by Pace et al. (1984). Fasham e al. (1990) outline the
properties of the non-prey-switching function and those based on Hutson’s (1984) and
Pace et al’s (1984) switching expressions. Evans (1988) emphasizes that the model
predictions can be very sensitive to the parameter values used in the switching function,
whereas there are very few data on zooplankton feeding preferences to provide such
values.

Ingestion related to predator and prey swimming activities and turbulence
effects Several models have been developed to simulate the different steps of the
feeding process of a swimming organism catching prey in the natural environment. The
first models were developed for fish larvae, and then applications were extended to
zooplankton in relation to the effect of turbulence. Most of the models described below
refer to fish larvae. The amount of food ingested is a function of the number of prey
encountered, captured and eaten, the levels of turbulence, light and prey aggregation.

The number of prey encountered and prey ingested are functions of the local prey
concentration modified by local turbulence (Rothschild and Osborn 1988; MacKenzie
and Kierboe 1995). The behavior of the larvae (e.g. whether they exhibit cruise behavior
or pause-travel behavior) also affects the encounter rate and these aspects are
summarized next.

Rothschild and Osborn (1988) discussed the role of turbulence in affecting (enhan-
cing) encounter rates with planktonic prey. Subsequent studies, for example Sundby and
Fossum (1990), MacKenzie and Leggett (1991), Muelbert et al. (1994), explored the role
of turbulence in oceanic conditions, finding an effective increase in contact rates of 2 to
10 times under various wind- and tidal-driven flows. With this formulation, an estimate
of N(i) the number of ith prey of concentration p(i) encountered over a 24 h period in a
turbulent environment is

NG) = LA@D@)p()Ar (12.15)

24h

The effect of the turbulent velocity o enters in the determination of A4(7), the velocity of a
larval fish relative to its prey
[62... (i) + 372 + 4]

A(§) = oprey

(12.16)

where the larval fish swimming speed 7, and the ith prey swimming speed oprey(i) are
assumed to be on the order of one body-length per second. The parameter L is a binary
day/night switch and

D(i) = (2/3)np? (12.17)

is the cross-sectional area of perception of the larva, where p = (3/4)L is the prey
encounter radius and is related to L the larval fish length (e.g. Werner ez al. 1996).
The turbulent velocity (squared) is

o = 3.615(er)*? (12.18)
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where the separation distance » can be approximated as a function of the concentration
p(i) of the ith prey item (Rothschild 1992) as:

r=0.55p()" (12.19)

and ¢ is the turbulent kinetic energy dissipation rate specified as a function of space and
time. No single formulation has yet parameterized the precise nature of small scale
turbulence affecting predator-prey encounters, and different formulations may better
represent different limiting cases (Osborn 1996). The definition of the appropriate length
scale to estimate the contribution of turbulence to predator—prey contact rates (e.g.
equation 12.16) is still a matter of discussion (Dower et al. 1997). The length scale has
been variously defined as the average distance between prey particles (Sundby and
Fossum 1990; MacKenzie and Leggett 1991; Sundby 1995; Werner et al. 1996), the
Kolmogorov scale (Muelbert et al. 1994), the eddy separation distance (Davis ef al. 1991)
and the larval fish reactive distance R (e.g., Evans 1989; MacKenzie et al. 1994; Denman
and Gargett 1995; Kierboe and MacKenzie 1995).

For larvae that are pause—travel predators, and defining the effective encounter spatial
scale as the larval reactive distance, MacKenzie and Kierboe (1995) formulated an
expression for the encounters E, , (no. prey sec™ BED

E, (i) = %nR%(i)PF +nR?p(i)(7* + 20°)* Pr Pp (12.20)

where R is the larval reactive distance (e.g. a fraction of the larval body-length), Pris the
pause frequency (no. sec '), Pp is the pause duration (sec), and pl(i) and t are as given
above. Finally, the estimate of prey encountered is

N@G) =) LEJAt. (12.21)
2¢h

A model for the influence of small-scale turbulence on post-encounter processes in larval
fish indicated that turbulence can have an overall beneficial or detrimental effect on
larval fish ingestion depending on the magnitude of the turbulence and on larval
behavior (MacKenzie et al. 1994). A dome-shaped relationship is found where ingestion
rates are maximum at intermediate rather than high levels of turbulence; the decrease in
pursuit success in highly turbulent environments negates the increase in ingestion rate
caused by the increase in encounter rate. The implementation of this formulation is
achieved by scaling the number of prey encountered by the estimated probability of
successful pursuit P,,. The value of P,, depends on the turbulent velocity w, the pursuit
time 7, and the larval reactive distance R. The intersection of the prey excursion sphere
(of radius wt,) and the larval encounter sphere (of radius R) define appropriate values of
P, (see MacKenzie et al. 1994 for details).

Some models have attempted to represent the effect of microscale turbulence on the
ingestion of copepods (Davis et al. 1991; Saiz and Kierboe 1995; Caparroy and Carlotti
1996). In their model, Caparroy and Carlotti take into account different processes
implicit in the process of ingestion: encounter rate, capture rate, and ingestion sensu
stricto, i.e. when a prey is in the mouth. The encounter rate is related to relative
displacement between prey and predator, which is the consequence of swimming
behavior and the microscale fluid motion (Rothschild and Osborn 1988). Different
models have represented simple swimming behavior and derived encounter rate ex-
pressions for linear swimming (Gerritsen and Strickler 1977) or random-walk swimming
(Evans 1989; Yamazaki et al. 1991). Kierboe and Saiz (1995) introduced several types of
swimming in their model.
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Effect of temperature on ingestion Temperature has an important effect on all
physiological functions. As the ingestion process is the input of matter into the
individual, the effect of temperature on ingestion is crucial both at the individual level
and also at higher levels of organization. Providing that energy and other resources are
not limiting, physiological rates usually increase with temperature within the range
normally encountered by the organism until a sudden decline near the upper limits when
enzyme systems become damaged.

Most of the time only the increasing part of the curve is considered in models, and the
function usually used is a power function of temperature:

Yr = ABT (12.22)

Other functions which mimic the complete curve with the increasing and decreasing
parts are presented in Table 12.3.

Responses of organisms to temperature have been expressed quantitatively in terms of
the temperature coefficient Q;y generated from the Arrhenius equation which denotes
the ratio of the rate of a metabolic process (¢.g. ingestion) at one temperature to the rate
at a 10 °C change in temperature, i.e.

Y.
Qo =110 _ p1o (12.23)
Yr
The @, can be calculated as soon as rates are measured for two temperatures as:
10 Y;rz)
lo —= lo 12.24
g8(Q10) T — T3 S(Y“ (12.24)

By measuring the rate at successive temperatures, it is usually observed that Q,, is not
independent of temperature over the temperature range in question. The Qj, values
generally decline with increasing temperature. The Q4 of ingestion is generally found to
be around two. The effect of temperature on gut clearance rate also may be represented
by different models (Dam and Peterson 1988), and the Q,, is again found to be slightly
above two (Ikeda 1985; Dam and Peterson 1988).

Combined effects of external factors on ingestion

In their copepod growth model, Carlotti and Nival (1992) considered the effects of food
concentration, temperature and weight on ingestion and they multiplied the effects of the
three functions. Such combinations should be made with caution because the biological
responses of combined parameters can differ from the effects studied separately. For
example, Thébault (1985) showed that the effect of temperature can differ with food
concentration.

Light limitation

The effect of light on prey ingestion rates for certain larval fish has been studied in the
laboratory by Huse (1994). For young larvae, ingestion rates were observed to decrease
at low and at high light intensities (too much light reduces the required contrast for the
larvae to sense their prey). The penetration of light in the water column and its
modulation by cloudiness and suspended matter in the water can affect the vertical
position of feeding organisms (as they seek adequate light levels for feeding). Combined
with the vertical structure of the flow, the effect of light may have an indirect effect on the
dispersal of organisms. The inclusion of the effect of light limitation on the capture of
prey by recently hatched cod larvae is discussed in the modeling studies of Lough ez al.
(1997) and Quinlan et al. (1997).
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scaling studies deserves careful consideration (Anderson and Hessen 1995). Dry weight
is the traditional measure for ecological variables such as growth, but Vidal and
Whitledge (1982) suggest that dry weight-based scaling relationships may be biased if
animals have large proportions of metabolically inactive tissue, such as lipid stores.
Others have chosen to express body size in terms of carbon (e.g. Ikeda and Skjoldal 1989;
Schneider 1990). Schmidt-Nielsen (1984) and Cammen ef al. (1990) have recommended
the use of body nitrogen content as a mass variable, protein content provides an easily
determined measure of body nitrogen. Because metabolism-size relationships can
change with the size index selected (Berges ef al. 1990), metabolic measurements based
on different mass variables are not easy to compare, and need careful consideration
before inclusion in models.

Integrating the metabolic budget of copepods during their lifetime, i.e. under various
food conditions, Steele and Mullin (1977) identify three main components of respiration
in zooplankton: basal or routine metabolism, the costs associated with foraging and
capturing food, and the cost of assimilating and biochemically transforming the food.
The last two components are often grouped as active metabolism. Carlotti and Sciandra
(1989) suggest that the basal metabolism is related to weight, and the active metabolism
is a proportion of the ingestion rate. In their growth model of a ctenophore, Kremer and
Reeve (1989) use similar components.

Caparroy and Carlotti (1996) present a deterministic model of a copepod’s energy
budget to study the effect of turbulence on ingestion and on the related physiological
processes. In such a model, taking into account the swimming speed of the predator, the
specific cost of swimming is of primary importance in estimating the consequences of
feeding strategies in different turbulent conditions. Several models evaluate the energetic
cost of swimming activity by copepods and the effect of buoyancy on this cost (Vlymen
1970; Morris et al. 1985) and fish (Laurence 1985). Tiselius and Jonsson (1990) used
theoretical hydrodynamic models to investigate costs and benefits of different feeding
strategies (see also Haury and Weihs 1976). In his model of fish feeding, Laurence (1985)
takes into account the cost of processing and utilizing the digested food.

Anderson (1992) presents a bioenergetic model of marine heterotrophs (zooplankton
and bacteria) and determines food quality (in terms of C and N content) on growth and
nitrogen excretion. This model illustrates the close link between nitrogen excretion and
respiration, because excretion varies with the type of substrate respired.

The effect of temperature on metabolic rates can be represented by various functions,
such as those presented in Table 12.3. The Q, is generally found to be between two and
four.

GROWTH AND EGG PRODUCTION MODELS
Individual growth is simulated by integration of the equation

dW
G= = Ingestion — Egestion — Excretion — Respiration (12.27)
Growth and egg production generally do not occur simultaneously; when the matter
budget is positive, it is used for either growth or reproduction. A time step of 1h is
generally sufficient to simulate the dynamics of physiological processes and growth over
several days. At each time step, the calculated growth increment is integrated over time.

Growth models based on allometric relations to weight
The rates of metabolic losses in non-limiting food conditions and constant temperature
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are usually considered as allometric relationships (Laurence 1978; Beyer and Laurence
1980, 1981; Peters 1983; Huntley and Boyd 1984; Moloney and Field 1989; Kierboe and
Sabatini 1995; Hirst and Sheader 1997). Von Bertalanffy (1960) produced the gross
equation that expresses the rate of growth (G) as the difference between anabolism and
catabolism:
G=ﬂ=kW" —jw? (12.28)
dt

where W is the body mass, ¢ is time, and k and j are indices specific to particular
combinations of genotype and environment, and ¢ and b are ‘scaling exponents’. A
scaling exponent of less than 1.0 means that larger animals demonstrate lower rates of
metabolism per unit weight than do smaller animals.

If ¢ # b there is an optimal growth for the body mass M,,,, and an optimal mass for a
balance between losses and gains M,,.,.:

B\
M,y = (uk_c) (12.29)
_ ‘i c-b
M = (k) _ (12.30)

The highly simplified growth equation 12.28 described by von Bertalanffy (1938)
summarizes many different processes, with the influence of several external parameters.
Temperature affects metabolism, and several empirical relationships (exponential,
linear, power) relate the four parameters of equation 12.28 to temperature (Atkinson
1994). The exponential function of temperature is the most common (Huntley and Boyd
1984).

Allometric relationships, with or without their temperature-dependent effects, are
based on regression models that can be derived from data sets using single species or
groups of several species, and obtained under various conditions. Furthermore, not all
authors proceed in the same way in calculating these regressions. For example, after log
transformation of the values of rate processes and corresponding weight values,
Moloney and Field (1989) fixed the values of the allometric exponents, rather than
allowing these to be estimated by regression. Thus, allometric relationships should be
used with caution in any model.

Growth and egg production models in changing environmental conditions

These models should take into account detailed physiological functions of those rates
that vary with fluctuations of external variables. Food and temperature are usually taken
into account in budget models of zooplankton (Kremer and Nixon 1978; Carlotti and
Sciandra 1989; Carlotti and Hirche 1997). Table 12.4 presents a list of publications
containing growth models for different zooplankton groups and species.

In Carlotti and Sciandra’s (1989) model of the copepod Euterpina acutifrons, food and
temperature affect ingestion which, in turn, influences the rate of excretion, so that the
excretion rate is influenced indirectly by temperature and food. Because the physiologi-
cal connections are numerous and non-linear, it is important to test the consequences of
an hypothesis in relation to a given process. By comparing model output and data under
different external forcing conditions, different scenarios in the hierarchy of the physio-
logical processes can be tested. For example, Huntley et al. (1994a) developed a
physiological model of growth of Antarctic krill Euphausia superba in terms of C and N
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Table 12.4 Zooplankton growth models.

Species Authors
Ctenophore
Mnemiopsis leidyi Kremer and Nixon (1978)
Mnemiopsis mcradyi Kremer and Nixon (1978)
Meroplanktonic larvae
Crassostrea virginica Dekshenieks et al. (1993)
Pectinaria koreni Carlotti (1996a)
Cladocera
Daphnia sp. Gurney et al. (1990)
CRUSTACEA
Copepods
Copepods van den Bosch and Gabriel (1994)
Omori (1997)
McLaren (1997)
Broekhuizen et al. (1994)
Euterpina acutifrons Carlotti and Sciandra (1989)
Carlotti and Nival (1992)
Calanussp. Steele and Mullin (1977)
Steele and Frost (1977)
Calanus finmarchicus Slagstad (1981)

Carlotti and Radach (1996)
Carlotti and Hirche (1997)
Carlotti and Wolf (1998)

Calanus glacialis Slagstad and Tande (1990)
Metridia pacifica Batchelder and Miller (1989)
Metridia lucens Batchelder and Williams (1995)
Mysidacea
Mysis mixta Gorokhova (1998)
Decapoda
Hyas araneus Anger (1990)
Euphausiacea
Euphausia superba Astheimer et al. (1985)
Fish larvae
Engraulis mordax Wroblewski (1984)
Gadus morhua Werner et al. (1993)
Melanogrammus aeglefinus Werner et al. (1993)
Melanogrammus aeglefinus Cushing and Horwood (1994)
Theragra chalcogramma Hinckley et al. (1996)
Theragra chalcogramma Rose et al. (1396)
Theragra chalcogramma Rose and Cowan (1993)
Theragra chalcogramma van Winkle et al. (1993)

to study different scenarios of the life strategy of krill during winter. In this case, the time
step was one day, and the simulations were run over a four month period.

Budget models can be used as a tool to test the importance of newly explored
environmental factors such as microscale patchiness and turbulence to growth and
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recruitment of planktonic consumers (Davis ef al. 1991; Tiselius et al. 1993; Nonacs et al.
1994).

Egg production can be related to the mass budget of females. The simplest formula-
tion is to consider that above a given mass (mass of mature females), all assimilated
matter is used for egg production and not for growth (e.g. Carlotti and Nival 1992).

Carlotti and Hirche (1997) present a model of the individual bioenergetics of Calanus
Jinmarchicus females with details of the oocyte maturation steps. Their model considers
the transfer of matter to different parts of the body from the ingested matter in the gut.
The matter is directed toward either the structural weight, the lipid reserves sac, or the
gonads. Four steps of oocyte maturation are considered. By comparison with data, the
model suggests that, for this species, egg production cannot be dependent only on
external parameters but is also strongly linked to the state of internal compartments.

Egg production models related to external parameters

Several empirical relationships relating observed egg production directly to external
variables have been proposed, mainly in relation to temperature and food. Corkett and
McLaren (1978) defined a temperature dependent empirical equation

_ E-S
S t1+Sacts

F(T) (12.31)

where F(T) is the daily egg production per adult female, E is the number of €ggs in one
sac, S, is the total number of sacs produced over life time, ¢, is the time from reaching
adult to the appearance of the first sac, and 7 is the time between the appearance of
successive sacs (Davis 1984b). The values of t; and ¢ are expressed as a percentage of the
embryonic duration which depends on temperature following a Belehradek’s equation
(see page 590). Uye (1981) also defined an empirical relationship between copepod egg
production and temperature and food. Checkley (19802, 1980b) suggested a relationship
between copepod egg production and female length and temperature. These empirical
relationships are useful for population models which do not consider individual budgets
(e.g. Davis 1984b).

12.3.2 Vital rates

Vital rates (e.g. development rates and mortality rates) can be obtained from cohort
development studies either in laboratory controlled conditions, in mesocosms, or in
situ. Aksnes et al. (1997) discuss obtaining data for life tables from cohort analyses of
populations of copepods. Such data allow the estimation of durations of successive
developmental stages of species under various environmental conditions (temperature,
food, and salinity). In this section, we present empirical functions of development rates
and mortality rates commonly used in population dynamics models. Inverse methods
are described that estimate vital rates by fitting simulations of a population model to
data.

Vital rates are usually linked directly to external parameters (e.g. temperature, food
concentration) which are experimentally easy to control. Indeed, vital rates depend on
physiological states of the organisms which vary with the external factors. The modeling
of functional biological properties which modify vital rates (i.e. Carlotti and Sciandra
1989, their Figure 1) results in more efficient simulation of the dynamics of organisms if
the external conditions of temperature and food are highly variable.
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DEVELOPMENTAL STAGE DURATIONS OF CRUSTACEAN ZOOPLANKTON
In non-limiting food conditions, development time of stages from egg to C5 as a function
of sea water temperature is commonly fitted using Belehradek’s equation (McLaren

1963, 1978; Mauchline 1998):
D; = ai(T +b)° (12.32)

where D; is the development time of stage i (days) and T is temperature (°C). Parameter
a; (days °C ") governs the mean slope, b (°C) allows for shifts in the temperature scale
and ¢ (dimensionless) determines the curvature of the response. The parameters b and ¢
are considered as characteristics of the species and are equal for all the stages. Values of
a;, b and ¢ are obtained by fitting embryonic durations (stage 1) at different tempera-
tures. In the absence of sufficient data, ¢ is often assumed to be —2.05 (Mauchline 1998,
see his table 48), and b is set to a reference value (e.g. 13.87 for Pseudocalanus, Davis
1984a, 1984b; Corkett and McLaren 1970, 1978).

Parameter a; depends on stage i and is determined by knowing stage durations D; at a

given reference temperature:

a;=a E—; (12.33)
The adult duration also changes with temperature but it is more difficult to estimate,
because it is fixed by mortality. Davis (1984a) considers the adult female life Dy, to be
twice the length of the reproductive period.

Several empirical models have related stage duration to temperature (Heip 1974;
Guerrero et al. 1994). The latter authors carried out a comparative analysis of several
equations (Belehradek’s equation, linear equation, hyperbolic and power equations, and
exponential equations) used to describe the dependence of the development of organisms
on temperature. McLaren (1995) and Blanco et al. (1995) discuss the biological
significance of the different equations. These equations fit the observed development
time in a range of temperatures that are not the extreme temperatures. At the optimal
temperature a minimum development time is observed, and above this optimal
temperature the development time increases for higher temperatures.

Under fluctuating temperature conditions, the molting cycle can be modeled by
approximating the stage duration over short time steps with constant temperature. If
the time step of the model is d, the fraction of the molting cycle completed after dr at
time ¢ (MC,) is:

dt

ai(T + b)°
where T is the temperature during dt. By summing the molting fractions MC, over the
time since entry of the organism into that particular stage, the completed portion of the
molting cycle is obtained. The molting cycle is completed when the sum is 1, and the
stage duration can be calculated by summing the number of time steps. Miller and Tande
(1993) modeled the development time for a single cohort of Calanus finmarchicus over
one year in this way (see also section 12.4).

Stage duration also can be considered as the time period necessary for an organism to
grow from a starting weight to a final weight, as modeled by Carlotti and Sciandra
(1989). In doing so, there is an implicit hypothesis that development and growth are
completely linked, which is not true in many cases. Nevertheless, models such as this
allow the investigation of possible effects of external factors on development.

MC, = (12.34)
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MORTALITY RATES

The representation of mortality in zooplankton modeling and the estimation of
parameter values is difficult for population dynamics models as well as ecosystem
models. The importance of emphasizing mortality when studying the dynamics of
natural populations is expanded by Ohman and Wood (1995, 1996). The importance of
the mortality term in bulk models is discussed in section 12.5.

Zooplankton mortality arises for a number of reasons. These can be classified as
internal (developmental stage, senescence, genetic background), external (starvation,
predation, parasitism) and the combination of external and internal factors (e.g.
efficiency of enzymatic activity is a function of temperature) (see Ohman and Wood
1995 for a review). As a consequence there are a variety of formulations to represent
mortality.

The simplest formulation is to consider a constant mortality for the whole population.
This approximation neglects the fact that different stages may have different sensitivities
during critical periods such as molt or starvation, and that individuals in a given stage
may have different mortality rates depending on their physiological state. Numerous
models consider constant stage-dependent mortality rates that decrease with life stage
(i.e. Cushing 1975; Wroblewski 1980; Batchelder and Miller 1989). Mortality values used
in population models are estimated from field data using different methods (see Aksnes
et al. 1997, Wood and Nisbet 1991), and the range of estimated values is often large
enough to simulate very different dynamics. By running simulations over successive
years, it is possible to reduce the range to values giving stable population cycles. The use
of different data sets to compare simulated and observed population abundance and
structure is the best way to reduce the parameter range.

Mortality rates probably vary within stages for several reasons, and detailed formula-
tions have been used in several models. Mortality caused by starvation can be related
either directly to food concentration (Andersen and Nival 1986) or to an index of the
physiological state of organisms in terms of their specific growth rates (Wroblewski
1984; Carlotti and Sciandra 1989; Bryant er al. 1997). An average value of specific
growth rates over the previous few days could be introduced to represent the ability to
buffer short starvation periods. Bryant et al. (1997) add a complementary effect of
temperature in their mortality function.

Predation is often believed to be the major source of mortality for herbivorous
zooplankton (Ohman 1986). Davis (1984a, 1984b) presents model simulations of
copepod seasonal cycles on Georges Bank investigating the role of predation by
chaetognaths (size selective), ctenophores (non selective) and carnivorous copepods, in
the control of population growth. Mortality caused by each predator is represented as
the product of predator abundance and the consumption rate (number of copepods
eaten daily by one predator) which is temperature dependent. A formulation of the size
selective chaetognath predation is developed in detail in Davis’s (1984b) paper. The
model runs were made with various consumption rates until the model output matched
observed seasonal cycles.

Fiksen and Giske (1995) divide the contribution to mortality by predation into visual
and tactile fractions. The visual component mainly consists of fish and the tactile
component of invertebrate carnivores and omnivores like medusae, chaetognaths and
predatory copepods. They use a process model of predation by visual predators on
zooplankton (Aksnes and Giske 1993; Giske et al. 1994; see also Aksnes ez al. 1997). The
model consists of a set of equations that calculate the visual range of a planktivore from
the prevailing light conditions, influenced by irradiance at the surface, the fraction
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reflected at the air-water interface, turbidity, depth, prey characteristics and planktivore
eye sensitivity threshold for prey recognition. In Fiksen and Giske’s (1995) model, tactile
predation is assumed to be a size-dependent mortality rate which can be represented by a
negative power function of weight (Peterson and Wroblewski 1984; McGurk 1986).
Hansen et al. (1994) present a synthetic study of the size ratio between predator and prey
in zooplankton. The integrated effect is likely to be a decline in tactile predation pressure
with age and stage (Ohman 1988), although this may not apply in all cases. Size
dependent cannibalism is part of this tactile predation and is probably an important
source of mortality for eggs and nauplii (Kremer and Nixon 1978; Peterson and
Kimmerer 1994).

INVERSE METHODS TO ESTIMATE VITAL RATES

Population dynamics models presented in section 12.4 can be used to estimate stage
durations (or development rates) and mortality rates by fitting the model to observed
data. A wide variety of inverse methods can be used to do these fits (Manly 1989).
Inverse methods estimate parameters by fitting simulations to data.

Although many methods employ analytical manipulations of the basic equations,
most can be solved through parameter estimation techniques widely employed in system
identification: Parslow et al. (1979) illustrate these techniques in a comparative analysis
of four different cohort models. They found uncertainty in the estimates of both stage
duration and mortality to increase with increasing sampling error and decreasing
sampling intensity. Hay et al. (1988) also used a model to describe the birth, growth
and mortality rates of small copepods reared in enclosures. They found that uncertainty
in the estimates of mortality could be reduced by aggregating the stages. Jellison er al.
(1995) use systems identification techniques to compare parameter estimates from stage-
structured population models with different degrees of complexity to represent the
development rate. Development and mortality rates were estimated in all three of their
models using standard non-linear estimation techniques. The best values were deter-
mined by minimizing the weighted squared errors between modeled and simulated data
using the Levenburg-Marquardt algorithm (Press er al. 1992). In a similar way,
Rothschild er al. (1997) developed a numerical method for separating and estimating
growth and mortality coefficients using a stage- or size-structured population model and
an optimization formulation. A basic assumption when using inverse methods is that the
rates of mortality and development are constant within each stage. Rothschild et al’s
(1997) method permits the incorporation of time-related functions of the rates.

Inverse techniques have been used to estimate vital rates from field data. Huntley et al.
(1994b) used analytical solutions of a population dynamics model to estimate stage-
specific mortality and development of Calanoides acutus, an Antarctic species, as the
population emerged from overwintering diapause. Miller and Tande (1993) also
compared simulations with an age-within-stage model to stage abundance data of
Calanus finmarchicus. They determined stage durations by examining the temporal
progression of fractional abundances of the stages, and discuss the quality of sampling in
these estimations.

12.3.3 Evolutionary forces on the organism

Imagine a population of copepods or any other biological species. Within this
population assume a limited number of genetic recipes: DNA-based codes for building
a body, making enzymes for digestion, setting rules for allocation of surplus food to
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body tissues and to reproduction and so forth. Let us term such a recipe a ‘genetic
strategy’. Offspring inherit the genetic codes from their parents; let us for simplicity
assume they inherit everything from their mothers. We can calculate the instantaneous
rate of increase p of each such strategy i by

Ni(?)
In(———)
p=—210 (1235)

where N is the number of individuals carrying i and ¢ is the time period. If the
environment remains stable, or if the time period ¢ is sufficiently long, then p; describes
the growth rate of strategy i. As there always will be a maximum number of individuals
possible in any population (either because of resources, competitors, predators,
parasites, or a combination of all) the total population will gradually be dominated by
those strategies that have the highest rates of increase:

N@) = Z N;(0)e”™ (12.36)

The fitness of a strategy may be defined as the difference between its rate of increase and
the average rate of increase (r) of the whole population (the whole gene pool of
strategies) (Giske et al. 1993):

q’,‘ =p;i—r (]23?)

Over evolutionary time only those strategies that on average produce the highest rates of
increase may persist. Hence all strategies of life that exist among copepods or other
species, are the results of natural selection, where the criterion for long term survival is
maximization of the rate of increase p.

Evolution through natural selection introduces a biological force on the individuals
(Dawkins 1995; Giske et al. 1998a). Although this is a completely passive and
unconscious process, genetic codes will tend to produce individuals that live for the
maximization of their reproductive rates (Sibly 1989; Figure 12.1). This also means that
the lives of the individual organisms may be understood by the logic of natural selection,
and sometimes also predicted from ecological factors. By resolving equation 12.37, we
could find optimal decisions and trade-offs among developmental, physiological and
ecological variables. This could enable us to model how an organism will lead its life.

The three main demographic variables controlling the rate of increase of the strategy
are the fecundity (b), probability of survival from egg to reproduction (S), and the
generation time (2):

_ In(bS)

p=—> (12.38)

The survival can again be expressed as a function of the instantaneous mortality rate M

S = exp(—aM) (12.39)
By substituting for S in equation 12.32, we can write
b
Pi =!%)'—M (12.40)

which is an expression of what can be maximized through natural selection (Sibly 1989).
From equation 12.40 we can evaluate the fitness value of an action, and we can decide
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the genotype influences the phenotype:
life history, development, growth, behavior

the organism will, in its life, be exposed to
predators, competitors, parasites, food and
other resources and the physical environment

the organism will die

sexual reproduction will before reproduction,
make a genotype for

a new individual or

organism, with the p———

possibility for novelties
by recombination and
mutation of genes

find a mate and produce
offspring according to
genetic and acquired

reproductive potential

Fig. 12.1. The evolutionary premise for optimization theory in ecology: evolution
leads to adaptation by natural selection. Although evolution cannot be sure to find
the optimal solutions, it creates adaptations.

what to do among several alternatives. For instance, if a copepod could ‘choose’ among
several depths with variable food concentrations (impacting fecundity), temperatures
(impacting generation time) and light intensities (impacting mortality risk), then
equation 12.40 can be used to calculate the fitness effects of the decisions. In many
cases, the benefit of staying in warm, food-rich surface waters will be higher at night
(with low light intensity and predation risk from visual predators) than during daytime,
and there will be a benefit of diel vertical migration.

We can further split this equation into age-dependent processes by the Euler-Lotka
equation (Euler 1760; Lotka 1907; Stearns 1992):

1=) mylye™’ (12.41)
¥=1

Here we see that the optimal life-history strategy will depend on how behavior may
impact fecundity (my) or survival (/y) in this time period as well as in later periods.
Heavy reproduction may in some instances impact both current mortality risk and
future fecundity (e.g. by depleting energy reserves). Fitness maximization has implica-
tions far beyond these demographic variables. All aspects of life (biochemistry,
morphology, anatomy, physiology, life cycle, and behavior) can be optimized by natural
selection in order to maximize the expected rate of increase.

The Euler-Lotka equation will only find the precise value of p in an environment that
repeats itself from generation to generation. In variable environments, fitness is
maximized by a strategy that also minimizes intergenerational variation in the rate of
increase (Yoshimura and Clark 1993; Tuljapurkar and Caswell 1997). But for ecological
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modeling of zooplankton, the Euler-Lotka equation or a derivative of it will suffice in
most cases.

12.3.4 Further reading

Books with descriptions of individual budget dynamics:

Kremer, J.N. and Nixon, S8.W., 1978. 4 coastal marine ecosystem. Simulation and analysis.
Springer-Verlag, Berlin, 217 pp.

Clark, C.W. and Mangel, M., 1999. Dynamic state variable models in ecology: methods and
applications. Oxford University Press, Oxford, in press.

Kooijman, S., 1993. Dynamic energy budgets in biological systems. Theory and applications in
ecotoxicology. Cambridge University Press, Cambridge, 350 pp.

Mangel, M. and Clark, C.W., 1988. Dynamic modelling in behavioural ecology. Princeton
University Press, Princeton, NJ, 308 pp.

Metz, J.A.J. and Diekmann, O., 1986. The dynamics of physiologically structured populations.
Lecture Notes in Biomathematics 68. Springer-Verlag, Berlin, 511 pp.

Tuljapurkar, S. and Caswell, H., 1997. Structured-population models in marine, terrestrial, and
freshwater sysiems. Population and Community Biology Series 18, Chapman and Hall,
New York, 643 pp.

For a review of knowledge on calanoid copepods, useful for parameter calibration, see:

Mauchline, J. 1998. The biology of calanoid copepods. Academic Press, San Diego, 710 pp.

12.4 POPULATION MODELS

12.4.1 Populations described by one variable

The simplest and earliest models describe populations in terms of one variable, the
total number of individuals in that population. These models postulate that the rate of

change of the population number, N, is proportional to N (Malthus 1798; Pielou 1969):
dN
— =N 12.42
o ( )

Verhulst (1838) modified this equation by adding a non-linear term, giving the logistic
equation (Pielou 1969):

dN N
B rN(l _?) (12.43)

By adding a time delay term to the logistic equation, oscillations of the population can be
represented (Cunningham 1954).

' 12.4.2 Populations described by several variables — structured population
models

Life cycles of zooplankton species are complex with individuals developing through
different life stages. They are relatively long compared with bacteria, phytoplankton and
microzooplankton. Some modeling approaches use variables that structure the popula-
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tion with respect to age (age structured population models — ASM), stage (stage
structured population models — SSM), size (size structured population models — SiSM)
and weight (weight structured population models — WSM).

DISCRETE-TIME DIFFERENCE EQUATION MODELS AND MATRIX MODELS

Matrix models constitute a class of population models that incorporate some degree
of individual variability. In a recent overview, Caswell (1989) showed that they are
powerful tools for analyzing, for example, the impact of life-history characteristics
on population dynamics, the influence of current population state on its growth
potential, and the sensitivity of the population dynamics to quantitative changes in
vital rates. Matrix models are convenient for cases where there are discrete pulses
of reproduction, but not for populations with continuous reproduction. They are
not suitable for studying the dynamics of populations that live in fluctuating
environments.

Age structured matrix models (ASMM)

One of the first representations of age-structured dynamics was obtained by working
with discrete age-classes, often referred to as a Leslie matrix (see Caswell 1988, 1989,
1997). Suppose there are m age classes numbered 1, 2, ..., m, each covering an interval 7.
If N;, denotes the number of individuals in age class j at time ¢ and G; denotes the
fraction of the population in this age class that survive to enter age class j + 1, then

Njt1,041 = GjNj, (12.44)
Individuals of the first age class are produced by mature individuals from older age
classes:

N1 =Y ENj, (12.45)

=1

where F; is the number of age class 1 individuals produced per age class j individual
during the time step .
The system of equations 12.44 and 12.45 can be written in matrix form:

M 0 R i3 - Fu\ (N
N, G, 0 0 0 N,
Ny l¢+1)=| 0 G2 0 - O || N5y (12.44)
N 0 0 Gn1 0 J\N,

Such models were originally formulated for populations in which the individual age was
the main source of variability (Leslie 1945, 1948).

Stage- (SSM), size- (SiSM) and weight- (WSM) structured matrix projection models
The Leslie matrix has been modified to deal with size classes, weight classes and
developmental stages as the key individual characteristics of the population. Organisms
grow through a given stage or size/weight class for a given duration.
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The population projection matrix, often referred to as a Lefkovitch matrix (Lefkovitch
1965), has the form:

N P BB v By Ny
Ng Gl Pz 0 0 NZ
N l¢g+1)=| 0 G P35 - 0 N3 |(». (12.45)
N, 0 o0 Gm-1 Py )\ Nn

where F; is the size- (or weight- or stage-) specific fertility, G; the probability of surviving
and growing into the next size class, and P; the probability of surviving and remaining in
the current size class. G; and P; can be written in terms of the size-specific survival
probability ¢, and the size-specific growth probability (or probability of molting) y;:

G; = oy; (12.46)
P,' = o‘,‘(l = ?i) (124?)

The parameter y; can be estimated from the distribution of durations within each size
class (or weight class or stage). Caswell (1988, 1989) presented the use of different stage
duration distributions to estimate y;: geometric distributions, fixed stage durations for all
individuals, variable stage durations, and negative binomial distributions.

For a stable population, the dominant eigenvalue A of the matrix represents the
population growth rate and the corresponding eigenvector is the stable size (or weight or
stage) distribution (see Caswell 1989).

Structured matrix models including both stage, size, weight and age

The construction of models using both stage, size, weight, and age is possible (Caswell
1983, 1988, 1989) but such models are difficult to manipulate because of the large
number of categories required. For zooplankton species, individuals proceed through a
series of developmental stages with the probability of moving from one stage to the next
dependent on the time already spent in the stage, but independent of the time spent in
any previous stage. In such a model, individuals are classified by age within stages (or
size/weight classes), as was first done by Parslow ez al. (1979).

There are several variations of these matrix models, differing mainly in the expression
of vital rates, which can vary with time depending on external (e.g. temperature, food
concentration, competitors, predators) or internal (e.g. density-dependent) factors.

Examples of applications of matrix projection models for zooplankton population
studies are given in Table 12.5. Two examples are described below.

Davis (1984a) presented a copepod model that simulates the movement of individuals
through stages with a good representation of the duration of each stage. The model
considers age-classes, one for each time step, separating new recruits in a stage from
older individuals in the stage.

The transfer from one age class j to the next for non-molting individuals is given by:

M.j+1 = 0','(1 = 'Pi‘j)Nj'J'- (1248)

where /s the stage, o; s the stage-specific survival rate and y; ; the stage- and age-within-
stage-specific probability of molting.
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Table 12.5 Population dynamics models of zooplankton and ichthyoplankton.

MM matrix model; ASMM age structured matrix model; SSM  stage structured
model; CASM continuous-age structured model; CASiSM continuous-age and size
structured model; SASM stage and age structured model; WSM  weight structured
model; SiSM  size structured model; IBM individual based model; LEM Lagrange
ensemble model; CM  cohort model.

Species Authors Type of model
Salps
Thalia democratica Ménard et al. (1994) MM
Salpa fusiformis Andersen and Nival (1986) SSM
Medusa
Pelagia noctiluca Morand et al. (1992) MM
Annelids (larval stages)
Streblospio benedicti Levin et al. (1987) ASMM
Nephtys incisa Zajac and Whitlatch (1989) ASMM
Owenia fusiformis Thiébault and Dauvin (1991) ASMM
Pectinaria koreni Carlotti (1996a) SSM
Cladocera
Daphniasp. Frank (1960) ASMM
Sinko and Streifer (1967) CASM
Streifer (1974) CASISM
Argentesi et al. (1987) CASM
De Roos et al. (1992) SSM
Hogeweg and Richter (1982) IBM
Mooij and Boersma (1996) IBM
Cirripeds (larval stages)
Balanus glandula Roughgarden and Iwasa (1986) ASMM
Copepods
Copepod sp. Woods and Barkmann (1993) LEM
Caswell and Twombly (1989) SSMM
Hogeweg and Richter (1982) IBM
Diaptomus sanguineus Hairston and Munns (1984) ASMM
Eurytemora affinis Gaedke (1990) SSM
Euterpina acutifrons Sciandra (1986) SASM
Carlotti and Sciandra (1989) SASM
Carlotti and Nival (1992) SASM
Acartia tonsa Gaedke (1990) SSM
Acartia clausi Wroblewski (1980) SSM
Paracalanus sp. Hofmann and Ambler (1988) SSM
Paracalanus parvus Davis (1984b) SASM
Pseudocalanus sp. Davis (1984a, 1984b) SASM
Calanussp. Steele and Mullin (1977) cMm
Steele and Frost (1977) ™
Calanus finmarchicus Slagstad (1981) WSM
Davis (1984b) SASM
Miller and Tande (1993) SASM
Carlotti and Radach (1996) SASM

{continued)
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Table 12.5 Continued

Species Authors Type of model
Calanus finmarchicus Carlotti and Wolf (1998) IBM
Bryant et al. (1997) WsSM
Heath et al. (1997) WsM
Tande and Slagstad (1992) WSM
Calanus marshailae Wroblewski (1982) SSM
Calanus glacialis Slagstad and Tande (1990) WSM
Calanoides acutus Huntley et al. (1994b) SSM
Calanus chilensis Marin (1997) SSM
Metridia pacifica Batchelder and Miller (1989) IBM
Metridia lucens Batchelder and Williams (1995) IBM
Decapoda
Shrimps
Penaeus astecus George and Grant (1983) SiSM
Penaeussp. Grant et al. (1988) MM
Philocheras trispinosus Labat (1991a, 1991b) IBM
Krill
Euphausia superba Astheimer (1986) SiSM
Euphausia superba Hofmann et al. (1992) IBM
Crabs (larval stages)
Cancer magister Moloney et al. (1994) SiSM
Fish larvae
Engraulix mordax Lo et al. (1995) SSMM
Sardinops sagax Lo et al. (1995) SSMM
Striped bass Levin and Goodyear (1980) ASMM
Gadus morhua Werner et al. (1993) IBM
Malanogrammus aeglefinus Werner et al. (1993) IBM
Heath and Gallego (1998) IBM
Theragra chalcogramma Hinckley et al. (1996) IBM
Rose et al. (1996) IBM
Rose and Cowan (1993) IBM
van Winkle et al. (1993) IBM

Transfer to the first age class of the next stage by molting individuals is given by:

Nia = Z 0i7i, i N, j
j

(12.49)

Egg production by adult females (stage 12), contributing to the first age-class (eggs, stage

1), is calculated as:

Ny = Z a12F 12 jN1a

J

(12.50)

In this model, the time step is 1 day. There is a matrix calculation with a finite-difference
equation system. The transfer of animals from stage to stage and the mortality at each
stage are expressed as simple linear functions. The transfer rate y;; (day™ Y (or
probability of molting) from stage i to i + 1 depends on the stage but also on the age-
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class. The transfer rate is determined from stage duration, using a polynomial
approximation to the cumulative normal distribution function with mean equal to a
calculated mean duration (D;) and a standard deviation equal to 10% of the mean. The
function is monotonic and is equal to zero for the first age and sharply increases at D;.
The mean duration D; varies with temperature according to Belehradek’s equation (see
page 590). The mortality rate o; (day ') is constant for each stage i, but among stages,
mortality varies according to the susceptibility of that stage to physiological death,
cannibalism, and predation.

The fecundity Fis based on the temperature-dependent empirical equation of Corkett
and McLaren (1978) (see section 12.3). Davis’s (1984a) model gives a good representa-
tion of the duration of each stage and the model is a convenient basis for modeling
species of animals with stage development.

Miller and Tande (1993) present a population model of Calanus finmarchicus with two
matrices, one for the abundance in each age class of each stage and one for the associated
molt cycle fraction. At each time step Az, the stage duration D in the age class j of stage i
is determined by temperature using Belehradek’s equation (equation 12.32):

Djjr1=D;;+ and D;; =0. (12.51)

At
dj( T + b,‘)c"
Individuals are transferred to the next age class j + 1 of stage iif D; ; < 1, and
Nijr = ( V1= uf) Ni; (12.52)

If D; ; = 1, the molt cycle is completed, and the individuals molt to the first age class of
stage i + 1, such that:

Nisia= 3 (W= ) Nis (12.53)

i

With this model, it is possible to simulate the movement of individuals through stages,
with a realistic representation of the duration of each stage.

Hairston and Munns (1984) developed a model with interacting copepod and fish
populations using matrix projections to study the effects of copepod diapause switching
on system dynamics.

CONTINUOUS-TIME STRUCTURED POPULATION MODELS

McKendrick (1926) introduced an entirely different type of model for an age-structured
population. It describes the dynamics of the age distribution on a continuous-time basis
using partial differential equations, and is usually referred to as the McKendrick—Von
Foerster equation. This type of model has been developed to the extent that it can be
used to describe the dynamics of a population that is living in a fluctuating environment.
In addition, it can also be applied to situations in which more than one physiological
trait of the individuals (e.g. age, size, weight, and energy reserves) have strong influences
on individual reproduction and mortality. The movement of individuals through the
different structural classes is followed over time. Age and weight are continuous
variables whereas stage is a discrete variable.
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The general equation (Sinko and Streifer 1967) is:

On(t,a,m)  On(t,a,m) 0g(t,a,m)n(t,a,m)
ot Oa c4 om = —u(t, a, m) n(t, a, m)

(12.54)

where 7 is abundances of individuals of age @ and mass 1 at time 1.

Continuous-time and age structured population models (CASM)

The formulation which best introduces classical demographic modeling is the Von
Foerster equation (Von Foerster 1959). This equation describes population processes in
terms of continuous age and time as follows:

On(a, 1) i On(a, )

Y e —u(a, t) n(a, 1). (12.55)
The equation has both an initial age structure ¢ at ¢t = 0:
n(a,0) = py(a) (12.56)

and a boundary condition of egg production at a = 0:
00
n(0,0) = f F(a, Sg) n(a, ) da (12.57)
0

F'is a fecundity function that depends on age (a) and the sex ratio of the population Sg.
These kinds of equations are mathematically and computationally difficult to analyze,
especially if the environment is not constant (Nisbet and Gurney 1982). Equations 12.55
and 12.57 together constitute a continuous version of the entire Leslie matrix . Equation
12.57 corresponds to the first row of the matrix, and the rest of the matrix corresponds to
equation 12.55 (see Caswell 1989, 1997).

Thus, a system of ODEs can be obtained as an equivalent to Von Foerster’s PDE.

Gurney et al. (1983) developed a combination of the Von Foerster description with
simple time-delay models to describe insect life history. The classical continuous-time
description of the age structured population is described by PDEs with the integral
boundary condition transformed by a set of ordinary delay-differential equations
corresponding to a functional or developmental class of the species life history.

Continuous time and weight structured population models (CWSM)
The same type of equation as equation 12.55 can be used where age is replaced by weight
a * t a 2 L] ) 4
"(a’: ) oew Ta : Ll L e (12.58)

The weight of the individual w and the growth g are influenced by the temperature T, the
food P and by the weight itself through allometric metabolic relationships.
The equation has both an initial age structure ¢ at ¢ = 0:

n(w, 0) = @y(w) (12.59)

and a boundary condition of egg production at w = wy:
N(0,7) = f F(w, Sg) n(w, f) dw (12.60)
0

F is the fecundity function which depends on weight (w) and the sex ratio of the
population Sg.
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Bryant et al. (1997) present in detail the numerical realization of this equation. This
requires a representation of the continuous distribution n(w, t) by a set of discrete values
n;(t) that are spaced along the weight axis at intervals Aw; = w;,; — w;. Using upwind
difference discretization to solve the equations, and recasting the representation in terms
of the number of individuals in the ith weight class, N;(t) = n;(¢) Aw;, the dynamic
equation becomes:

dN; _ | gi-1 |ar Tl
" -[Awi_l]m_lv[Awi]N, W (1261)

where (1) replaces u(w;f). This describes the dynamics of all weight classes except the
first (i = 2) and last (i = Q). If R(¢) represents the total rate of recruitment of newborns
to the population, and all newborns are recruited with the same weight wy, then the
dynamics of the weight class covering the range Aw, are:

dN 21
bl Sy » T .. _ g
It { 1]N1 N, (12.62)

If we assume that individuals in only the Oth weight class are adult, and that adult
individu. s expend all assimilated energy on reproduction rather than growth, the
population dynamics of the adult population is given by:

dNg_1 | g0
-2 ‘[AwQ_, No_1 - #oNo (12.63)

and the rate of recruitment of newborns to the population is
R(#) = B(H)No(?) (12.64)

where B(f) represents the per capita fecundity of an average adult at time ¢.

The weight intervals Aw; increase with class number i as an allometric function. The
growth rate g(w, ¢) can be calculated by a physiological model (see section 12.3).

Slagstad and Tande (1990) and Tande and Slagstad (1992) present other applications
of weight structured population models (WSM) to Calanus sp. populations (see Table
12.5).

To demonstrate how various factors affect the pattern of recruitment of crab larvae,
Botsford et al. (1994) transformed equation 12.58 into a set of ODEs by the method of
characteristics, and developed an analytical solution to these ODEs.

STAGE-STRUCTURED POPULATION MODELS BASED ON ODEs

Zooplankton populations often have continuous recruitment and are followed in the
field by observing stage abundances over time. A large number of zooplankton
population models deal with population structures in terms of developmental stage,
using ODEs.

Simple stage structured population models
A single ODE can be used to model each development stage or group of stages. An
example of such a model is given by Wroblewski (1980) to describe the dynamics of
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Acartia clausi. He subdivided the population into four groups: eggs, nauplii, copepodites
and adults. The equation system is:

eges D R—aaNy - s (12.65)
nauplii % = a1 Ny — 3Nz — i, N (12.66)
copepodids % =op Ny — o3N3 — 3 N3 (12.67)
adults % = a3N; — u,Ns (12.68)

where R is recruitment, o is the molting rate to next stage, and p is the mortality rate.

The system of ODEs is solved by Euler or Runge-Kutta numerical integration
methods, usually with a short time step (approximately | h). This ODE system is quite
similar to the Lefkovitch matrix. In this model, the transfer of animals from stage to
stage and the mortality at each stage are expressed as simple linear functions. The
transfer rate a; day ™' is constant. The underlying assumption is that there is a
continuum of ages of individuals in each stage. Thus some animals are always ready to
mature to the next stage while others still require a full development time. Wroblewski
takes o; = 2/D,, where D, refers to the development time of the ith stage. Because of the
exponential formulation of copepod development, 87% of the individuals present at
time zero will progress to stage i + 1 in the time interval D; and the remaining 13.5% will
take longer to complete their development. If we take o; day™' equal to 1/D; the
proportion of laggards becomes 36.8%. Generally, this second formulation is used
because this model cannot mimic realistic development time within a stage.

The mortality rate p; day~! is also constant in each stage, but among stages
mortality can vary according to the susceptibility of that stage to physiological death,
cannibalism and predation.

Gaedke (1990) presented similar stage structured population models for two interact-
ing populations (Acartia tonsa and Eurytemora affinis) with nine groups of stages of
nauplii (N) and copepodites (C): eggs, N1 to N3, N4 and N5, N6 and C1, C2 and C3, C4
and C35, and adults. In her paper, mortality rates are based on starvation, low salinity,
predation on nauplii by Acartia tonsa, and predation by fish and carnivorous inverte-
brates. The formulation of the different components is fully described in the annexe of
her paper. The model gives unrealistic stage abundance, beginning with a synchronous
cohort, because minimum durations within each stage are not enforced. Thus, the
generation time is artificially shortened due to a numerical diffusion of individuals
through the stages. In the case of a stable environment where populations develop over
several generations (small species), this effect would not be significant, and in such cases
this model would be a simple and useful approach.

A similar model was built by Marin (1997) to describe the dynamics of Calanus
chilensis. His model was built and run using STELLA-II version 3.07 (High Performance
Systems, Inc), an interactive, iconographic software package. The basic equations and
the diagram of the stage structured population model are presented in full detail in
Marin’s (1997) paper.

Andersen and Nival (1986) present a model of the population dynamics of salps
considering five stages of oozooids and five stages of blastozooids. Assuming that each
stage represents individuals of a given weight range, they computed a growth rate based
on physiological functions (feeding and excretion) that is temperature- and food-
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dependent, and related the demographic parameters (transfer, mortality and reproduc-
tive rates) to growth rate.

Hofmann and Ambler (1988) modeled the population dynamics of Paracalanus sp.
within a model of a pelagic ecosystem. They used five variables for five groups of stages,
with the model unit being the biomass of individuals in each stage. The change in
biomass in each stage was caused by movements of individuals through the stage and
also by the flux of matter linked to metabolism of the individuals.

Stage and age-within-stage structured population models

Sciandra (1986) used an intermediate model to those of Wroblewski (1980) and Davis
(1984a) to model copepod population dynamics. His model had subdivisions within each
stage and the movement of individuals through these subdivisions was simulated using
ODEs. Because individuals stayed for a set time in each subdivision, these subdivisions
cannot be termed ‘age-classes’ as in Davis’s (1984a) matrix model.

Carlotti and Sciandra (1989) and Carlotti and Nival (1992) developed a model with
two types of equation: finite-difference equations to transfer organisms from one age
class to the next in each stage, and ODEs to represent the movement of organisms from
any age class of one stage to the first class of the next stage. The time step of the transfer
from one age class to the next was set at 6 h, whereas the time step of the movement from
any age class of stage i to the first class of stage i + 1 was set at 1 h. The system of ODEs
was solved using a fourth-order Runge-Kutta numerical integration. The model
formulations are described below.

The first age-class of stage i:

N;
—ddt“ = Ri — %1 N1 — ;1 Nia (12.69)
Other age-classes of stage i:
dN;;
1 S — _ai‘jNiJ' = ui,le'J (1270)

The rate of recruitment of newborns to the population in the first age class of eggs is the
number of eggs spawned by mature females in the adult stage. The rate of recruitment of
newly molted individuals in the first age class of a stage is:

m
Ri=) 0;1;Ni1; (12.71)
7=
When the transfer from one age class to the next occurs, the individuals of the last two
age classes (m —1 and m) are grouped in the last age class, the individuals of all age
classes j are moved to those following, and the first age class is set to zero.

Nim = Ny + Nim—1 (12.72)
Nij=Nij1 (12.73)
Nip=0 (12.74)

This process simulates the movement of cohorts of individuals through each stage. In a
similar way to the matrix models that include stage and age, the structure of age-within-
stage models allows the representation of different stage duration distributions to estimate
molting probabilities. Mortality rates also can change with age within stage. Carlotti and
his co-workers represented changes in the demographic parameters (molting rate,



POPULATION MODELS 605

mortality rate, egg production rate) as functions of individual properties of the organisms
in the cohort (size, weight, growth rates), and the age distributions of the demographic
parameters became a result of their simulations. Details of the different representations of
the demographic processes in such structure are presented in the next sections.

Demographic parameters as functions of individual growth properties

In their model Carlotti and Sciandra (1989) represent the molting rate from stage i to
stage i + 1 as a function of weight and growth rate. Molt determination is complex, but
it is reasonable to believe that molting occurs only when a set of fundamental biological
conditions are met (Carlotti 1996b).

The molting rate depends first on weight; animals should reach a critical molting
weight. To represent a certain variability around the critical molting weight, S-shaped
functions can be used. Carlotti and Sciandra (1989) used a Michaelis—-Menten law with
exponent. The increasing value of the exponent allows for reduced variability around the
critical weight. Other S-shaped functions such as the hyperbolic tangent could be used.
The molting rate depends also on the recent physiological condition of the organisms.
Carlotti and Sciandra (1989) propose a linear function of the average specific growth
rate (ASG) calculated over a given period At:

ASG,:lf‘ Gij 4 (12.75)
Y A 1—Ar W:’.j .
where G; ; and W, ; are the growth of individuals in age-class j of stage i. Carlotti and
Sciandra (1989) introduced a function whereby ingestion decreased when the weight of
organisms in stage i was above the critical weight. As a consequence, individuals that
reached the critical molting weight could molt, but those that remained in that stage
diminished their probability of molting because of reduced ingestion and the decrease in
the ASG value.

Mortality rate is usually considered constant in a stage. In fact, mortality rate varies as
a function of food concentration, temperature and even age within stage (Carlotti and
Nival 1992). Carlotti and Sciandra (1989) used an increasing hyperbolic function with
mortality dependent on the specific growth rate. This function allowed for high mortality
when energy budgets were unfavorable and low mortality when they were favorable. The
average specific growth rate (ASG) could be used instead of the instantaneous specific
growth rate to represent the effect of recent feeding history on the mortality rate. Egg
production occurred when females reached a critical mature weight, following a
sigmoidal function (similar to that used for the molting rate).

The links between physiological processes and demographic parameters suggested in
this model resulted in stage duration distributions that were realistic (Carlotti and Nival
1992) as well as the frequently observed asymmetry of stage distributions in cultivated
populations (Carlotti and Sciandra 1989).

Another type of continuous-time, physiologically structured population has been
developed by De Roos et al. (1992) with the use of a numerical method called ‘escalator
boxcar train’ (Goudriaan 1986). We do not know any examples where this has been
applied to zooplankton species.

Demographic parameters as functions of age within stage

It is possible to simplify Carlotti and Sciandra’s (1989) model, by developing age-
dependent functions of molting rate, mortality rate and fecundity, and by removing all
the physiological functions. The use of a gamma distribution to represent the age-
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dependent molting rate, with its shape variations depending on food and temperature,
appears to give a good parameterization (Souissi et al. 1997). In comparison with the
simple model presented by Wroblewski (1980), the use of age-dependent molting rates
allows for improved simulations of the time lags between stages in situations where
cohorts are clearly identified. A similar model (called multi-transfer model) was used by
Jellison et al. (1995) to identify stage durations and mortality rates.

DELAY DIFFERENTIAL EQUATION MODELS

Gurney et al. (1983), Nisbet and Gurney (1982), and Gurney et al. (1986) developed a
modeling approach for species whose life history is made up of a number of well defined
physiological stages, within which all individuals are assumed to be identical in feeding
behavior and probability of death. The progress of an individual through a particular
stage was quantified by a development index representing the state of development or the
‘physiological age’ of the individual within that stage at a particular time. The
development index increased at the same instantaneous rate for all individuals in the
stage at a given time. Maturation out of a stage occurred on achieving a fixed value of the
development index.

Mathematically, this modeling approach is represented by a system of coupled ODEs
for estimating population numbers, and delay-differential equations (DDEs) for
estimating through-stage survival and stage duration. Crowley et al. (1987) give a
complete description of such a model applied to a zygopteran with aquatic larval stages.
No examples were found for copepods although the model structure is convenient for
them. An extension of this model type was applied to the study of species with diapause
stages (Gurney et al. 1992).

Several other models that include delay in stage recruitment have been used for the
estimation of demographic parameters (for a review see Jellison et al. 1995)

STRUCTURED POPULATION MODELS TO ESTIMATE DEMOGRAPHIC PARAMETERS

A variety of cohort models have been developed for applying inverse methods; vital rates
(e.g. mortality, stage duration) can be derived by fitting a population model to observed
data (see Manly 1989 and 1990). All the structured models presented in the previous
sections have been used for parameter identification: matrix models (Caswell and
Twombly 1989), models with ODEs and models with DDEs (Rigler and Cooley 1974;
Matthews et al. 1978; Parslow et al. 1979; Sonntag and Parslow 1981; Hairston and
Twombly 1985; Saunders and Lewis 1987; Hay ef al. 1988; Wood and Nisbet 1991;
Jellison et al. 1995; Ohman and Wood 1996). The details of the techniques have been
explained by Aksnes er al. (1997) and will not be repeated here.

STOCHASTICITY IN STRUCTURED POPULATION MODELS

Stochasticity can be included in structured population models either by influencing the
environmental variable or the demographic process and vital rates. Stochastic events can
be introduced into matrix models (Caswell 1989), as well as structured population
models based on PDEs, ODEs and DDEs (Nisbet and Gurney 1982). However, no such
examples have been found for marine zooplankton populations.

12.4.3 Individual-based models of a population

Individual-based models (IBMs), also called i-state configuration models (Metz and
Diekmann 1986; Caswell and John 1992; Maley and Caswell 1993), describe population
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dynamics by simulating the birth, development, and eventual death of a large number of
individuals in the population. As powerful computers become more accessible, numer-
ous IBMs of zooplankton populations have been developed, mainly to couple them with
circulation models (see section 12.6.3). An increasing number of papers have appeared
that have used this individual-based approach (De Angelis and Gross 1992; van Winkle
et al. 1993).

BUILDING AN IBM

Maley and Caswell (1993) briefly presented the structure of IBMs, and the differences and
the links between structured population models and individual-based models. Despite
significant progress on model formulations for physiologically structured populations,
several problems remain intractable. These problems include methods for dealing with the
local character of many ecological interactions and the difficulty of jointly studying two
complex ecological factors (i.e. investigating both the dynamic effects of age-structure and
those of spatial variability). One solution to these problems is to focus on IBMs.

IBMs treat populations as collections of individuals, with explicit rules governing
individual biology and interactions with the environment. Each biological component
can change as a function of the others. Each individual is represented by a set of
variables that store its i-state (e.g. age, size, weight, reserves, etc.). These variables may
be grouped together in some data structure that represents a single individual, or they
may be collected into arrays (e.g. an array of all the ages of the individuals, an array of all
the sizes of the individuals, etc.), in which case an individual is an index number in the set
of arrays. The i-state of an individual changes as a function of the current i-state, the
interactions with other individuals, and the state of the local environment. The local
environment can include prey and predator organisms that do not warrant explicit
representation as individuals in the model. Population-level phenomena (e.g. temporal
or spatial dynamics) or vital rates can then be inferred directly from the contributions of
individuals in the ensemble.

The model starts with an initial population and the basic environment, then monitors
the changes of each individual. At any time 7, the i-state of individual j changes as:

Xif(0) = Xij(t—d) + f(Xuj(e—db),... . X je—dv), ..., T,..) (12.76)

where X;;(1) is the value of the i-state of individual j, and f'is the process modifying X;;,
as a function of the values of different i-states of the organism, and external parameters
such as the temperature 7. When the fate of all individuals during the time step df has
been calculated, the changes to the environment under the effects of individuals can be
updated. Any stochastic process can be added to equation 12.76.

A simple example of a zooplankton IBM was presented by McLaren (1997) to study
biases in estimating secondary production from copepod cohorts. This model needed
three variables for each individual: the weight, the stage, and a variable specifying if the
individual was dead or alive. The model was run with 50 000 individuals, each individual
beginning with an initial weight drawn from a lognormal distribution. The weight of
stage i at time 7 was

W)= (14 G) Wit -1) (12.77)

where the growth rate G; had been drawn from a random normal distribution. When the
weight exceeded the critical weight for entering in a new stage, then

Stage,(f) = Stage(r — 1)+ 1 (12.78)
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The probability of death M; was taken to be constant for each stage, but could vary
among the stages. For each individual for each time step, a random uniform variate
U(0, 1) was generated, and if U(0, 1) was greater than Af;, the individual survived to the
next time step. Weight increments of individuals that lived to the end of the simulation
period were accumulated as ‘growth’ production, whereas the weight increments of dead
individuals were accumulated as ‘lost’ production. Actual production was the sum of
growth and lost productions.

Batchelder and Miller (1989) presented an IBM of Metridia pacifica, with the basic
equations 12.77 and 12.78, but with greater detail in the representation of physio-
logical functions. Individual growth was calculated as assimilation less respiration
according to functions presented in section 12.3. The inter-individual variation in
physiology was represented because the characteristics (growth parameters, mortality
coefficient, and parameters connected with reproduction) of each individual were
chosen at random. In addition to a constant stage-dependent mortality, individuals
could also die by starvation, when their weights fell below the mean weight of the
previous stage. Daily egg production by mature females was generated from a normal
distribution of parameters of clutch size, clutch frequency, and total number of
clutches. The model described the development of individuals and generated a
population history over one year. To solve the problem of an increasing number of
individuals (to the result of reproduction), which becomes too large for storage and
increases the computational effort, Batchelder and Miller (1989) randomly selected a
fractional sample (1/5) of the population when it was close to a maximum number
(100000 individuals in their simulation). Subsequent abundance reports were then
multiplied by five. Similarly, Rose et al. (1993) studied different aspects of such
resampling techniques with an IBM of fish.

In a refined version of their IBM, Batchelder and Williams (1995) represented the
effects of vertical food distributions on individual growth and vertical distribution. In
this version, the effect of temperature (the external driving variable) on biological
functions was also taken into account. The results were presented in terms of individual
weight trajectories and stage frequency distributions over time. A similar example of an
IBM with a stochastic component was presented by Labat (1991a, 1991b), where the
population dynamics and temporal changes in size structure of a shrimp species was
simulated.

With the aim of coupling an IBM of Calanus finmarchicus with a circulation model of
the Georges Bank region, Miller et al. (1998) developed a simple model that had six
variables: three for position, one to register the individual as dead or alive, one for the
stage, and one to define the relative age in the stage. A temperature-dependent fraction
of the molt cycle was incremented at each time step, as in equations 12.77 and 12.78.
Copepodite stage 5 had the possibility of entering a resting stage. A reproductive
function with a temperature-dependent maturation time for clutches, was added when
individuals became females.

To represent both the dynamics of a zooplankton population with an IBM and its
interactions with the trophic environment, realistic numbers have to be simulated. The
techniques used by Batchelder and Miller (1989) in fractionating the population are not
always convenient. Another method is to assume that the basic unit of an IBM (usually a
zooplankton individual) actually represents more than one individual. The individuals in
the unit should be identical, as for a group of individuals that are born almost
simultaneously and have similar mothers. Hogeweg and Richter (1982) used this
approach to group eggs produced by females of similar size. Woods and Onken (1982)
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termed a similar approach the ‘Lagrangian-ensemble method’, which was a modeling
technique in which identical individuals born at the same time were grouped in one unit
(also called a ‘family’ or ‘particle’). They first applied this method to phytoplankton
cells, and then to zooplankton (Woods and Barkmann 1993, 1994, 1995).

Carlotti and Wolf (1998) presented an application of the Lagrangian-ensemble
method to the population dynamics of Calanus finmarchicus coupled with a 1-D
ecosystem model, where new units were formed by grouping the eggs produced by
females that occurred in the same depth layer. To simulate the annual ecosystem
dynamics with realistic numbers of copepods (> 150000 ind. m ~?), the number of units
could not exceed 3000. Thus units could group up to 500 eggs at their time of creation.
However, the number of units was large enough for producing realistic statistical
distributions of the copepods in the water column. Carlotti and Wolf’s (1998) model
simulated the movements of organisms in relation to light (daily migration) and food
concentration, similar to Batchelder and William’s (1995) model for the physiology of
organisms, but with a supplementary state of fatty reserves.

Several IBMs have been developed for the early life history of fish populations (see
review by Tyler and Rose 1994). Techniques of resampling (Rose et al. 1993) or
grouping of individuals (Scheffer er al. 1995) have also been presented for fish models.
In recent studies by Hermann et al. (1996), Werner et al. (1996), Hinckley et al. (1996),
Gallego and Heath (1997) and Heath and Gallego (1997), detailed physiological
processes were introduced into IBMs of fish coupled with circulation models. These
approaches attempted to derive conclusions about the population based on the distinct
and unique life histories of the individuals. The coupling of IBMs to spatially explicit
physical models adds the space dimension that is necessary to include environmental
constraints that affect individuals as they move in an environment. These constraints
include regions of poor growth, increased mortality, dispersion, etc. The approach
integrates the unique temporal and spatial history of the individual larvae, each of which
is exposed to different prey concentrations and physical parameters. In this manner, the
growth of individual larvae can be understood in terms of a detailed time history of the
food available to the larva, which itself is a function of the unique trajectory of each
larva through the prey field, and the ability to encounter (and capture) the prey (see page
578).

OBJECT-ORIENTED PROGRAMING (OOP)

Object-oriented programing (OOP) is a technique that has been applied to IBMs
recently. In OOP, the individuals, interaction structure, and environment are all defined
as objects. Papers by Baveco and Lingeman (1992), Silvert (1993) and Maley and
Caswell (1993) give good introductions to OOP illustrated by simple examples. There are
very few examples of models using OOP for zooplankton populations. Laval (1995,
1996, 1997) presented such a model to simulate the development of a tunicate bloom,
taking account of the physiology of salps and the colonization of space by its members
with their spatial interactions. Population dynamics models based on OOP have been
developed for cladocerans and copepods (Hogeweg and Richter 1982; Mooij and
Boersma 1996).

CONSTRAINTS IN BEHAVIOR

IBM:s are focused at resolving physiological and behavioral differences within popula-
tions. In this way, IBMs can describe population effects caused by individual variability
more precisely than can SPMs. However, in standard IBM:s this is done by specifying
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how organisms respond to their environment, either by a fixed rule or by an elaborate
IF-ELSE IF table. This may not always help the modeled individuals to behave in an
evolutionarily optimal way. There are many things that can happen to a copepod, and it
is not possible to combine all events in a predescribed decision matrix. Neither would the
modeler know the appropriate response in many of these situations. Classical IBMs with
defined behavioral rules are therefore best suited for simulations in rather simple and
stable environments.

Alternatively, IBMs can derive their trade-off rules from life history theory, as
suggested by Tyler and Rose (1994). A different approach would be to model the
optimal decisions, and then let the population act accordingly on an individual basis, as
in Stochastic Dynamic Programing (SDP; Clark and Mangel 1999). This type of forcing
has been used by Fiksen and Giske (1995) and Fiksen and Carlotti (1998). However,
SDP also has inherent weaknesses. The method can easily solve state-dependent or
density-dependent optimal behavior in a changing environment, but cannot combine
state- and density-dependencies in one model. The ING method (Huse and Giske 1998),
described on page 627, can overcome many of these obstacles, but at a price of high CPU
demand.

12.4.4 Models of interactions between zooplankton populations

In this section we look at models of direct interactions between species. Indirect
interactions such as competition for food are treated in section 12.5. Direct interactions
can be of different types: predation by one species on another, crossed predation of
adults of several species on juveniles of other species, and cannibalism by adults on
juveniles.

INTERACTION MODEL WITH TWO VARIABLES
Simple models of two-species interactions take the form:

dNy

W = l’lNl = klNlNz (12?9)
% = erz e nglNg. (]280)

These population models represent some special experimental situations or typical field
situations. As an example, Legovic (1987) studied the dynamic properties and the steady
state of a simple predator—prey model to represent the predation of the jellyfish Pelagia
noctiluca (N, in mg C m ~>) on fish eggs and zooplankton (¥, in mg C m—>):

dNy N Ny

—=rNj| 1 —— | — k1N — k3N 12.81
= 1( K) 1 2(k2+N1) 3N} ( )
dN, Ny

—= = k4N — ks 12.82
5 ak1 2(k2+N1) sIN2 ( )

where r is the intrinsic growth rate of zooplankton (day™'), K the carrying capacity of
the prey population, k; the maximum specific predation rate of jellyfish (day ~'), k, the
half-saturation constant (mgC m~3), k; the specific mortality by other predators
(day 1), k4 the conversion of prey biomass into jellyfish biomass (no units), and ks the
specific mortality of jellyfish (day —!). The results indicate different causes of an increase
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in numbers of jellyfish, which include an increase in prey, the decrease of carnivorous
competitors, and the decrease of jellyfish predators.

Gaedke and Ebenhoh (1991) presented an interaction model between two estuarine
species of copepods Acartia tonsa and Eurytemora affinis, with equations similar to
equations 12.79 and 12.80, but with (1) predation by Acartia on the two species (N; is
replaced by N, in the second term on the right hand side of equation 12.80), (2) a term of
biomass gain of Acartia by this predation, and (3) a density-dependent loss term caused
by predation by invertebrates or starvation of the two species. This simple model did not
result in stable coexistence between the two species with a reasonable parameter range
under steady-state conditions. A more complex structured model was also built for
comparison (see below).

Note that simple deterministic models of a number of ecological interactions can
induce chaotic behavior, comparable with many field observations (Scheffer 1991).

POPULATION INTERACTIONS USING STRUCTURED POPULATION MODELS

Direct and indirect interactions between two estuarine copepods Eurytemora affinis and
Acartia tonsa were studied by Gaedke (1990) and Gaedke and Ebenhoh (1991) using two
stage-structured population models with stage-specific interactions (with similar equa-
tions to equations 12.65-12.68) and abiotic and biotic forcing variables: temperature,
salinity, primary production, phytoplankton species composition, and seasonal abun-
dance of fish, carnivorous zooplankton (mysids, chaetognaths and coelenterates) and
Noctiluca miliaris. The stage-structured population models allowed the predation of
large individuals of A. ronsa (copepodites 4 to adults) on nauplii of both species to be
represented. Predation on nauplii depended on the combined abundances of predator
(C4 to adults) and prey (eggs and nauplii) stages and was calculated for each stage. The
results of this detailed numerical model were compared with results obtained using a
simpler model with two variables. Greve (1995) presented a model of mutual predation
between Calanus helgolandicus and Pleurobrachia pileus.

Carlotti and Slagstad (1997) developed an ecosystem model of the Greenland Sea in
which zooplankton was represented by two copepod populations of Calanus hyperboreus
and Oithona similis. The simulations indicated that the predation of Calanus on Oithona
was necessary to sustain the Calanus population. C. hyperboreus is assumed to feed
preferentially on phytoplankton, but supplements its diet with Qithona. A first grazing
value (G1) with phytoplankton as the only food item was calculated with a type I feeding
function (see Table 12.2). Then a second grazing value (G2) was calculated on the food
constituted by phytoplankton plus the biomass of Qithona above a threshold biomass.
The real predation was calculated as the difference between the two calculated grazing
values (G2 — G1).

Cannibalism has been shown to occur in zooplankton (Daan er al. 1989), and a few
theoretical models have investigated the consequences for the population dynamics
(Gabriel 1985; Van den Bosch ez al. 1988).

12.4.5 Further reading

Cushing, J.M.. 1977. Integrodifferential equations and delay models in population dynamics.
Lecture Notes in biomathematics 20. Springer-Verlag, Berlin, 196 pp.

McDonald, N., 1978. Time lags in biological models. Lecture notes in biomathematics 27.
Springer-Verlag, Berlin, 112 pp.
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Metz, J.AJ. and Diekmann, O., 1986. The dynamics of physiologically structured populations.
Lecture notes in biomathematics 68. Springer-Verlag, Berlin, 511 pp.

Wood, S.N. and Nisbet, R.M., 1991. Estimation of mortality rates in stage-structured
populations. Lecture notes in biomathematics 90. Springer-Verlag, Berlin, 101 pp.

12.5 MODELS OF ZOOPLANKTON COMMUNITIES

12.5.1 Zooplankton bulk models in ecosystem models

THE REPRESENTATION OF HERBIVOROUS ZOOPLANKTON IN NPZ-TYPE
ECOSYSTEM MODELS

Modeling of ocean biogeochemical processes developed rapidly in the last decades
and a number of text books on marine ecosystem modeling and related techniques
(e.g. data assimilation) have been published. The book by Evans and Fasham (1993)
presents a synthesis of the model-building process at the ecosystem level and linked
aspects: level of resolution, linkage between physical, chemical and biological
components, representation of trophic functional units and associated processes. A
chapter devoted to zooplankton modeling describes the difficulty of representing very
diverse groups of organisms with one or two variables. Previous monographs by
Steele (1974), Kremer and Nixon (1978), Platt er al. (1981), Nisbet and Gurney
(1982), Walsh (1988) and Fransz ef al. (1991) also provide useful introductions for the
student.

In the last two decades, ecosystem models have been developed to simulate more
site-specific situations (Fasham er al. 1990; Hofmann et al. 1980; Hofmann 1988;
Hofmann and Ambler 1988). These models have mainly used deterministic differential
equations to describe ecosystem dynamics, although some papers have explored
stochastic approaches to modeling (Fasham 1977; Kremer 1983). Models of pelagic
ecosystems have been reviewed by Totterdell (1993) and the modeling of the
zooplankton compartment in ecosystem models has been treated by Anderson er al.
(1993).

The representation of zooplankton

In ecosystem models, the zooplankton compartment corresponds to a highly aggregated
entity with organisms covering a large size range (Table 12.6). In Fasham et al.’s (1990)
model, a one-compartment zooplankton model integrated organisms from bacterivor-
ous flagellates through ciliates, copepods, and euphausiids (all of which may be partly
herbivorous or carnivorous), to wholly carnivorous chaetognaths. To take into account
the functional diversity of zooplankton, some modelers have divided zooplankton into
two or more size classes (e.g. Frost 1987; Moloney and Field 1991), and such models will
be described further in sections 12.5.2 and 12.5.3.

The ultimate goal of many ecosystem models is to embed the ecosystem model in a 3-
D general circulation mode] from the mesoscale (e.g. Flierl and Davis 1993; Dadou et al.
1996) to basin scale (Wroblewski er al. 1988). The models have to be as detailed as
necessary but as simple as possible (see Evans and Fasham 1993).

The simplest model has three components: nutrient (), phytoplankton (P) and
herbivorous zooplankton (Z). Such models are termed ‘NPZ’ models. They are driven
by physical processes such as mixing or upwelling, which introduce nutrients into
the euphotic zone and are closed at the upper level by some ‘mortality’ of herbivores (e.g.
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Steele and Henderson 1981; Evans and Parslow 1985). The interactions between the
three components can be expressed in mass units per m>:

dN /dt = input — phytoplankton uptake

+ zooplankton metabolic losses (12.83)
dP/dt = phytoplankton uptake — zooplankton grazing (12.84)
dZ [dt = assimilated food — zooplankton metabolic losses
— predation (12.85)
where:
B input = p(No — N), p being the mixing rate from a deep high-nutrient source of
constant concentration No
B phytoplankton uptake = n(N)f(P), where n(N) is some nutrient uptake function and
f(P) is a function representing self-shading
B zooplankton grazing = g(P)Z, where g(P) is the grazing function
B zooplankton egestion = a(P)Z, where a(P) is the egestion rate and
a(P) = (1 — 0)g(P)
B assimilated food = grazing — egestion = ag(P)Z, where « is the assimilation rate
B zooplankton metabolic losses = e(P)Z, with e(P) = Baug(P), where f is the excretion
rate
B predation = a(l — B)g(P)h(Z)Z, where h(Z) parameterizes predation by higher

trophic levels.

Explanations for the formulations of processes and the values of parameters concerning
nutrients and phytoplankton can be found in Steele and Henderson (1981). Here, we will
focus on the processes relating to zooplankton. Some formulations for g(P), a(P), e(P)
and A(Z) are presented in Table 12.7.

Steele (1974) represented zooplankton as a single growing cohort (age class) of
mesozooplankton. The cohort was represented by two equations, one equation for the
rate of change of individual weight from W, to W (in mass unit per individual), and one
equation to represent the decrease of individual numbers in the cohort from N; to N (in
numbers of individual per m?) as a result of density dependent mortality and predation.

dW /dt = assimilated food — metabolic losses (12.86)
dN /dt = density dependent mortality + predation (12.87)
where:

B assimilated food = fg(P)W 7, where f is the assimilation rate and 0 < f < 1

B metabolic losses = Ag(P)W®” + yW"7, with the first term proportional to the
assimilated food and the second term independent of food intake

B density dependent mortality = —vw(N — N\ (W — W)/(H + NW)

B predation = A'(N)N, and A'(N) parameterize the predation by higher trophic levels.

The combination of the two equations gave the changes in zooplankton biomass. When
the weight reached the maturity weight, the growth rate became storage for reproduc-
tion, and reproduction occurred after a given delay. The adults were then lost to
predation and a new cohort was born. Landry (1976) presented a slightly extended
version of Steele’s (1974) model with the creation of a cohort each day and some
modification in the processes. Note that the mortality function (4) in Steele’s (1974)
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Table 12.7 Mathematical formulation of processes linking zooplankton to other
variables in ecosystem models.

P phytoplankton or food; Z zooplankton; g(P)

a(P)

(See quoted references for the meaning of parameters.)

grazing rate;
assimilation rate; e(Z) excretion or respiration rate; h(Z) predation rate.

Formulation Authors Zooplanktonic organisms
Zooplankton grazing
9(P) = lnaxP Andersen and Nival (1988) salps
9(P) = Imax(1 — &72P) O'Brien and Wroblewski (1973)  copepods
Wroblewski and O'Brien (1976)  copepods
9(P) = Ipaxa(1 — €7*F) Franks et al. (1986) copepods
g(P) = Ipax(1 — e #P=F) Wroblewski (1977) copepods
Andersen et al. (1987) copepods and

_ mexP
g )_a+P
_"'rnau(P2
g(P)""a_i_Pz

e (P=P")
00 = E-m)

Zooplankton assimilation
a(P) = ag(P)

E, (P-P)
S(P) = max€ €*

Emax =+ E(QQ{P_P!) = 1)

Scheffer (1991)
Doveri et al. (1993)
Steele and Henderson (1981)

Steele (1974)

Walsh (1975)
Evans and Parslow (1985)
Frost (1987)

Robinson et al. (1993)

Steele and Henderson (1981)

Wroblewski (1977)

Zooplankton excretion and/or respiration

e(Z)y=20
e(Z) =0y
&(2) = 5g(P)

e(Z) =ag(P) + 0

Food-dependent mortality

h(Z)=a ifP<P
b ;
h(Z)z’—:,qLc itP>P

h(Z) = aexp (—-b ;)

Fasham et al. (1990)

Andersen et al. (1987)

Walsh (1975)

Evans and Parslow (1985)
Wroblewski and O'Brien (1976)
Steele (1974)

O’'Brien and Wroblewski (1973)

Andersen and Nival (1988)

Andersen et al. (1987)

appendicularians
zooplankton
zooplankton

zooplankton

copepods

copepods

copepods

microzooplankton and
copepods

copepods and euphausiids

copepods

copepods

copepods
copepods
copepods
copepods
copepods
copepods
copepods

mortality of copepods and
salps

appendicularian mortality

(Continued)

An important feature of mesozooplankton behavior is diel vertical migration. Many
species migrate from daytime depths below 200 m up to the surface at night where
they feed on the phytoplankton. There has been little modeling of this migration
(Wroblewski 1982; Andersen and Nival 1991; Steele and Henderson 1998). However,
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the migration patterns depend on species-specific behavior, and are difficult to represent
in bulk-mass models of zooplankton.

Simulation results
It should be stressed that, in order to fully understand the dynamics of a model, it is
important to analyze inter-compartment flows. If observational data of flow rates are
available then they provide strong constraints on the model. Without such observations,
modeled flows can be used to calculate bacterial or zooplankton growth efficiencies to
check that they lie within the known range of experimental observations. The technique
of ‘flow analysis’ provides a powerful tool for the analysis of either observed or modeled
flow networks (Fasham 1985; Wulff et al. 1989). The mathematical analysis of simple
food chain systems with three components (PZF) by Scheffer (1991) and five com-
ponents (NPZF(2)) by Doveri e al. (1993) indicates that the dynamics of the model can
be very complex.

The main biogeochemical functions of herbivorous (omnivorous) zooplankton,
identified through field and modeling studies (Totterdell et al. 1993), are:

B control of lower trophic levels (phytoplankton, microzooplankton, bacteria) and
the transfer of material to higher trophic levels

B the transfer of material from upper ocean layers to depth with the production of
fecal pellets and carcasses

B adownward flux of matter linked to diel vertical migrations.

Aksnes and Wasmann (1993) showed the significance of zooplankton grazing for export
production in a theoretical PZD model.

Other functions have been identified and depend on the organisms, such as the
production of shells by pteropods, or detritus consumption by copepods.

FROM A SINGLE GRAZER TO SEVERAL GRAZERS

Functional groups of zooplankton

The NPZ-type models generally treat one copepod species as the herbivore in a simple
food chain, whereas there is usually a succession of species (Davis 1987). Moreover,
other herbivorous organisms, like salps or appendicularians can have a shorter and
stronger impact on the ecosystem than do copepods. Copepods themselves develop
through developmental stages and the ratio between the adult weight and the egg weight
can be three orders of magnitude. However, Totterdell et al. (1993) recommended that
life-history strategies should only be modeled explicitly if their effects are indispensable
for the results and predictions sought, and they cannot be reproduced by some implicit
formulation. The subdivision of zooplankton into several functional groups is treated in
this subsection because the representation of processes is similar to that presented in
section 12.5.1. The subdivision of zooplankton based on size or stage-development is
presented in sections 12.5.2 and 12.5.3.

General formulation of a biological component

If we group several functional groups into one compartment, organisms with very
different turnover times should not be combined (turnover time is defined as the
organism pool size divided by the flux of biomass through that pool). Fasham (1993)
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presented a general equation for change in bulk-biomass X of a zooplankton group k,
based on an equation formalized by Wiegert (1979):

dX; & 3
_dr_k = Z eiTiPicSiuXe — (i + i + P X — z T1 Pk fia X1 (12.88)
i=1

I=1

The first term on the right side of equation 12.88 represents the assimilated ingestion or
uptake by species k from all the other modeled species or abiotic sources. The second
term represents physiological losses, and the third term represents predation on species j
by other species. The parameters are defined as follows:

B e; assimilation efficiency of species k using the resource i

B 7, the maximum specific ingestion uptake rate of species k

M p; the preference of species k for the resource i (if predators are dynamically
switching between resources then p; will be a function of the other resources as
well (see section 12.3.1)

S the limitation of ingestion of species k by resource i, which is usually a function
of X;

ur  specific loss rate due to excretion

¢ specific loss rate due to natural mortality

P specific loss rate due to respiration.

The form of the different processes is similar to those presented in Table 12.7 and section
12.5.1.

The equations governing the biological processes can be linked to physical models that
provide environmental forcing.

Examples

Several models studying the role of lower trophic levels in material cycles have changed
the zooplankton bulk compartment into several compartments to represent the diversity
of microorganisms (e.g. Pace et al. 1984). Moloney et al. (1986) and Moloney and Field
(1991) subdivide the group of heterotrophic organisms into the components mesozoo-
plankton, microzooplankton, heterotrophic flagellates, and bacteria. Mesozooplankton
feed on large phytoplankton and on microzooplankton following a Michaelis-Menten
hyperbola above a threshold concentration of food. Food in their models is the sum of
phytoplankton and microzooplankton. Metabolic losses are composed of two terms, the
first proportional to ingestion and the second proportional to biomass. The second term
also includes zooplankton mortality which is not explicitly represented.

In some models, different categories of large mesozooplankton are considered.
Andersen et al. (1987) modeled plankton dynamics of an enclosed water column, based
on the CEPEX project. A simple NPZC model with one herbivore compartment
(copepods) and one carnivore compartment (chaetognaths and ctenophores) did not
adequately represent the development of plankton populations in the enclosure, and a
second version taking into account separate categories of nutrients, of phytoplankton
and of herbivores was developed. Herbivores were divided into copepods and appendi-
cularians. Ingestion rates of both herbivore groups followed an Ivlev relationship (see
Table 12.7), and the food consisted of the two phytoplankton categories with different
capture efficiencies for prey and predators. Excretion rates of the two herbivore groups
were temperature dependent. Mortality of copepods was caused by carnivorous preda-
tion whereas the mortality of appendicularians was a function of the ratio of phyto-
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plankton biomass over appendicularian biomass (see the formulations in Table 12.7).
The second model gave a better fit of the observed dynamics.

In a pelagic ecosystem model of the Ligurian Sea, Andersen and Nival (1988) took
into account two important groups of grazers: copepods and salps. Whereas copepod
grazing is described by an Ivlev function, the grazing rate of salps was proportional to
the phytoplankton concentration. Excretion by the two groups was temperature-
dependent and food-independent, and mortality was an inverse function of food
concentration (see Table 12.7).

A few attempts have been made to model estuarine/marine and shelf ecosystems as a
whole, taking into account benthic and pelagic processes as well as advection and
dispersion (Kremer and Nixon 1978; Radford and Joint 1980; Baretta and Ruardij 1988;
Baretta et al. 1995). In these models, the biological components have been aggregated
into functional groups. Each functional group is represented by a sub-model. Broek-
huizen et al. (1995) developed a zooplankton submodel taking into account omnivorous
zooplankton (copepods) feeding on phytoplankton and microzooplankton, and carni-
vorous zooplankton (copepods and gelatinous plankton). Planktivorous fish ate both
omnivorous and carnivorous zooplankton. Each prey taxon of any zooplankton group
was consumed in proportion to its instantaneous relative abundance, and the grazing
function was given by a type II functional response to the total food concentration. The
assimilation rate and active metabolism were proportional to ingestion, and the basal
metabolism of a group was proportional to its biomass. Mortality other than predation
by fish was proportional to biomass.

The ECOPATH II model (Christensen and Pauly 1992) is an example of a modeling
technique in which higher trophic levels that feed on zooplankton, especially commer-
cially exploited fish, are well represented.

12.5.2 Size-structured zooplankton community

SIZE-STRUCTURED ECOSYSTEM MODELS

An alternative approach to using functional groups in models, is to subdivide
zooplankton into groups that are based on organism size. There is a theoretical basis
for defining size-related compartments, because growth and metabolic rates are often
found to be dependent on organism size (Peters 1983). Several models represent size-
structured zooplankton communities. Because some models defined functional groups
on the basis of size (Pace et al. 1984; Moloney e al. 1986), they can also be considered as
size-structured models. x

One of the first size-structured models was developed by Vinogradov et al. (1972) t
simulate the time evolution of a community in the Pacific equatorial upwelling zone.
This model is built on the basis of eight functional groups. Zooplankton are subdivided
in small-sized herbivores, large-sized herbivores, omnivores, small-sized carnivores and
large-sized carnivores.

Steele and Frost (1977) simulated the size structure of herbivorous zooplankton and
their prey, and their interactions, in a nutrient-phytoplankton-herbivore—carnivore
dynamics model. Their study focused mainly on the population structure of filter-feeding
copepods (Calanus and Pseudocalanus sp.) and the relative abundance of species which,
at any developmental stage, differ markedly in body size.

Moloney and Field (1991) and Moloney et al. (1991) presented a size-based plankton
model of the Benguela ecosystem, but general enough to simulate interactions within
plankton communities of any ecosystem. Community structure and transfer processes
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were all size-dependent, and all model parameters were determined by body size, using
empirically determined relationships calculated from published data (Peters 1983;
Moloney and Field 1989). In the original model (Moloney and Field 1991), autotrophic
and heterotrophic groups comprised organisms in size ranges from 0.2 to 200 um ESD
(equivalent spherical diameter) and 0.2 to 2000 um ESD respectively, and were divided
into size classes using a logarithmic scale. A logarithmic scale of 10 was used because the
resulting size classes were similar to traditional categories described by Sieburth e al.
(1978). In the size range 0.2-2 um ESD, picophytoplankton and bacterioplankton were
considered, in the size range 2-20 um ESD nanophytoplankton and heterotrophic
flagellates, in the range 20-200 um ESD net phytoplankton and microzooplankton, and
in the range 200-2000 um mesozooplankton. Moloney and Field’s model simulated
flows of carbon and nitrogen.

In the model, ingestion rate of heterotrophs was a function of prey concentration
between a range of size classes, and following a Michaelis-Menten relationship:

g(P) = —maxPi — F)) (12.89)
o+ ) (P —P)

where the specific ingestion rate of size class i by size class j was determined by the
maximum mass-specific size-dependent ingestion rate of size class j (I,..). P; is the
standing stock of size class i, and P} is the threshold. Assimilation was taken to be
constant, and respiration and excretion were proportional to biomass.

SIZE SPECTRUM THEORY
The biomass size spectrum model initially proposed by Sheldon and Parsons (1967) and
Sheldon er al. (1972, 1973) has been developed in successive steps by Platt and Denman
(1978) and Silvert and Platt (1978, 1980). Heath (1995) presented a synthesis of biomass
size spectrum theory (see also Gaedke 1992, 1993; Gaedke and Straile 1994; Blanco et al.
1994, 1998).

The size distribution of organisms in the pelagic food chain can be described by the
following time-dependent equation (Silvert and Platt 1980):

oN )

= —— bM = 12,

3 + waw(bG)—lr 0 (12.90)
where ff(w, 1) is a biomass density function such that

b(w, £) = B(w, )dw (12.91)

b(w, 1) is the mass of particles per unit volume in the size interval from w to w + dw at
time ¢. Silvert and Platt (1980) assumed predation scales in a perfectly isometric fashion,
i.e. the range of particle sizes acceptable as prey scales as w. Thus dw ~ w.

The function G(w) is the specific growth rate of particles:

G(w) = %%L: (12.92)

and the function M(w) is the specific rate of change in numbers of particles due to
mortality and reproduction:
10N

(12.93)
and N = f/w.
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The basic assumptions of the size spectrum theory (Silvert and Platt 1980) are that the
system is in steady state, with no immigration and emigration of biomass, predation is
the only source of mortality, large organisms eat only smaller ones that are a constant
fraction of their own size, there is a constant input of energy to the smallest size classes in
the spectrum, and the flow of energy (biomass) is in one direction only, from small
particles to large ones.

Silvert and Platt (1980) showed that one possible solution to equation 12.90 is

Bw)G(w) ~w™* (12.94)
where the exponent ¢ is such that:
Kie=¢! (12.95)

and parameter K is the growth efficiency, i.e. growth divided by ingestion. Specific
growth rate can be expressed as:

G(w) = kw™™ (12.96)

where k and x are constants.
Combining equations 12.93 and 12.95,

B(w) ~ w*° (12.97)
Silvert and Platt (1980) showed that
_ Gw/q) B(w/q)
M(w) = Kig  Bw) (12.98)

and from equations 12.94 and 12.95
k
M(w) = k—q"_lw_" =ckw™ (12.99)
1
Somatic growth represents the difference between the assimilated ration and losses due

to metabolism and reproduction (reproductive loss is small relative to metabolic losses
and is therefore ignored). Metabolism is found to take the form aw” and y = 1 — x. Thus

‘;—T =pl — ow'™* = G(w)w = kw' ™ (12.100)

for all w.
The ingestion rate becomes:
k
Pt B i (12.101)
P

and growth efficiency:

i RE ) (12.102)

a

Peterson and Wroblewski (1984) estimated the four parameters k, x, Kj, and ¢ from the
literature on a range of pelagic species and concluded that:

B x~025
B k=42310"3d7!
B c¢~122withK; =0.14andg= 3.4510*
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The steady-state constraint on this basic model, with constant energy input to the
smallest size classes, dictates that it can only be considered to represent some long-term
average distribution of biomass across the full range of organisms in an ecosystem, such
that temporal trends are eliminated. The shortest such time period over which the model
could apply would be 1 year, thereby removing the dominant seasonal signal in the
energy input (at high latitude), and several data sets supported this conclusion (see
references in Heath 1995). However, Thiebaux and Dickie (1993a, 1993b) have suggested
that within any trophic group in the ecosystem other factors are involved which cause
the biomass spectrum to be non-linear. Considering variations in the biomass spectrum
on some time scale shorter than one year, Silvert and Platt (1978, 1980) showed that
perturbations in the energy input to the ecosystem must propagate up the spectrum as a
damped wave. Feedback mechanisms, such as reproduction, will lead to smearing of the
wave, but the mathematics of this process are complicated.

New technological developments such as the Optical Plankton Counter will probably
encourage further development of the size-based approach to data analysis (Heath 1995;
Zhou and Huntley 1997). Applications of biomass spectrum theory to fish larvae are
presented by Beyer (1989).

12.5.3 Size-and stage-structured zooplankton populations in ecosystem
models

The life cycle of dominant zooplankton species in ecosystems can be represented in
detail in ecosystem models, when the representation of an average individual is not
sufficient.

Stecle (1974), Steele and Mullin (1977) and Steele and Frost (1977) have developed an
ecosystem model in which the dynamics of Calanus were represented as successive
cohorts. Hofmann (1988) used a stage structured model of Paracalanus sp. in five groups
of stages which were feeding on two size categories of phytoplankton. Stage and age-
structured population models (see page 602) have been coupled with ecosystem models
(Fransz 1981; Davis 1984a, 1984b; Carlotti and Radach 1996).

Koslow (1983) studied the role of predatory interactions in the regulation of the size
structure of marine zooplankton communities. The model contained size-structured
populations of large (Calanus sp.) and small (Paracalanus parvus and Acartia clausii)
herbivorous zooplankton, and invertebrate carnivores (chaetognaths). Planktivorous
fish were represented by one compartment.

12.5.4 Further reading

Steele, ., 1974. The structure of marine ecosystems. Harvard University Press, Cambridge,
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12.6 MODELING SPATIAL DYNAMICS OF ZOOPLANKTON

Spatial distribution, dispersion and patchiness of zooplankton are important features
of the ocean (Mann and Lazier 1991). They are influenced by a set of biological and
physical processes of which the relative contributions are difficult to extract. Mathe-
matical models that include biological as well as circulation processes provide an
approach for investigating and separating environmental and biological factors that
control plankton distribution. Many of the examples found in the literature study the
effect of some selected factors, assuming that other factors have negligible effects.
Simulated plankton distributions obtained with models treating plankton as simple
drifters and for which dispersion is determined solely by circulation, show strong
differences from observed distributions. The primary conclusion from these models is
the need to include biological effects, and a thorough effort has been made in this
direction during the past decade.

12.6.1 Modeling active behavior and counter-gradient search

An organism’s sensory systems are evolutionary adaptations that enable the organism
to react to environmental variations. Zooplankton will benefit from organs that allow
them to locate food and mates and to avoid predators and other harmful situations. The
evolution of such organs is therefore under strong selection pressure. The simplest
formulation of predator—prey contact rates is obtained by assuming that either the prey
or the predator is stationary while the other is moving about with an average speed v and
that the predator has a reaction volume with a surface 4 outside which it cannot detect
prey (Gerritsen and Strickler 1977). Then the total number of encounters between
predators and prey during a time period T is given by

E = TNPAv (12.103)

where N and P are concentrations of predators and prey respectively (Giske et al. 1994).
This model can be easily reformulated to express feeding rates of predators and
mortality rates of prey. It has been elaborated in two directions: models of contact
rates and models of perception ranges (Table 12.8). Contact rate models can incorporate
swimming of both predator and prey, pause swimming, and turbulent water motions.

The effect of small-scale physics on plankton ecosystems is a recent research topic
(Yamazaki and Osborn 1988; Granata and Dickey 1991; Denman and Gargett 1995).
Recent theoretical models suggest that small-scale turbulence is a significant component
in the encounter rate between a larval fish and their planktonic prey (Rothschild and
Osborn 1988; MacKenzie and Leggett 1991; McKenzie et al. 1994). Few studies of this
effect have been found to date. Using numerical simulation methods, Yamazaki et al.
(1991) demonstrated that the contact rate model of Rothschild and Osborn (1988) is
valid. Lagrangian models which mimic the aggregation of planktonic organisms in
turbulent flow allow one to take into account small-scale non-linear processes, and to
study the behavior of planktonic organisms in conjunction with such structures
(Yamazaki 1993).

Models of perception ranges focus on the sensory organs of predators and prey, and
mathematical formulations are available for the lateral line, vision, hearing and
olfaction. Although zooplankton use all sensory systems simultaneously (Bollens et al.
1994), no single model has yet incorporated all of these.

The sensory systems of fish take up information at several spatial and temporal scales.
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Table 12.8 Models of sensory systems of fish and mortality risk of zooplankton.

Authors Modeled processes

Passive and tactile encounter
Gerritsen and Strickler (1977) contact rate between a predator and a prey
Rothschild and Osborn (1988) effect of turbulent motion on contact rates
MacKenzie and Leggett (1991)  effect of wind and tide on encounter rates between fish
larvae and zooplankton
MacKenzie and Kigrboe (1995)  encounter rates for cruising and pause travel predatorsin
calm and turbulent conditons

Kigrboe and Saiz (1995) copepod feeding and predation risk in turbulence
Caparroy and Carlotti (1996) energy budget for copepod in turbulent regime
Eiane et al. (1997) comparison of tactile and visual predation in the vertical
field
Fiksen et a/. (1998) combination of light and turbulence for predation by fish
larvae
Olfaction
Jumper and Baird (1991) detection range of odor plume
Baird and Jumper (1995) mate location by olfaction
Baird et al. (1996) odor spread by diffusion, turbulence and advection
Moore et al. (1994) odor spread in benthic boundary layer flow
Light and vision
Aksnes and Giske (1993) model of visual range of planktivorous fish
Aksnes and Utne (1997)
Giske et al. (1994) vision-based (light-dependent) mortality risk for
zooplankton
Hearing, lateral line and pressure fields
Rogers and Cox (1988) underwater sound propagation and biological responses
Kalmijn (1988) detection range of hydrodynamic and acoustic fields
Bleckmann (1993) model of detection by lateral line system

The lateral line system can detect zooplankton movement at very small distances, and
therefore can be the first tool available for prey detection by fish larvae (Blaxter and Batty
1985). Vision is also a near-field instrument, because the decay rate of images underwater
is fast (Aksnes and Utne 1997). Sound propagates better in water than in air (Rogers and
Cox 1988), and hearing is therefore a good long-distance tool. Olfaction can be used to
trace prey or a mate along a concentration gradient (Baird and Jumper 1995) and it is the
only sense to measure ‘past experience’. It can also be used to indicate concentrations of
predators and hence predation risk for prey (Larsson and Dodson 1993). The lateral line
and vision systems give more precise information than hearing or olfaction, and final prey
capture will most often rely on one of these. Hearing or olfaction is probably more
important for the early phase of prey location and for predator avoidance.

12.6.2 Modeling behavioral mechanisms, aggregation, and schooling
patches

MODELING ZOOPLANKTON BEHAVIOR AT THE "MICRO-SCALE’
The simplest model of dispersion is a random walk model, where individuals move
along a line from the same starting position (see Okubo 1980; Possingham and Rough-
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garden 1990; Renshaw 1991; Brown and Rothery 1993). Below we describe models that
are used to simulate movement of zooplankton individuals.

Random walk models (RWM:s) have been used for the last 50 years (Yamazaki 1993).
They involve a succession of movements along a line segment where the direction and the
length of each move is randomly determined (Yamazaki and Okubo 1995). The RWM
and its extensions, as well as numerous applications can be found in Okubo (1980) and
Berg (1983). In plankton ecology, RWMs have been used mainly for the study of
phytoplankton trajectories in mixing circulation or Langmuir cells (see Yamazaki 1993),
and for behavior of fish larvae (Okubo 1986). There are few RWMs for zooplankton
studies. Davis et al. (1991) presented a series of models exploring the role of swimming
and patchy food supply on the growth of a predator (fish larvae preying on copepods, or
copepods preying on phytoplankton cells). From a RWM, they derived an appropriate
form for a diffusion term and combined this with a growth model (similar to those
presented in section 12.3). A general analysis of the growth/swimming model showed the
dependence upon the parameters and the patch structure. The authors used this model to
study the effect of turbulence, which induces more frequent encounters but also
dissipates prey patches. Tiselius et al. (1993) presented a model of individual copepods,
taking into account the feeding process in a patchy prey environment, as well as growth
and reproduction. In their model, copepod motility followed a RWM.

Yamazaki made initial attempts to simulate a zooplankter in a flow field, first as a
passive particle, then with behavior based on a RWM (Yamazaki et al. 1991). These
models showed that organism behavior must be integrated into studies of small-scale
physics. The only way to properly account for the effects of small-scale physics (e.g.
turbulence) is to develop Lagrangian models and implement these into realistic
simulated flow fields, for example turbulent flow from direct numerical simulations
based on the Navier-Stokes equations.

A different method for modeling the movements of organisms is by utilizing
evolutionary theory (section 12.3.3). Tools for this approach will be discussed in
Evolutionary modeling approaches for optimal spatial distributions, section 12.6.2.

From animal aggregation to patch dynamics models

Here we denote aggregation as a grouping of conspecific individuals without any
implication of mutual attraction (Ritz 1994). Passive aggregations are caused by physical
factors (e.g. currents, light). Active aggregations can be permanent or temporary, as a
response to food concentration or predation, or for mating. Different types of models
have been built, some of them focusing on the structure and shape of aggregations
depending on internal and external physical forces, others dealing with the benefits for
individuals of living in groups with regard to feeding (foraging models) and to predation.
There are many models dealing with living in groups (see for review Pulliam and Caraco
1984), but few have been applied to marine zooplankton.

Models for studying aggregation size, structure and shape need the development of
physical models to which can be added the swimming behavior of organisms. The focus
of much modeling work has been the study of the maintenance of animal aggregations
(swarms, patches, schools, etc.) in the face of dispersive forces acting on them from the
environment (Okubo 1980).

The Lagrangian approach can take into account the behavior of individual organisms,
and the effects of the physical environment upon them. The Lagrangian approach is
straightforward, but the nature of the mathematics, i.e. ‘n-particle motion dynamics’,
makes any analysis computer intensive with an increasing degree of non-linear aspects.
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Yamazaki (1993) reviewed available Lagrangian simulations for animal groupings
(presented with others in Table 12.8). Yamazaki (1993) introduced numerical Lagran-
gian models that incorporate an attractive force component in organism aggregations
(see also Yamazaki and Okubo 1995). Yamazaki and Haury (1993) used such a model to
find a generalized relationship between an organism’s locomotion ability (e.g. swimming
speed and ‘motivation’ to maintain a swarm), perception distance (measuring the ability
to sense and orient toward neighbors), and the strength of diffusing forces (e.g.
turbulence) in a zooplankton swarm.

Although Fulerian approaches are mathematically tractable, the methods do not
explicitly address the density dependence of aggregating individual behavior within a
patch. Okubo (1980, 1986) has reviewed much of the work in mathematical modeling
of animal aggregations that use a Eulerian approach, incorporating diffusion and
advection terms to represent random walk processes and attractive forces. Several
models have emphasized the forces that internally maintain schools (Okubo 1980;
Anderson 1981). Anderson (1981) represented a school size change by Fokker—Planck
stochastic differential equations, having linear terms for school size increase and
decrease.

Group living is an important feature for some zooplankton species and fish larvae.
Group membership is supposed to be helpful for the individual in feeding and avoiding
predators (Pulliam and Caraco 1984; Clark and Mangel 1986). Foraging and feeding in
groups may give benefits for locating new or richer food patches, but also increases
competition for resources within a prey patch. Clark and Mangel (1986) present a set of
simple mathematical models to investigate the relationship between evolutionary fitness
of individual foragers and the size of the foraging group.

Another important function of aggregation is to confer protection from predators
upon its members. Swartzman (1991) approaches the formation and maintenance of fish
groups under predation. He described a birth-death model that is expressed as a system
of differential-difference equations describing the probability of having different
numbers of schools in a 1km? study region. The equilibrium solution was obtained
analytically, and results were presented for different combinations of prey and predator
characteristics. These results were interpreted to indicate under what conditions school-
ing is likely.

EVOLUTIONARY MODELING APPROACHES FOR OPTIMAL SPATIAL DISTRIBUTIONS
The theory of evolution by natural selection predicts that the gene pools of populations
will become adapted to their physical and biological environment (section 12.3.3 and
Figure 12.1). Optimal spatial distributions have been investigated by several modeling
approaches (see review by Giske er al. 1998a). The simple equation for population
growth has branched into four bodies of theory (Figure 12.2), of which two have been
utilized to predict individual behavior.

Optimization

The earliest theory for optimal spatial distributions of individuals within a population
was the Optimal Foraging Theory (OFT) (Emlen 1966; MacArthur and Pianka 1966).
OFT is not derived from any specific equation related to Darwinian fitness, but assumes
that increased efficiency during feeding will benefit the organism by providing more time
for other fitness-related tasks (such as mating or hiding). OFT was the major theory in
use by behavioral ecologists in the 1970s, and diversified into theories of optimal diet,
optimal habitat and several more (see review by Schoener 1987). In contrast, Zaret
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Game theory

Game theory addresses optimal solutions to frequency-dependent problems, i.e. situa-
tions where the optimal decision depends on what other individuals do. Two game
theoretic approaches have been utilized in ecological modeling, the evolutionary stable
strategy (ESS) and the ideal free distribution (IFD). Game theory, like optimality theory
in OFT, was introduced to ecology from economics (Maynard Smith 1982; Parker 1984).
Commonly, the goal of a game is to find a strategy (pure or mixed) that can persistin a
population, and the Evolutionary Stable Strategy (ESS) is a well-known example
(Maynard Smith and Price 1973; Maynard Smith 1974). A strategy is an ESS if, once
established in the population, a new mutant or immigrant cannot invade the population
(see Box 12.2).

Iwasa (1982) constructed the first aquatic ESS model. He modeled the diel vertical
distribution of zooplankton (that ate phytoplankton and were eaten by fish) and fish.
The game between predator and prey led to light-dependent behavior at both trophic
levels. Gabriel and Thomas (1988a, 1988b) developed this game further, but included
negative density-dependent effects of competitors within each trophic level. Their
model thus was both frequency- and density-dependent. Hugie and Dill (1994) also
constructed a habitat-selection game between zooplankton and a planktivorous fish
population. Their model links ESS and the other game theoretical approach, the IFD
(see below).

Ideal Free Distribution

The Ideal Free Distribution (IFD) is a theoretical model for studying density-dependent
effects on the spatial distribution of optimal individuals in a group (Fretwell and Lucas
1970). ‘Ideal’ means that each individual animal is able to choose the habitat that
maximizes its fitness rewards, and ‘free’ means that there are no costs associated with
entering this habitat. For animals that forage in a patchy environment, for convenience
the rewards are often supposed to be equivalent to food intake rate. Generally, in
classical IFD, all individuals are alike, but this constraint has been relaxed in several
approaches (see review by Tregenza 1995). The relaxation of the original assumptions

Box 12.2 The evolutionary stable strategy (ESS)

A strategy is an ESS if, once established in the population, a new mutant or immigrant
cannot invade the population. This can be stated as

Se(1—¢€) > Spm(e) (1)
where 8¢ and S, are the pay-offs of the established and mutant strategies when their
frequencies of occurrence are (1 — ¢€) and ¢, respectively (¢ < 1). However, a mixed ESS, or

an evolutionary stable polymorphism, can be established if the pay-offs of the two (or
more) strategies are the same at some frequency of occurrence

Se(Xs) = Sm(Xs) (2)
and when a change in frequency of occurrence from this balance leads to reduced fitness
of the strategy:

Se(X) < Se(Xs) (3)

for x close to Xs.
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usually leads to very computer-intensive models (e.g. Giske et al. 1997). A limitation of
IFD is that it cannot explain the fluctuating motivation of individuals according to time
and state. Combined effects of density and internal state may be studied by SDP. Giske
et al. (1997) present in detail an IFD model of similar copepods in the water column
which includes both density-dependent predation risk and food supply (See Box 12.3).

Box 12.3 The Ideal Free Distribution (IFD)

Under Ideal Free Distribution models with equal competitors, the total number of
individuals distribute themselves among habitats so that the gain of an individual is equal
in all habitats. In the classical version of the model, food was the resource, and the
individual gain (S;) in a habitat (/) declined from a density-independent maximum B; by a
habitat-specific function of competitor density d;

Si =B —fi(d),i=1,2,...,L(habitats) (1)
The IFD is achieved when individual gain is equal among habitats

Si=8%=...=§ @)
and total numbers in the K < L occupied habitats match population size Ny

Ny + Na + 4+ + Ng = Nr (3)

For zooplankton in a natural environment we would not expect that food gradients alone
could cause an IFD for three reasons: (1) there are combinations of low competitor density
and high food production where individual feeding rate will not be influenced by a
(minor) increase in competitor density, and more important, (2) one of the main resources
for development and fitness of aquatic organisms may be environmental temperature and
(3) predation risk will affect fitness in a density-dependent manner. Habitat profitability
may then be expressed directly in terms of the habitats’ expected contribution to the
fitness (@) of the animal, and ideal free individuals will distribute so that

Oi=P=...=Qjpi=py=...=p; (4)

as ris a population parameter constant for all habitats and is the average of all p} (see
equation 12.37). In a situation where feeding will be sufficient for growth and where
reproduction may occur unhindered by, for example, seasonal constraints, fitness is
proportional to the life-history trade-off g/M, as shown above. Then we may write

Q=Cr=...=Qj > g1/ My=g2/M2=... = gi/M, ()

(Giske et al. 1997). In IFD terms we will find the relation between the optimum number in
each habitat, so that gain is equalized by competition and predation risk dilution.
Fecundity, growth and survival will be derived from mechanistical equations of the
environment and density-dependent responses. The ideal free distribution —where no
individual could increase its fitness by moving — is obtained when competitor density in
each available habitat is adjusted so that the ratio g/M is equalized.

According to equation (1) habitat profitability is a decreasing function of concentrations
of foragers, while in equation (5) the fitness may be maximal at some intermediate
zooplankton concentration with low resource competition but with substantial dilution of
predation risk. In the latter case, with a bell-shaped habitat profitability curve, there are
two zooplankton concentrations that give the same fitness in each habitat. This makes it
far more complicated to calculate the expected spatial distribution of a population.
Methods for this calculation are discussed in Giske et al. (1997). '
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ANN: the decision process
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generation
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survivors
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the strength of each connection recombinaions

is coded by a separate gene and and mutations P
will be modified by the GA until \/
it is adapted to the environment

Fig 12.3. The ING concept: one or more artificial neural networks (ANN) code for
the decision processes utilized in an individual-based model (IBM). A cohort of
individuals with randomly set individual strings coding for the weighting of the ANN
are initiated in the first time step. The strings are then adapted using the genetic
algorithm (GA) through the principle of evolution by natural selection. Differences
among the strings are expressed through differences in weights of the ANN, which
leads to behavioral differences. The j, h, and o refer to input, hidden, and output
layers respectively. The input layer consists of internal or environmental input. The
output nodes fire if their values are above certain threshold values. The lines
indicate the relationships among the different layers. Each of the nodes in the /-
layer are connected to all the nodes in the h-layer which again are connected to all
the nodes in the o-layer. W;, and W), are the weight matrices of connection
strengths between the nodes of the layers. Potential weight differences are
indicated by the variation in line thickness of the connections. The GA will evolve the
‘gene pool’ to contain the best possible response to the combinations of sensory
inputs received throughout the lives of the individuals, as measured by the fecundity
that results from the IBM given a particular ANN. Modified from Giske et al. (1998a).

coefficient. Other examples are given by Nisbet et al. (1993) and Rothschild and Ault
(1996).

GRID-BASED MODELS

Tischendorf (1997) gave a short review of modeling methods for spatially explicit
simulations in heterogeneous landscapes. Grid-based models are starting to be used in
spatial zooplankton dynamics, and are mostly associated with new modeling approaches
of individual movements. Grids divide a continuous two-dimensional space into discrete
units of equal size and shape, i.e. cells. Each cell can easily be selected by indices because
of its defined position in a matrix. By this arrangement, cells relate descriptive
information (e.g. state variables and transition rules) both to each other (by fixed
neighborhood relationships) and to the area they cover. Movements of individuals are
commonly expressed by rules that either assign individuals to other cells or change



MODELING SPATIAL DYNAMICS OF ZOOPLANKTON 635

cumulative cell state variables that describe a spatial class of individuals. Such move-
ment rules can be influenced by landscape features associated with cells. Object-oriented
modeling of individual movements uses grids to represent space (e.g. Laval 1997).
Cellular automata represent such a class of models for population interactions in space
(Phipps 1992; Caswell and Etter 1993), but there are very few examples in zooplankton
ecology (Delgado and Marin 1998).

2.6.3 Coupling IBMs and spatially explicit models

ASSIVE PARTICLE TRAJECTORIES FROM LAGRANGIAN TRANSPORT IN MODEL
IRCULATION FIELDS

This approach uses simulated currents from sophisticated 3-D hydrodynamic models
driving Lagrangian models of particle trajectories to examine dispersion processes.

The approach is relatively straightforward and is a first step in formulating spatially
explicit individual based models (IBMs). Given a ‘properly resolved’ flow field, particle
(larval fish/zooplankton/meroplanktonic larvae) trajectories are computed (generally
with standard Runge-Kutta integration methods of the velocity field). Specifically,
hydrodynamic models (Box 12.4) provide the velocity vector v = (u, v, w) as a function
of location x = (x,y,z) and time ¢ and the particle trajectories are obtained from the
integration of

dx/dt = v(x, y,z,1). (12.104)

These trajectories could be modified by turbulent dispersion as described below. Once
the larval/particle position is known, additional local physical variables can be estimated
along the particle’s path, for example temperature, turbulence, light, etc., and input to
the IBM (see section 12.4.3). The physical quantities are then included in biological, for
example physiological or behavioral, formulations of IBMs (see section 12.4.3).

In general, flows can be three-dimensional, baroclinic and time-dependent. Driving
forces are the winds, tides, atmospheric heating and cooling and prescribed inflows.
Estimates of local turbulence levels are derived from advanced turbulence closure
models, The simulations can become quite intensive computationally and the model
output of the physical model can be large if 3-D physical data is saved on the order of
every hour.

Simulations considering trajectories of plankton as passive particles are a necessary
step before considering any active swimming capability of planktonic organisms. They
show the importance of physical features in the aggregation or dispersion of the particles
(see as examples Ishizaka and Hofmann 1988; Oliver ez al. 1992; Werner et al. 1993).

Effect of turbulence on dispersion
Small scale turbulence can be represented in various ways. Some Lagrangian models
include a stochastic term to mimic diffusive processes (e.g. Walsh ez al. 1981). Others use
a diffusion coefficient using a random walk procedure as in Black and Gay (1990).
Werner ef al. (1996) and Hannah et al. (1998) present a more complex representation.
The dispersal of particles in heterogeneous turbulent fields (e.g. near or within turbulent
boundary layers) can lead to aggregations that are not realistic if the dispersal process is
not treated carefully (e.g. Thompson 1987; and Holloway 1994). Legg and Raupach
(1982) proposed a Langevin equation to derive a Markov equation for the vertical
velocity of a particle (or zooplankton organism) in a flow where the turbulence is
heterogeneous.
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Box 12.4 The hydrodynamical model equations
Acceleration in x direction:

du du Ou du 19p 8, ou

S i g A R 2ys — A

B U Y TR TN gy (1)
Acceleration in y direction:

ov dv ov ov 10p , 0, Ov

aufuv—u&—va—wa—;a—ywqhv 'H"EA”&' (2)
Vertical velocity is found from the equation of continuity:

ow du  Ov

0= %2 + x + a{ (3)
and surface elevation

h= f w1 dt (4)

where

u,v horizontal velocity components in x and y direction, respectively
w  vertical velocity compaonent

wy  vertical velocity of surface elevation, i.e. upper layer

h height of the free surface from the undisturbed mean

f Coriolis parameter

P density

Ap  horizontal eddy diffusion of momentum

A, vertical eddy diffusion of momentum

p pressure found by the hydrostatic equation

h
p= [ rgdz+P, (5)
z
where P, is the atmospheric pressure.
The space—time variations of water density p are found by the functional relationship
p=p(S,T) (6)

where S and T are the salinity and temperature of the water, respectively. Thase scalar
fields can be modeled by a balance equation of the form

oc 0 bl 9 2 ) ac
a_&(uc)—@(m)—a(w’c)-ﬁ-f{hv c+&(Kv5) +3; (7
where
¢ SorT

Kp horizontal eddy diffusion of salinity and temperature

K, vertical eddy diffusion of salinity and temperature

de thermodynamic interaction between the upper layer and the atmosphere (c=T) or
supply of salt and fresh water during freezing or melting respectively (¢ = S) and the
operator V-2 means

"2 tap )

where @ is any function of xand y.
Vertical mixing is calculated as a function of the Richardsons number, wave height and
parametrization of tidal mixing in shallow areas. (From Giske et a/. 1998b.)
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The Langevin equation for the dispersion of particles is:
dw/dt = —aw + AE(H) + F (12.105)

where o = 1/1; and 7, is the Lagrangian integral time scale (or auto-correlation time
scale) estimated from N, = o2, 7;, where N, is the turbulent exchange coefficient (see
Galperin et al. 1988), o, is the Lagrangian velocity variance (o2 = 0.3¢%/2);
A= 6%+/2/11; &@2) is Gaussian noise of zero mean and unit variance; and F = d(e2)/0z
is a term involving the gradient in the turbulent velocity variance.

The Markov chain for w,.1, the turbulent vertical velocity at time step 7 + 1, becomes:

Wni1 = @nWn + buGynl, + G, (12.106)
where

an = eXp(—an/T1n), by = [1 — exp(—2At/71,)]'"? (12.107)

C, = (F/@)[1 — exp(—At/11,)] (12.108)

and Az is the time step.

This approach was used in the studies of Hannah et al. (1998) wherein potential upper-
ocean pathways for the supply of Calanus finmarchicus from the Gulf of Maine to
Georges Bank were investigated by numerically tracking particles in realistic 3-D
seasonal-mean and tidal flow fields. Hannah ez al. (1998) found that upper-ocean drift
pathways for biota in the southern Gulf of Maine are strongly sensitive to biological
and/or physical processes (including turbulent dispersion) that affect vertical position (in
relation to the surface Ekman layer) and horizontal position (in relation to topographic

gyres).

TRAJECTORIES OF ACTIVELY SWIMMING PARTICLES FROM LAGRANGIAN
TRANSPORT IN MODEL CIRCULATION FIELDS

Plankton transport models that include biological components typically use a prescribed
vertical migration strategy for all or part of an animal’s life history or a vertical motion
(sinking or swimming) that is determined by animal development and growth (Hofmann
et al. 1992; Werner et al. 1993; Verdier et al. 1997). The simulated plankton distributions
from these models tend to compare better with observed distributions than models that
use passive particles. Sensitivity studies show that behavior is an important factor in
determining larval transport and/or retention.

Biological and physical models can be coupled in the following way. First, the physical
model can be run with a particular physical scenario (winds, boundary conditions, etc.),
then the biological model can be used. Organisms, considered as particles, can be tracked
in the 3-D velocity field calculated by the physical model using a standard Euler or
Runge-Kutta integration:

dx/dt = va(x,y,2,8) + vy (12.109)

where v, is the velocity vector from the circulation model as a function of location
x=(x,y,z), t is time and v, is the swimming speed of the organism depending on
prescribed or dynamical biological properties. Hofmann et al. (1992) and Capella et al.
(1992) present a time- and temperature-dependent model combining temperature effects
on development times, physiology and density of krill embryos and larval sinking and
ascending rates. Verdier et al. (1997) consider a prescribed age-dependent vertical
swimming velocity of annelid larvae.
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The coupling of IBMs of zooplankton and 3-D circulation models is a recent field
of study, even for fish models (Tyler and Rose 1994). Generally, models that describe
the spatial heterogeneity of the habitat have been designed to answer questions about
the spatial distribution of a population rather than questions about the numbers and
characteristics of surviving individuals. The simplest biological representation con-
cerns the swimming ability of the planktonic organism. As questions concerning
biological aspects of dispersion receive increasing attention through programs like
GLOBEC, the number of models with biological detail (see section 12.4.3) is likely to
increase.

The dispersion of several species on the Georges Bank has been studied recently (US-
GLOBEC Georges Bank program): a Calanus finmarchicus model (Miller et al. 1998), a
larval fish model applied to haddock and cod (Werner et al. 1996), and a model of
scallop larvae (Tremblay et al. 1994). They all use the three-dimensional hydrodynamic
model developed by Lynch and collaborators (Lynch ef al. 1992, 1996). Other spatially
explicit IBMs for fish larvae have been developed (see Tyler and Rose 1994 for a review;
Hinckley et al. 1996). Verdier et al. (1997) presented a spatially explicit IBM for
meroplanktonic larvae in the Bay of Banyuls.

Tyler and Rose (1994) emphasized that models that incorporate individual-based
formulations and physical habitat modeling techniques not only increase our under-
standing of the link between spatial and temporal dynamics of zooplankton and fish
populations, but also allow us to explore the potential effects of habitat alteration on
these populations. Using this approach, biological mechanisms that are strongly
dependent on habitat and that are not fully understood could be studied by
examining different scenarios. For example, Moloney and Gibbons (1996) used an
IBM of herbivorous zooplankton coupled with simplified 1-D profiles of food and
temperature to study the effects of different scenarios of diel vertical migration on
daily ingestion.

12.6.4 Spatial zooplanton dynamics with advection-diffusion-reaction
equations (ADRE)

The general biological-physical model equation used to describe the interaction
between physical mixing and biology is:

acC : .

s +V-(v,C)— V- (KVC) = “biological terms’ (12.110)
where C(x,y,z,t) is the concentration of the biological variable which is either a
functional group (zooplankton), a species, or a developmental stage (in which case the
number of equations would equal the number of stages) at position x, y, z at time 7. The
concentration can be expressed as numbers of organisms or biomass of organisms per
unit volume, and

B v, (u,,v,, w,) represents the advective fluid velocities in x, y, z directions;
B K, K,, K; are diffusivities in x, y, z directions;
B V =(0/6x,08/dy,0/0z) is the Laplacian operator.

On the left hand side of equation 12.110, the first term is the local change of C, the
second term is advection caused by water currents, and the third term is the diffusion or
redistribution term. The right hand side of equation 12.110 has the biological terms that
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represent the sources and sinks of the biological variable at position x, y, z as a function
of time.

The biological terms may or may not include a velocity component (swimming of
organisms, migrations, sinking, ...) and the complexity of the biological representation
can vary from the dispersion of one variable (the zooplankton biomass, or the
concentration of a cohort) in NPZ ecosystem models (see section 12.5) to detailed
population dynamics with stage-structured populations. The following sections give
examples of passive and active dispersion of zooplankton biomass or targeted popula-
tions.

The numerical methods used to solve ADREs are finite difference techniques (see for
instance Sewell 1988). Examples given by Okubo (1980, chapter 6) include solution
methods for ADRE:s.

MODELING PASSIVE DISPERSION WITH ADREs

There are several examples of models of passive dispersion of planktonic organisms. The
spatial dependence is usually reduced from three to two or one dimension depending on
the question being asked, and the equations are solved analytically or numerically.
However, the simultaneous partial differential equations that model such systems can be
solved analytically only under very special circumstances, depending on the assumptions
regarding the boundary conditions and on the functional forms used in the model.
Results of analytical solutions are of interest because they can delimit parameter space
for simple situations, and also because they can serve as a useful check to the solutions
obtained by numerical methods.

Sundby (1983, 1991) presented a simple model of vertical egg distribution as a
function of the properties of the water (density, current and turbulent diffusion) and
physical properties of the eggs (buoyancy and dimension). The basic equation 12.110 is
then reduced to the vertical component of the diffusion equation:

0C(z,1) 0 0C(z, 0] _ . " O[ws(z, ) Cl(z, 1)]
N o |:K(z, t) o ] = mortality + spawning — 2z
(12.111)

where C(z,1) is the concentration of eggs in numbers per unit volume, K(z,?) is the
vertical eddy diffusivity coefficient, and z is the vertical coordinate.

The biological terms are reduced to the mortality of eggs, the input from spawning,
and the sinking of eggs with wy(z, t) as the vertical velocity of the eggs.

To solve equation 12.111, wy(z, t) and K(z, ) must be known. The vertical velocity is
expressed as wy, = f{d, Ap,v), where d is the diameter of the egg, Ap is the difference in
density (buoyancy) between the egg, p, , and the ambient water, p,,, and v is the viscosity
of the water. Sundby presented the solutions in steady-state situations (first term equal to
zero) and with an equal value for mortality and spawning.

To study the passive settlement of planktonic larvae onto bottoms of different
roughness, Eckman (1990) and Gross et al. (1992) developed 1-D advection-diffusion
models with particular attention to the effect of the turbulent boundary layers. The
equations were solved with a finite-difference technique.

Hill (1990) presented a model of pelagic dispersion of lobster larvae in the horizontal
plane. The model is two-dimensional in space and the concentration of larvae is depth-
averaged. Current and turbulence fields are also considered as depth-averaged values.
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The concentration C(x,y,?) of larvae at a position x,y at time ¢z, is governed by the
following advection-diffusion equation:

0C(x, y, 10 Ofua(x, y, )C(x, y, Bl Olva(x. 3, L, ».2))
or Ox dy

i) 9C(z, 1) 0 oC(y, 9]
e [K(x, f) e ] ~% [K(y, f) 3 ] =mC(x, y, 1)
(12.112)

where u,(x,y,1) and v,(x,y,1) are depth averaged water velocities in the x and y
directions respectively, and K(x, f) and K(y, t) are the turbulent diffusion coefficients in
the x and y directions. In his model, Hill (1990) assumed a constant current speed z, in
the x direction, no current in the y direction (v, = 0), and constant and equal turbulent
diffusion in both x and y directions. The biological term represented reduction of larval
concentration because of mortality of organisms at an instantaneous mortality rate, m.

With the same assumptions, Hill (1990, 1991) studied the relative contributions of
turbulent diffusion and advection, as well as mortality and dispersal, to the dispersion of
the larvae. He used analytical solutions of simplified versions of equation 12.112,
corresponding to idealized configurations.

Similar models have been used to investigate the advection, diffusion, and mortality of
Pacific herring larvae (McGurk 1989), the movements of larvae released from a well-
defined region into a tidal current (Richards et al. 1995), and the dispersal and
recruitment of a larval population of barnacles in a coastal habitat (Possingham and
Roughgarden 1990). Possingham and Roughgarden (1990) presented, in detail, the use
of finite difference methods to solve numerically the differential equations describing the
dynamics of the distribution and abundance of adult and larval barnacles.

Hofmann (1988) presented a two-dimensional spatially-dependent advection-diffu-
sion model of biological variables of the pelagic ecosystem on the outer southeastern US
continental shelf. The dynamics of the copepod Paracalanus sp. was taken into account
in this model (Hofmann and Ambler 1988).

MODELING ACTIVE VERTICAL SWIMMING WITH ADREs

The swimming behavior and/or buoyancy effects of organisms are included in equation
12.110 by the addition of a Laplacian term V(v;C) for the swimming velocities, with
vs(up, vp, wp) representing the swimming velocities in x,y,z directions. However for
zooplankton organisms (not for fish larvae) the horizontal effect is negligible
(up = vy, =0).

Dekshenieks et al. (1996) presented a vertically structured and time-dependent model
to investigate the effects of changes in the physical environment on the vertical
distribution of oyster larvae, as determined by vertical stratification in temperature and
salinity. The vertical distribution of a given size class, C;, was assumed to be governed
by:

0Ci(z, 1) | O[wa(z,0)Ci(z,7)] O 0Ci(z, 1)
o oz T3z [K(z’ L :I
olwn(z DGz, 0]

= growth;_; — loss; — (12.113)

0z

The first term on the left hand side represents the rate of change of the number of larvae
in a particular size class i in a size-structured population model. The second term
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represents the effect of advective vertical transport by the fluid flow. The value of w,, is
specified as a constant velocity or as a function that varies in space and time. The
coefficient K determines the rate of vertical diffusion and may be specified as either a
constant or a variable value. The first two terms on the right hand side represent the
biological processes that determine the rate of transfer to the next largest size. The
number of larvae in a particular size class changes by growth of new individuals from the
previous size class (growth;_;), and the loss of individuals to the next largest size (loss;)
(see weight-structured models on page 600). Larval growth was modeled for the whole
life cycle as a function of ambient temperature, salinity, turbidity and food, and the size
range was partitioned into 271 size classes.

Vertical migration is represented by the last term on the right hand side of equation
12.113. Larval swimming ability w; is parameterized using observed dependencies on
temperature, salinity and larval size. Therefore, the total advective velocity, w, is
composed of contributions from the vertical circulation w,, and the size-dependent
biologically produced vertical movement (sinking or swimming) w;, with w = w, + w.

The addition of biological terms makes equation 12.113 complex, and analytical
solutions are difficult to extract without simplifications. As a consequence, such
equations are solved numerically. Dekshenieks et al. (1996) used a Crank—Nicholson
implicit finite difference scheme (see Sewell 1988) with a time step of 12 min, which was
adequate to resolve the transfer of larvae between size classes.

A similar approach was used by Andersen and Nival (1991) and Richards et al. (1996)
to simulate the vertical distribution of zooplankton (euphausiids and copepods respec-
tively) that vary in space and time as a result of diel vertical migration. They studied the
role of light intensity, the rate of change in light intensity, and the relative rate of change
in light intensity. The equation they used is the same as equation 12.113, except that
there are no biological processes affecting the biomass or the number of organisms; the
vertical speed of the organisms, w, only depends on light. These authors present in detail
in their papers the numerical methods that they used.

Studies of the distribution of organisms in regions where zooplankton may be
aggregated (e.g. upwelling and downwelling regions, Langmuir circulations, internal
waves) are usually undertaken with 2-D models. Wroblewski (1980, 1982) modeled
population dynamics (with a stage-structured population model) of copepod species
embedded in a circulation system simulating the upwelling off the Oregon coast.
Simulations of the dynamics of Calanus marshallae (Wroblewski 1982) focused on the
interaction between diel vertical migration and offshore surface transport.

The zonal distribution of the life-stage categories C; of C. marshallae over the Oregon
continental shelf was modeled by the two-dimensional (x, z, f) equation:

0Ci(x,2,7) Oua(x,z,9Cilx,2, 1) O[wa(x, z, ) Ci(x, z, ¥)]

ot Ox 0z
G) 0Ci(x, z, 0 0 0Ci(x,z, 1)
_E[K(“) ox ] az[K(z") 0z ]
Owsi(x, z, )Ci(x, z, )]

= population dynamics + (12.114)

0z

where wy; is the vertical swimming speed of the ith stage, assumed to be a sinusoidal
function of time:

Wpi = Wy sin(2zt) (12.115)



642 MODELING ZOOPLANKTON DYNAMICS

with wy; the maximum vertical migration speed of the ith stage. The population dynamics
model was presented on page 602.

The upwelling zone extended 50 km from the coast down to a depth of 50 m, and was
divided into a grid with spacing 2.5 m in depth and 1 km in the horizontal. The author
used a finite difference scheme with a time step of 1 h, which fell within the bounds for
computational stability.

MODELING THE DISPERSION OF A POPULATION IN CIRCULATION MODELS WITH
ADREs
An important development in zooplankton modeling is to make full use of the increased
power of computers to simulate the dynamics of zooplankton (communities or popula-
tions) in site-specific situations by coupling biological and transport models, giving a
high degree of realism. Structured population models and individual-based models allow
detailed simulations of zooplankton populations in different environmental conditions.

In the last decade, some efforts have been made to develop such physical-biological
models. The current development of advanced circulation models will strongly increase
the number of such studies.

Davis (1984b) developed a species-specific model for Pseudocalanus sp. incorporating
13 stages in an idealized steady gyre around the Georges Bank. Equation 12.110 was
written as:

6};:} + 2?7:61;;‘} = ga;j:;f = population dynamics (12.115)
where i = 1 to 13 for all developmental stages, K is the horizontal coefficient of eddy
diffusivity, r is the radial distance from the center of the bank, and 0 is the angular
coordinate.

The equation can be solved analytically without biological terms, but the addition of
the biological term (see Continuous-time structured population methods, section
12.4.2) makes the analytical solution intractable, and a numerical solution of the
complete biological-physical model was required. Advection and diffusion were
approximated as centered difference terms and were solved numerically using the
improved Euler method.

Recent progress has been made in the representation of the physical part of Davis’s
(1984b) model. Lewis et al. (1994) investigated the role of wind variability on the
dispersion of a copepod population, using an advanced 3-D physical model of Georges
Bank without tides. Currently the simulations presented by Lynch et al. (1998) are
probably the most sophisticated example of the dispersion and dynamics of a zooplank-
ton population in a site-specific study (Georges Bank). Equation 12.110 was reduced to
the horizontal dimension making assumptions about the vertical distribution of organ-
isms. Fluid velocities in the horizontal plane were derived from a hydrodynamical model
(Lynch et al. 1996). The transport equations were solved using a Galerkin method
(Sewell 1988). The population dynamics were represented by a stage- and age-structured
population dynamics model similar to the model presented by Davis (1984a; see page
600 for details) with biological parameters relevant for Calanus finmarchicus. Lynch et
al.’s (1998) model results gave a credible scenario for the initiation of the spring Calanus
bloom by simulating the emergence of copepodites at the right time and place in
comparison to observations.
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12.6.5 Spatial distribution of zooplankton in ecosystem models coupled
with ADREs

Physical-biological models of various levels of sophistication have been developed
recently for different regions of the ocean. An overview of many marine interdisciplinary
models is given in Wroblewski and Hofmann (1989), Hofmann (1993) and Hofmann and
Lascara (1998).

Biological models were configured first as compartmental ecosystem models in an
upper ocean mixed-layer (e.g. Fasham et al. 1990). Zooplankton can be represented by
one variable (as in NPZ models) or more (e.g. by distinguishing mesozooplankton and
microzooplankton). In this second case, the model generally takes into account several
size classes of phytoplankton. This class of ecosystem model has been coupled to one-
dimensional physical models (McGillicuddy et al. 1995a; Prunet et al. 1996a, 1996b;
Oguz et al. 1996), and embedded into two-dimensional (Klein and Steele 1985) and
three-dimensional circulation models (Fasham er al. 1993; Sarmiento es al. 1993;
McGillicuddy ez al. 1995b; Moisan et al. 1996; Levy et al. 1998).

As emphasized by Spitz et al. (1998), one of the difficulties with these models is
obtaining an estimate of parameters. A systematic and non-subjective technique of
adjusting the model parameters consists of using observations in conjunction with a data
assimilation technique (Armstrong er al. 1995; Matear 1995; Lawson et al. 1995, 1996;
Prunet et al. 1996b). A second difficulty is the presentation and interpretation of results.
Ecosystem models are complex, and when biological effects are combined with physical
effects in a 3-D environment, a large amount of information is produced. This
information results from non-trivial interactions and dynamics, and there is much
scope for developing innovative ways to summarize or integrate this information into a
meaningful form.

12.6.6 Further reading

Renshaw, E., 1991. Modelling biological populations in space and time. Cambridge studies in

mathematical biology. Cambridge University Press, Cambridge, 403 pp.

Nisbet, R.M. and Gurney, W.S.C., 1982. Modelling fluctuating populations. Wiley and Sons,
Chichester, 379 pp.

Levin, S.A., Powell, T.M. and Steele, J.H., 1993. Patch dynamics. Lecture notes in biomathe-

matics 96. Springer-Verlag, Berlin, 307 pp.
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