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To understand animal wellbeing, we need to consider subjective
phenomena and sentience. This is challenging, since these
properties are private and cannot be observed directly. Certain
motivations, emotions and related internal states can be
inferred in animals through experiments that involve choice,
learning, generalization and decision-making. Yet, even
though there is significant progress in elucidating the
neurobiology of human consciousness, animal consciousness is
still a mystery. We propose that computational animal welfare
science emerges at the intersection of animal behaviour,
welfare and computational cognition. By using ideas from
cognitive science, we develop a functional and generic
definition of subjective phenomena as any process or state of
the organism that exists from the first-person perspective and
cannot be isolated from the animal subject. We then outline a
general cognitive architecture to model simple forms of
subjective processes and sentience. This includes evolutionary
adaptation which contains top-down attention modulation,
predictive processing and subjective simulation by re-entrant
(recursive) computations. Thereafter, we show how this
approach uses major characteristics of the subjective
experience: elementary self-awareness, global workspace and
qualia with unity and continuity. This provides a formal
framework for process-based modelling of animal needs,
subjective states, sentience and wellbeing.
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1. Introduction

Animal welfare has grown into an important interdisciplinary area involving significant public concern
and societal influence [1–5]. Nonetheless, there are still controversies over the application of the well-
being and welfare (the state of wellbeing [2]) concepts to animals [3,6–8]. Indeed, much-used
definitions of wellbeing emphasize its multi-faceted nature and link it with subjective feelings,
emotions and sentience (see glossary) [6,9–11]. Animal (including human) wellbeing is most naturally
understood from the first-person perspective [10]. This makes analyses of subjective phenomena (see
glossary) nearly unavoidable in this field [6,10,12,13].

Subjective feeling-based definitions of welfare are sometimes criticized for not being compatible with
‘objective science’. Critiques claim that physical health, naturalness and similar elements deemed easily
measurable should define what welfare really is [6,12]. Folk judgements of animal welfare seem to
support this to some extent [14,15]. If animals cannot communicate their subjective experience, a
sceptic view is to remain agnostic. This entails ignoring their existence, resulting in a utilitarian
approach to animal welfare: the main reason why animals matter is what they provide to us as farm
or companion animals [16]. Then, the study of subjective feeling can divert us in the wrong direction
[16]. But deliberately stripping complex cognitive abilities and subjectivity out sets an unnecessary
ceiling on our understanding of welfare in healthy animals and fails to address the concerns for the
animal suffering that were at the inception of animal welfare science [6,11].

Further, strong agnosticism can be ungrounded [17–20]. There is growing evidence for fascinating
cognitive capacities in animals, including intentionality [21], components of conscious experience
[13,18,22–24], planning and thinking [25–27], episodic memory [28,29] and meta-cognition [30,31].
It can therefore be fruitful to analyse complex cognitive abilities and subjective phenomena if we want
to understand animal behaviour [32] and welfare [6,13]. There are still significant controversies over
whether subjective phenomena, self-awareness and consciousness are just epiphenomena [20,33], or
have adaptive significance [34–37] and whether they can be used to account for human and animal
behaviour. However, as they are the essence of animal feelings and suffering, they are critical for
understanding wellbeing [6,11].

This view justifies the development of theoretical approaches to animal sentience and subjective
processes beyond general philosophical and metaphysical thinking. A better understanding of the core
concepts of wellbeing requires formal models for standardized assessment (e.g. [38,39]) and
quantitative models [40] that reflect how physiological, cognitive and behavioural needs relate to
subjective states, emotions, suffering and stress.

Our main aim is to develop new computational technology for animal welfare. We bring together
ideas from animal behaviour, neurobiology and computational cognitive science. First, we outline a
general organization of adaptive behaviour in animals focusing on subjective state and predictive
cognition (§2). We then provide a brief review of the wellbeing concept and its links with subjective
state and predictive cognition (§3). Next, in §4, we describe the essence of the computational
modelling approach to cognition with a focus on cognitive architecture. We then provide a natural
framework for process-based modelling of both subjective wellbeing, sentience and consciousness
evolving through natural selection and bounded by the ecological conditions in §5. Finally, in §6, we
propose a way forward towards the computational animal welfare science and outline several
implications (§7). While our computational framework has been used in evolutionary ecology (e.g.
[41,42]), this proposal for animal welfare is currently at an early stage. We think it is rich enough to
inspire empirical and modelling work as well as a critique that will help to refine it in this area. We
also believe that it may become an effective tool in the current era of digitalization and precision
livestock farming [43,44].
2. How adaptive behaviour is produced
2.1. Animals as autonomous predictive decision-making agents
Animals live in complex and unpredictably changing natural landscapes, where making adaptive
decisions require trading priorities among various needs related to survival, growth and reproduction
[45–47]. This is a computationally complex task [48–50]. Rather than having automated responses to
any immediate signal, animals have evolved to be ‘autonomous agents’ (see glossary) [51–53]. Their
behaviour is generated endogenously [51], driven by the internal state [54] and follows from
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expectations and goals set by the organism [52,53,55]. This has been long realized in ethology and animal

welfare. The classical models of motivation [53,56,57] recognize the importance of internal causation.
Similarly, the notion of behavioural needs in animal welfare was originally defined in terms of
internal motivations [58,59].

There is a growing recognition of intrinsic spontaneity and indeterminacy of behaviour [60,61]. This
spontaneity requires a capacity for predictive modelling in the nervous system that considers an animal’s
internal state [62–64]. Such predictive modelling is found even in insects [65,66]. Making predictions for
the future is central to the adaptive functioning of the nervous [67,68] as well as hormonal system [69].
Thus, there is a growing realization that a stimulus–response paradigm is insufficient to account for
complex behaviour [70,71]. Letting animals express their agency and cognitive complexity has
therefore become an important animal welfare priority [55].

2.2. The link between decision-making and integrated self
Adaptive behaviour involves arbitration between alternative stimuli, responses and choices. A key
mechanism for this is competition and negotiation among multiple neural ensembles and cognitive
modules in brain function [72–74], learning [75], cognition [76,77] and decision-making [78–80]. The
need to make goal-driven decisions with top-down behavioural control in dynamically changing
environments requires the organism to maintain a view of itself and its surroundings through an internal
(and hence, subjective) model [67,81,82]. This model may contain both evolved and learned components
[50], should detect discrepancies from the reality [62,83,84] and monitor stress the state of wellbeing.

An animal can potentially produce a wide range of responses (including ignorance) to any given
stimulus depending on its subjective model of its current state and its surroundings. Signs, like the smell
of a predator or prey, are stimuli that signify something other than itself [85]. A multitude of signs can be
found in the environment, some are also sent from the animal to other organisms voluntarily or
involuntarily, and all organisms live in a ‘semiosphere’ of signs (and noise falsely interpreted as signs).
Recognition of the meaning of important signs among the complex sensory input is essential for learning
and prediction of the future. This recognition or interpretation capacity (semiotic freedom) is therefore
also essential for how rich the animal’s phenomenal world is and how well an animal copes with its
environment. It will directly impact welfare in both positive and negative ways [85]. From a welfare
perspective, we are most concerned with situations that pose a challenge to the animal. For instance,
while wildebeest spot predators regularly and still keep on with their normal activity, there are
combinations of signs that set the animal in alarm mode. When this occurs, cognitive, physiological and
behavioural systems are focused in a single, unified defensive state often called ‘fear’. Such global
emotional and motivational states are of central importance for what is considered important (or
irrelevant) for appropriate behavioural response [86–89]. Threat imminence is instrumental in fear: low-
risk anxiety requires wide information integration governed by conscious feeling while panic at high risk
substitutes consciousness with rapid innate automatic responses [90].

Emotion or affect represents a combined behavioural, physiological and cognitive state that primarily
carries an individual organism’s value of stimuli or context [91–93]. Emotion is closely linked with the
assessment of rewards and punishments [89,94] and functions to focus the animal to avoid harm and
obtain valuable resources [93–95]. Affective states come in degrees, which translates to the concept of
arousal: an elementary neuronal process that activates many cognitive processes, emotions and
behaviours. It affects both ascending and descending brain pathways and brings about alertness to a
range of sensory stimuli, reactivity and motor activity [96,97]. This leads to the circumplex model of
affect in two dimensions: positive versus negative valence and low versus high arousal [89,98,99].
While initially developed in the context of human psychology, this view is supported by evolutionary
models [100] and has been applied to animals [89,101–103].

Historically, the global state of the organism was introduced to neurobiology at the beginning of the
twentieth century by Ukhtomsky [104,105] as the principle of the dominant. The dominant was thought
of as the prevailing source of excitability in the nervous system that greatly influences responses of the
organism to a wide range of stimuli at a particular time. The dominant was conceptualized as the basic
mechanism for focusing attention, subjective model and anticipation of the near future [105]. In modern
terms, the global emotional and motivational state reflects the arbitrated primary need state of the
organism that defines its current behavioural goals and predicted future [50,106]. If the organism
anticipates that it cannot satisfy its needs, it may become stressed [89,107].

Given a particular dominant state, the animal selects the appropriate action. Organisms of many
species (at least those with motility and complex behaviour) have evolved the ability to make



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.7:201886
4
predictions of their near future based on their internal model and use this to decide its next behaviour

[50,89]. In the process, the internal model is challenged and updated with new information that
appeared as a consequence of the behaviour. Prediction error—the mismatch between the expected
and perceived information—is central for cognition based on prediction. New information resulting
from the behaviour can modify the internal model, bringing about a continuous flow of goal-driven
computations for predicting the best behavioural action onwards. Alternatively, the animal can try to
keep the outside world to agree with the subjective predictions as much as possible, as in the active
inference paradigm [64,68,108]. In this perspective, animals can be viewed as prediction machines
[62,64,109] that have the ability to consider and forecast future ‘bodily feelings’ (emotions, tastes) that
result from potential actions [89,91]. Examples come from associative learning [84,110,111], goal-
oriented cognition [62,83] and sensorimotor control of action and behaviour [67,83,112]. In this view,
motivation, emotion and wellbeing can be central components and provide the common currencies for
prediction-based cognition [89,113].

The mechanisms in the pathways from genes to development, physiology and behaviour [114–116],
and from perception to decision and action [117–119], are to a large degree modular throughout the Tree
of Life. This means that the whole system can be decomposed into discrete functional and/or structural
components. This can apply to emotions and motivations. For example, there are certain core types of
affect [86,93]. Threat imminence is also thought to evoke distinct modules of fear [90]. There are still
debates in what respect and to what degree human cognitive architecture is modular (e.g. [120–123]).
Modularity can increase the functional efficiency of large networks [124], especially when we consider
connection costs [115]. Modularity can significantly increase the efficiency and the ability of both the
living organism and the evolving gene pool to cope with environmental change [125,126]. It allows
components to be modified, duplicated, replaced or deleted without catastrophic loss of function to
the whole organism [127]. In this way, modularity creates a potential for individual variation [42,128],
facilitates adaptive evolution and increases evolvability [41,115,127].

Many animal brains have a mechanism ensuring widespread information access across multiple
processes working in parallel [129]. General components that link numerous modules are crucial for
the cognitive function. For example, broad neuronal communication across encapsulated modules
provides a computational advantage [130]. In humans, awareness counteracts modularity through the
maintenance of widespread, almost global, connectivity [131]. For consciousness, this mechanism has
been called the dynamic global workspace: a functional hub that binds and propagates neural signals
across a wide range of specific networks [132,133]. This workspace is likely to have evolved gradually,
so that many animals have ‘not-so-global’ dynamic workspaces [134]. We will still call them global in
this article, in the sense that they represent all that is connected. In vertebrates, convergent neuronal
pathways integrating several projections are often found outside of the cortex [135]. For example, the
habenula links many diverse circuits [136], and there are links integrating telencephalon with the
cerebellum [137]. Converging connections are common not only in vertebrates but also in animals
with small nervous systems [138,139].

Subjective experience cannot be found in a neural system based on reactive, feed-forward circuit
organization alone [140–142]. Neither is compositional and computational complexity in itself sufficient
for the subjective experience [140]. Subjective experience and consciousness arise in systems that are able
to (i) integrate information, (ii) monitor itself, and (iii) generate and process virtual (hypothetical, possible)
rather than actual information [141–143]. The simulation theory of cognition [144] accounts for the
emergence of the subjective world through the development of integrated sensory-motor circuits.
The whole circuit is activated when producing the next behavioural or physiological action. But it is
also engaged (subjectively simulated) when the same action is planned, anticipated or even observed
[145–148]. In humans, reactivated sensorimotor circuits are involved in conceptual processing, declarative
knowledge and understanding [145,149]. Thus, the first-person conscious subjective experience involves
the acquisition and re-entrant activation of linked sensorimotor and affective circuits [145]. Re-entrant here
means repeated, recursive, activation of the same neuronal ensembles and circuits [132,150].

Emotions and personality are closely associated with subjective phenomena and self [88,93,120].
Consistent personality variation, linked with affect, exists in many taxonomic groups and can originate
from shared genetic, physiological, developmental, neurobiological and cognitive mechanisms as well as
an evolutionary adaptation [151–153]. Personality in humans can significantly depend on cognitive
architecture [154]. From this, we can see that a unitary understanding of the integrated cognitive and
behavioural phenotype—the self—emerges. It includes subjective processes as well as externally
observable traits, personality. In this perspective is subjective wellbeing a crucial component of the
system, because it links with information integration and self-monitoring.
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3. Wellbeing and suffering: objective and subjective

Wellbeing describes what is good for the individual [10]. The notion of ‘good’ is here intimately linked to
Darwinian fitness. Evolutionary forces have formed sensitivity to stimuli, emotions and availability of
response mechanisms for the organism through random mutations and selective survival and
reproduction. Thus, wellbeing is about how life is going on for the organism from its own perspective.
There is, however, a range of views on how animal wellbeing can be defined scientifically. Some schools
tend to focus on the healthy, stress-free physiological functioning of the organism, its ability to cope with
the current environment, and satisfy its basic motivational and behavioural needs [155–157].
Naturalness, i.e. ability to perform natural, ecologically adaptive behaviour, is also crucial [15,16,158].
For others, welfare largely involves subjective cognitive needs [55,159] and feelings (e.g. ‘Let us not
mince words: animal welfare involves the subjective feelings of animals’ [160, p. 1]). This view depends
on the assumption that many animals are capable of various degrees of sentience: the capacity to
experience feelings such as pain and suffering [6,12,13,161]. The common position in the field has
become to understand animal wellbeing as a complex set of phenomena involving cognitive constructs,
subjective awareness and desires in contrast to simple physiological and health status [6,12,162].

While the role of positive emotional states and pleasure has been emphasized in animal welfare
[163–165], wellbeing is elusive and multi-faceted and difficult to define precisely. It is especially hard in
species that do not frequently display positive emotional states, social and play behaviour. However,
deficit in wellbeing—physiological and psychological stress and suffering—may be easier to define,
detect and measure [3,166,167]. Stress is understood as an organism’s response to the actual or predicted
threat, challenge or disruption of the organism’s homeostasis. Usually it involves an increase of the
general arousal, activation of the autonomic nervous system: hypothalamic–pituitary–adrenal axis
[168–170] in mammals or hypothalamic–pituitary–interrenal in fish [171,172]. Incidentally, invertebrates
have specific stress hormones [173], e.g. hyperglycaemic hormone in crustaceans [174]. Stress is also a
subjective state of perceiving potentially adverse changes [170]. Theoretical discussions emphasize
complex cognitive and behavioural aspects of the stress involving the animal’s inability to anticipate the
kind of challenge (unpredictability), its extent and possible avoiding strategies (uncontrollability) in
addition to simple physiological responses [107,170,175]. Thus, stress is intrinsically linked with the
emerging predictive cognition paradigm where the organism is depicted as a prediction machine
[62–64]. Stress as a response is closely associated with a range of negative internal emotional states. In
the animal wellbeing literature, such states have traditionally been subsumed under suffering. Suffering
is defined as ‘intensely and/or enduring unpleasant subjective feeling’ [59, p. 210] or a ‘wide range of
unpleasant emotional states’ [160 p. 1] or ‘unpleasant feeling, which is prolonged or severe’ [176, p. 374].
Thus, wellbeing is a combination of both objective and subjective aspects of the organism and reflects
not just its current state, but also the anticipated change for better or for worse [9,159,177]. The needs of
the animal (whether objective, such as adequate food and health, or subjective), its current state and
anticipation of the near future are central for understanding wellbeing.
4. Computational models of cognition and cognitive architecture
Many biological and especially brain processes are computational, at least in the generic term [178,179].
Computation generally means manipulation of specific elementary units (e.g. digits, strings, neural
spikes, continuous physical processes, variables, etc.) that are defined according to rules independently
of the physical media that implement them [180]. Computation describes inherent functional and
‘algorithmic’ processes at the level of molecules and reaction networks [181,182], neural networks, the
whole brain [183,184] and up to higher forms of cognition [185,186]. In this perspective, cognition and
even the human mind (see glossary) are to a significant degree accounted for by computation
[185,187,188]. Computational modelling and simulation of perception, cognition, learning, motivation,
emotion and mind are therefore among the most natural ways of understanding the brain function and
behaviour [70,183,185].

Complex computational models of the human mind are often implemented in the form of cognitive
architecture [189–191]. This is a general framework that can be used through building more detailed
computational models of cognition and behaviour focusing on particular problems [192,193]. It refers
to algorithmic models of brain functioning rather than structural descriptions of neuronal wiring and
brain morphology. It also differs from simple elegant mathematical equations, such as a function
linking reinforcement rate and the response rate. Typically architectural models work through
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building a virtual agent mechanistically implementing cognitive and behavioural functions that can just

‘run’ [194]. This is a thriving research field integrating psychology, neurobiology, artificial intelligence,
computer science and philosophy of mind [189,190]. Cognitive architecture also provides a valuable
tool for building quantitative models of animal cognition, sentience and welfare [50,106].
ietypublishing.org/journal/rsos
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5. A modelling framework for subjective wellbeing and behaviour
Over the years, we have developed a model of an adaptive architecture for decision-making
[41,42,45,128,195–198]. It currently contains a general framework and computer software components
[199,200] for building simulation models that integrate cognition and behaviour in a phenotype that
includes genome, physiology, hormonal system, perception, emotions, motivation and cognition. It
also includes a virtual environment where the agents live and the gene pool evolves. This adapted
heuristics and architecture (AHA) [50,106] provides a methodology for computational simulation of
various internal subjective states and processes that account for animal wellbeing. Characteristics of
the AHA cognitive architecture evolve through natural selection: the genetic algorithm leads to
evolutionary adaptation of individuals and the gene pool [197,201,202]. This aligns well with the
common view that all the mechanisms that account for animal wellbeing, including subjective
feelings, are Darwinian fitness adaptations [176,177,203]. The AHA modelling framework can tackle
elementary computational mechanisms thought to underlie subjective experience in different animals.
We argue that our common evolutionary history suggests a continuity in neural, computational and
evolutionary mechanisms that underlie subjective phenomena [91,134,204]. We are therefore concerned
with functionally defined concepts in the same way that founders of ethology [205] and comparative
psychology [206] used various human-derived terms without anthropomorphizing them.

5.1. A brief outline of the adapted heuristics and architecture cognitive architecture
Analyses of wellbeing take the viewpoint of the individual animal: its individual state, needs and
responses [6,160]. Thus, the AHA cognitive architecture [50,106] starts with the needs of the organism.
The animal has the basic energetic needs to sustain its life as well as such needs as to avoid predators
and secure reproduction, all adapted by the evolution of the gene pool towards a defined (but
variable) environment.

The organism is continuously exposed to various signals from the external and the internal
environment. How all the numerous sensory stimuli are selected and integrated is defined by the
subjective internal model (SIM), which is the animal’s image of itself and its surroundings (figure 1). The
strengths of the causal factors that integrate specific classes of sensory input represent the different
motivations. For example, perception of stimuli linked to food and the individual’s gut defines hunger,
while the perception of stimuli from predators defines fear. As mentioned for the wildebeest earlier,
there are many normal situations where no signals from the body or the environment indicate an
upcoming urge to the SIM. The animal can then attend to several types of motivations more or less
simultaneously, but with lower efficiency, and without evoking wellbeing issues.

Motivational modules will compete for priority if there are more than one of them activated at any time.
The strongest becomes the dominant emotional state of the organism, its global organismic state (GOS) [207]
(it is a common assumption that the animal performs one major activity at a time [53,86]). This global state
reflects how the organism trades priority across its various needs and selects the currently most important
one given the state of its SIM. The strength of this dominant need is indicated by the level of the general
arousal. It is conceived as one of the main wellbeing indicators, defining the severity of stress and
negative feeling. The whole pathway from perception through motivation to the global organismic state,
that integrates multiple sources of information, is called the survival circuit [86]. The AHA organisms
have several such circuits that encapsulate different emotional states: fear, hunger, thirst, reproductive
drive etc. (figure 1). The GOS and the arousal jointly determine attention: which stimuli the organism is
going to use or ignore and to what extent in its ongoing decision-making process.

This top-down (or goal-driven) attention is produced endogenously when specific information (e.g.
specific types of stimuli) is actively sought out from the external or internal environment, e.g. based
on the SIM memory template. The GOS actively limits the animal’s attention to information that is
most relevant to the current functional and behavioural state of the organism [76,112,208]. The GOS
and the arousal determine how the animal makes decisions and selects behavioural actions. The
organism can predict its likely effects on the environment and itself via subjective simulation of the
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expected emotion and arousal as a common internal currency. This represents a simple mechanistic
model of subjective feeling. The SIM and the GOS jointly represent the global workspace that defines
the unitary subjective state of the individual (figure 1). In this perspective, the ability of the SIM
to represent important aspects of the internal and external environment result from ongoing
computation performed by (i) natural selection on the population gene pool (evolutionary adaptation)
and (ii) by animals through individual learning. The framework is generic and allows the researcher
to combine these elements in models of varying complexity. For example, one can implement a purely
reactive stimulus–response organism, an organism adding a single re-entrant component (single kind
of experience) linked with one GOS, or a much more complex system including re-entry for all GOS
and global workspace. This would allow to depict different species and/or build simpler or more
complex models for different purposes.

5.2. A model of subjective phenomena and elementary self-awareness
As outlined above, wellbeing is a substantially subjective (first-person) phenomenon that intimately
depends on self-assessment and elements of consciousness. Direct experimental analysis of subjective
feelings and experiences in animals is a daunting task. However, the use of models could help generate
hypotheses and direct empirical research. The AHA cognitive architecture provides a mechanistic model
for elementary forms of subjective phenomena that satisfies many definitions of sentience and
consciousness.

At the simplest level, top-down attention generates a simple mechanism for both goal-directed
behaviour and subjectivity. Since the GOS affects perception through the top-down selective attention,
two organisms with identical genomes placed into identical environments, but differing in their
current state (e.g. one slightly afraid, the other very hungry) will perceive their internal and external
environments differently. Their whole pathways from perception to cognitive processing and
behavioural action will be unique. Differences between the individuals accumulate over time, thereby
causing diverging cognitive and behavioural trajectories. Internal parameters of these processes are
inseparable from each organism (in fact, from the history of the organism–environment interactions).
This satisfies our broad definition of subjective phenomena.
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Elementary self-awareness is an important aspect of prediction-oriented cognition and action

selection implemented in the AHA architecture. It is defined as ‘the ability of the agent to assess its
own internal state and use this information for decision making and action selection’ [106]. It is
implemented through re-entrant activation of the survival circuits: internal simulation of the
organism’s own potential actions (or the actual actions on an animal it observes) allows to determine
the option that would result in the lowest arousal for negative emotions (or highest, for positive
emotions). This links wellbeing with prediction error monitoring [62,64,84]. Consistently small
prediction errors may indicate that the animal copes well enough with the environmental challenges.
Furthermore, self-representation and self-monitoring are the most fundamental characteristics of
consciousness [24,109,141].

This simple subjective simulation machinery reflects the emerging view that simpler forms of feeling,
sentience and awareness not only have continuity across species [18,19,134], but can be found even in
species with simple nervous systems [209]. The AHA cognitive architecture implements subjective
experience by the mechanism of re-entrant activation, which is thought also to underlie human
conscious experience [132,150,210].

The AHA architecture includes the two main components of conscious computations [141]: (i) self-
monitoring in the form of elementary self-awareness and (ii) global workspace in the form of a
unitary set of parameters for the SIM that hold the same for both producing and predicting inferred
constructs (motivations, GOS). Several philosophical approaches to the nature of consciousness agree
that its most important concept is qualia [20,211,212]. These are private, cognitively closed experiences
that cannot be easily conveyed to others. Their main properties are unity and continuity [211,212].
Intriguingly, the AHA architecture provides a simple representation of qualia. Indeed, the way
perceptual information is integrated to produce the internal state is unique for each individual and
results from its previous history of interactions with the stochastic environment. It is ineffable:
essentially non-inferable by an external observer without access to the organism’s internal data
structures. The great number of the external and internal stimuli that are uniquely filtered by attention
in each case and potential processing pathways (especially if such pathways can be activated
recurrently) makes it impossible to derive the internal data and cognitive structures even if the
observer can record (the only observable) behaviour, input and output. Even for simple finite state
machines, Moore’s theorem [213] states that no amount of observation is sufficient to uniquely
identify the machine. This provides a very simple model of qualia. The unity of individual experiences
is based on the involvement of the same neuronal parameters for both generation and recurrent
prediction of the arousal and the GOS [106]. The GOS also depicts a single central state affecting
attention, cognition and behaviour at the next time steps. The continuity of the experience in our
model is strengthened by a mechanism that tolerates small fluctuations of incoming stimuli to avoid
fast GOS switching [106, p. 53].

The AHA architecture contains all the characteristic features of consciousness defined by Ginsburg &
Jablonka [20,214]. (i) A flexible value system is represented by the GOS-linked top-down attention focus
that modulates the goal depending on the internal state. (ii) Unity and diversity through sensory binding
is implemented by the linking and integration of information between specific classes of stimuli and
survival circuits. Additionally, GOS is a single unitary state. (iii) The global availability of information is
again represented by the unitary GOS (G is for global) and by the use of the same set of parameters
both for producing GOS and re-entrant simulations involved in the generation of the future action.
The SIM is both global and persistent. (iv) Temporal thickness is equivalent to the above continuity of
experience. It is implemented through an arousal-dependent motivation competition mechanism
avoiding very fast switching between different GOS and behavioural states [106]. (v) Selection is
implemented through internal motivational competition among several alternatives that gives rise to a
particular GOS as well as top-down attention effects of the current GOS. (vi) The autonomous goal-
driven behaviour of the AHA agent that depends on its GOS at each time point ensures intentionality:
GOS also modulates further goal-driven actions through top-down restrictions of attention to new
information. Finally, (vii) self and embodiment are ensured as AHA models each agent as a complete
virtual organism including unique genome, physiology, cognitive architecture and behavioural actions.
The agents ‘live’ in, and the evolving gene pool adapts them to, their virtual environment that
contains food, predators and other agents as well as other factors the researcher may deem important
for the animal and the model. Individual learning can be added on top of this, as it is of course
important for adaptive behaviour in a range of animals.

We hypothesize that the subjective wellbeing can be a fundamental component of the evolved
cognitive architecture because it provides the central vehicle for self-monitoring, with emotions
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serving as an internal currency. Self-monitoring along with virtual processing and global availability are

major elements of conscious processing. In effect, this will integrate the organism’s needs, motivation,
emotion and subjective feeling.

The model in figure 1 is both an abstraction and simplification of the processes in the brains and
bodies of animals during decision-making. Each neuronal response function [42,195] and hormonal
modulation [69,128] represents the net aggregate of a range of processes, and these aggregates are
therefore not in themselves observable. Relevant parameter values can be found by evolving
populations of digital organisms [196,215,216] in environments that resemble the evolutionary history
of the species [42,217,218]. With this tool, we can theoretically investigate the behaviour and well-
being of animals that live in a particular environment or those that are transferred to a novel situation
or subjected to specific treatment procedures.

5.3. Model expectations
A model provides a theoretical framework that facilitates thinking about a phenomenon under
study [219]. Simulation experiments can be performed that are not possible on living organisms.
The cognitive architecture brings together basic building blocks from diverse fields to a complete
machinery that can ‘run’. This allows to study subjective processes that are highly relevant for
understanding and ultimately improving animal wellbeing. Even the conceptual and graphical version
of the model addresses important welfare challenges both for wild and domestic animals. Animal
subjective states and wellbeing are expressed in observable behaviour: patterns and biases of decision-
making and actions. Our cognitive architecture encompassing sensing, SIM, multiple competing
survival circuits, global broadcast and the GOS determining top-down attention control (figure 1) can
suggest certain behavioural patterns.

5.3.1. The animal’s response to a stimulus depends on its global organismic state

While classical state-dependent theories in behavioural ecology [220–222] describe behaviour as
dependent on states such as fat reserves or territory size, the key theoretical construct of the cognitive
architecture is that the GOS is the decisive internal state of the organism. It determines which survival
circuit a stimulus will be processed through and which behavioural response is finally evoked. Some
stimuli can be linked with different survival circuits, for instance may conspecifics be judged as
unwanted competitors for food or mates and wanted protection against predators. This is consistent
with the neurobiological evidence that the animal’s internal state can determine whether, for example,
a zebrafish responds to a specific stimulus with approach or avoidance [223,224]. Even the same
neurons could be involved in diverging responses under different perceived risk [225]. Controlling the
animal’s GOS and the arousal level are the main ways to achieve satisfactory subjective wellbeing.

5.3.2. Simultaneous pressures may lead to stress

This expectation concerns the situation when an animal simultaneously and over some time faces
pressures from two or more survival circuits for control of the GOS. Frequent switching of the global
state and attention without substantial reduction of the arousal would indicate inefficient decisions.
High levels of neuronal activity are energetically costly [226,227] and could lead to neurotransmitter
exhaustion [228]. High simultaneous recruitment of more than one survival circuit would normally
translate to poor wellbeing. This agrees with the evidence that animals often try to avoid situations
with many choices [229,230]. An ecological example is a series of studies by Milinski and Heller on
sticklebacks [231,232]. When starved fish were exposed to food, they first prioritized feeding at a high
rate in the centre of a prey swarm although they simultaneously received signals of imminent high
predation risk. After short, they moved to the periphery of the swarm where feeding was both less
efficient and less cognitively demanding. We interpret this as a conflict between two life-threatening
factors, starvation and predation, controlled by separate survival circuits. As fish prioritized feeding,
its hunger arousal fell while its fear arousal kept growing. The solution was to move to a place where
it could attend to both survival circuits, but with lower efficiency. While this option was available by
moving less than 1 m for the sticklebacks, it may be far less available for many animals. We interpret
this as avoiding the recruitment of both hunger and defence circuits that would worsen subjective
feeling and lead to stress. Parenthetically, it is instructive that similar considerations are discussed in
the robotics literature [233].
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5.3.3. Uncertainty would increase behavioural heterogeneity, but not at high arousal

In our framework, global information broadcast across several survival circuits is involved in the
prediction of the best behaviour in the nearest future. The animal does this on the basis of ‘what
would it feel’ if each of the available decision options is made. If there is high uncertainty as to the
outcome of potential actions but the need state is not very strong (low to average arousal), one of
many available survival circuits could be engaged, evoking diverse behavioural actions. This would
increase the diversity and complexity of the behavioural output. However, in a situation of high need
(high arousal), top-down attention control would significantly block all the stimuli not associated with
the current GOS, leading to reduced behavioural complexity. Similar patterns have been documented,
with stress reducing the diversity of behaviour in mammals [234–236].
al/rsos
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5.3.4. High need state and stress may cause ambiguity bias

The situation of high need that is not satisfied for a long time maintains the arousal at a high level and
upholds the relevant survival circuit’s command of the GOS. This results in a narrow top-down attention
span that will effectively ignore or suppress signals associated with all alternative survival circuits. Thus,
a significant recognition and response bias towards the currently activated GOS may be expected. For
example, an animal that remains hungry may interpret ambiguous stimuli and contexts as signals of
food and respond accordingly. Similarly, an animal in chronic anxiety may display a negative cognitive
bias by interpreting ambiguous stimuli as signals of danger or punishment. This tends to agree with the
observations that many species display negative cognitive biases under stress [89,102,237–239].
5.3.5. Prolonged engagement of a single survival circuit and global organismic state may facilitate
spontaneous change and (irrelevant) displacement activity

If the GOS is controlled by a single survival circuit for a long time (because the need is not satisfied), it
may become subject to spontaneous dissipation of arousal due to neuronal exhaustion and
neurotransmitter expenditure [106,240]). Then, a different survival circuit has a chance to win the
competition over the next GOS. Because such dissipation would be accompanied by broadening of the
attention span, different survival circuits could win and engage as the next GOS, even one that is
irrelevant to the current needs. Thus, a displacement activity may appear. However, if the original
motivational need is still not satisfied, it will be recruited again. Thus, short displacement activities
may be expected to separate longer periods of behaviour that is unsuccessful at reducing the arousal
of the GOS. Such a pattern—higher occurrence of displacement activities separating longer
motivational states—has indeed been observed in primates [241] and honeybees [242].
6. Computational animal welfare: the digital twin approach
Aided by the recent progress in describing physiology, brain function and behaviour in mathematical and
computational terms, simulation modelling has become a common tool in medicine and psychiatry. For
example, ‘computational psychiatry’ combines big data analysis methods with theoretical models that
account for mental illness as dysfunctional computations of the human cognitive system [243,244].
Animal welfare science could benefit from a similar computational approach. We argue that computer
simulation of the animal’s cognitive and behavioural function could provide a valuable tool to
understand, monitor and improve the wellbeing status of animals in production facilities, those kept
as pets as well as wild animals subject to various anthropogenic effects.

We expect that the developing computational animal welfare field should follow the emerging digital
twin paradigm. Broadly, it involves a digital representation of a physical object through a computer-aided
design and computer simulations [245]. The concept has recently been extended to biomedical
engineering [246], agriculture [247] and even global climate [248]. It is considered a viable paradigm
for personalized medicine [249]. The digital twin framework is a ‘disruptive trend that will have
increasingly broad and deep impact over the next five years and beyond’ [250]. In our opinion, animal
welfare could benefit from making use of this paradigm, especially because both health and well-
being could be redefined in individual terms, i.e. in terms of the subjective state of an individual
animal rather than the species or population norm.
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7. Consequences for behaviour and welfare

While this computational framework is still in development, it has several important implications for howwe
think about animal behaviour and welfare. Computational models enable us to study specific hypotheses
about the mechanics of animal cognition and behaviour before testing them experimentally. Further,
challenging cognitive architecture models with new empirical data can generate novel hypotheses [219].
Even informal analyses of cognitive architecture can suggest interesting behavioural hypotheses.

The cognitive architecture models are theory-inspired, but there is a great potential in combining
them with machine-learning approaches (e.g. [251]) based on big data collected in realistic (e.g. farm)
settings. This is especially important at this era of digitalization in agriculture (and aquaculture) and
precision livestock farming [43,44] that heavily depend on models and simulations [252]. Hybrid
modelling approaches will result in improved transparency and accountability for decision-making
[253,254] that is crucial for animal welfare [255]. Architectural models that implement the whole
integrated phenotype [256] may be used to help monitor both the physical health and subjective well-
being of animals. Such models may suggest good proxies for experimental assessment [257] and
continuous monitoring [258] (e.g. using video [259]), predict indicators of deviations from good well-
being state (based on indices of behavioural complexity [236]). And it can be used to run scenarios to
forecast likely effects of environmental or procedural changes on animal health and the welfare status,
including complex and emergent effects. In an advanced precision farm environment, a digital twin
simulation can help predict various stress and welfare effects for both planned operational changes
and possible perturbations. This would be cheaper and faster than using physical experimental
systems and avoid unwanted animal welfare issues in the R&D process. The computational digital
twin paradigm could prove useful also in the conservation ecology context. For example, it can
predict effects of anthropogenic environmental interventions on the welfare of wild animals in semi-
natural habitats, advancing the ecology of emotion (see [42,260–262]).
8. Concluding remarks
Consumers, legislators and representatives for the food production industries have a growing concern
about animal welfare [2,3,7]. The welfare status of a production facility can be monitored via
physiological and behavioural proxies to inner cognition, emotion and feeling that are expected to
correlate with the welfare status [257,263]. We make a case for this method being complemented by
computational animal welfare models.

Most researchers will agree that animal wellbeing is intrinsically linked with subjective phenomena in
the broad sense, which may or may not include conscious states similar to those experienced by humans
[6,9,11]. The recent decades have witnessed significant progress in neurobiological and
neurocomputational mechanisms of human conscious experience [132,141,264,265]. However, we are still
quite far from understanding the phenomenal consciousness and brain mechanisms of cognition in
general [266]. In our opinion, one way to progress is to use functional definitions of subjective
phenomena, just as the founders of ethology used to do for behaviour [53,205]. In the empirical animal
welfare research, this translates to ‘asking’ animals about their motivation and emotional states—
essentially what they want—through preference, learning, generalization and similar experiments
[9,12,257]. A good example of such an approach is the analysis of positive and negative emotional states
through optimistic or pessimistic cognitive biases when judging an ambiguous stimulus [89,103].

We think that computational models implementing functional mechanisms that account for internal
subjective phenomena is a fruitful pathway. Unlike other fields such as behavioural ecology, we cannot
rely on simple, elegant mathematical equations because the phenomenon of subjective cognition cannot
be understood in isolation from the subject (the integrated phenotype [256]). It is complex and includes
the interaction of many stochastic components, recursion, top-down causation and emergence. Agent-
based simulation [267–269] with evolutionary adaptation [45,197,270] seems the most feasible option.
The above discussion points to possible ways of developing a computational system that implements
basic functional units of subjective phenomena: predictive, re-entrant and top-down processing,
elementary self-awareness and global workspace in a simple mechanistic system.

The cognitive architecture implementing evolutionary adaptation [50,106] may then provide the basic
component for larger and more complex digital twin models. Such models will help monitor and predict
health, behaviour and subjective wellbeing of animals. This opens an exciting and challenging avenue for
computational animal welfare science.
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Brief glossary
Agent
 an autonomous entity that is capable of adaptive, goal-directed behaviour.

Awareness
 a cognitive state that results in the representation of an environmental or an internal

object as a whole so as to create an isomorphism between this object and its
subjective representation.
Consciousness
 awareness of the agent’s own existence and relationships with its environment.

Experience
 a subjective process by which an agent perceives its external and internal environment

through awareness. Note that we consider experience a broader concept than feeling
that also includes intellectual experience, belief, etc.
Feeling
 specific state of awareness closely linked with subjective experience, this can include
sensory feelings and emotional feelings.
Mind
 an intelligent computing system that implements learning, cognition and behavioural
control. Mind can include a capacity for awareness and is supplemented by
numerous automatic processing modules.
Sentience
 the capacity to experience subjective feelings.

Subjective
(processes/
states)
internal processes and states of the organism that exist from the first-person point of
view; their existence is inseparable from and cannot be defined independently of the
experiencing organism.
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