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Introduction

Principal components analysis (PCA) is frequently

used in animal behaviour research. It aims to reduce

numerous measures to a small set of the most

important summary scores (Nunnally 1978; Gorsuch

1983; Tabachnick & Fidell 1996). First, correlations

(or variances and covariances if the scale is crucial;

correlations are virtually always used in animal

behaviour research) between the original behaviour-

al measures are calculated. Second, the correlation

matrix is subjected to specific transformations,

resulting in a new set of linear combinations of the

original measures (principal components) that are

orthogonal to each other and account, each, for

decreasing proportion of the total variance. Third,

loadings of the original measures on these principal

components are calculated, which represent correla-

tions between the original measure and the principal

components. Then, principal components can substi-

tute for the more numerous original variables.

Correlations between components and other exter-

nal variables can be calculated, average component

scores between various treatment groups can be

compared, etc. The use of a few orthogonal principal

components may help to reduce such problems as

multicollinearity of the original variables and, when

testing hypothesis, reduce the number of statistical

tests. Additionally, the position of the data points in

the coordinate space of the principal components

reveals patterns and clusters in the data.

Researchers often try to interpret principal compo-

nents to obtain a better understanding of the patterns

of correlations between the original variables,

emphasising similarities of this method with factor

analysis (FA). Typically, variables loading on the same

principal component (i.e., having high correlations

with it) share a significant proportion of common

variance and are thought to imply a common cause

(e.g., behavioural mechanism). For example, various

measures of risk taking are often found to be corre-

lated, pointing to an underlying trait of boldness

(Budaev & Zworykin 2002; Sih et al. 2004; Reale

et al. 2007).

Although PCA and FA are often considered ‘well

known’ and relatively ‘elementary’, there exist

several potential caveats (Short & Horn 1984; Fabri-

gar et al. 1999; Henson & Roberts 2006). Here, I
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Abstract

Principal component (PCA) and factor analysis (FA) are widely used in

animal behaviour research. However, many authors automatically

follow questionable practices implemented by default in general-purpose

statistical software. Worse still, the results of such analyses in research

reports typically omit many crucial details which may hamper their

evaluation. This article provides simple non-technical guidelines for PCA

and FA. A standard for reporting the results of these analyses is

suggested. Studies using PCA and FA must report: (1) whether the

correlation or covariance matrix was used; (2) sample size, preferably as

a footnote to the table of factor loadings; (3) indices of sampling

adequacy; (4) how the number of factors was assessed; (5) communa-

lities when sample size is small; (6) details of factor rotation; (7) if factor

scores are computed, present determinacy indices; (8) preferably they

should publish the original correlation matrix.
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provide simple non-technical guidelines for the use

of PCA and FA (see Gorsuch 1983; Tabachnick & Fi-

dell 1996; Fabrigar et al. 1999; Henson & Roberts

2006 for more technical discussions). I also review

how PCA and FA are currently reported in published

research on animal behaviour. Finally, a standard

for reporting results of principal components and FA

is suggested.

An Artificial Example: Boldness in Fish

Let us consider a typical study using such an

approach in the growing field of animal personality

(Budaev & Zworykin 2002; Sih et al. 2004; Reale

et al. 2007). A sample of fish from two populations

with high- and low-predation pressure was tested in

five behavioural tests, involving (1) locomotor activ-

ity; (2) aggression; (3) exploration of novel environ-

ment; (4) exploration of novel food; (5) exploration

of a novel object.1 Two separate principal component

analyses were conducted in these two populations,

resulting in loading matrices presented in Table 1. In

both cases, the first two principal components

accounted for considerable proportion of the total

variance (64% and 62%). The patterns of factor

loadings can be interpreted easily in terms of a

general dimension of boldness. In both populations,

general activity, aggressiveness and response to

novel environment were correlated. Notably,

response to novel food was largely unrelated to bold-

ness. There is also an interesting population differ-

ence: responses to novel object were linked with

boldness in the high, but not in the low-predation

population. Overall, these results would agree with

the existing literature documenting both consistency

and population differences in boldness (e.g., Sih

et al. 2004; Reale et al. 2007).

However, for one important reason all the above

results and conclusions are meaningless: namely that

the ‘original data’ were random uncorrelated and

normally distributed numbers generated by the

computer. The variable labels were randomly chosen

from a set frequently used in animal personality

literature. While performing the analysis, I used the

default options built in most general-purpose statisti-

cal packages (principal component analysis, extract

factors with eigenvalues > 1, Varimax rotation).

With the easy availability of statistical software using

simple graphical user interface, one could produce

thoughtless, ignorant and sometimes overtly wrong

‘automatic’ data analysis.

This example shows that an arbitrary data can be

‘meaningfully’ interpreted and placed into a broader

context involving other published research (see also

Armstrong & Soelberg 1968). The above ‘study’

could pass the usual peer-review process: many

referees and readers would be happy with the statis-

tical analysis, although some aspects of the interpre-

tation may be disputed. How could one make sure

that the results of such analyses are not attributed to

just sampling error?

Guidelines for Principal Components and Factor

Analysis

Both FA and PCA are examples of exploratory analy-

sis. They are used to summarise the data and generate

hypotheses (see Haig 2006 for more discussion).

Neither method usually involves explicit testing of

specific hypotheses. When conducting PCA or FA, the

researcher is concerned with several important ques-

tions: (1) whether the PCA or common FA should be

used; (2) minimum sample size; (3) the optimal num-

ber of the original measures and their sampling char-

acteristics (e.g., the overall level of correlations); (4)

what is the optimal number of components ⁄ factors to

extract; (5) whether factor rotation is necessary and

which method should be used; (6) which loadings

should be considered for the interpretation of the

factors; (7) how factor scores are calculated; (8) how

repeated measures should be treated. As noted above,

many general-purpose software packages silently

provide default analysis options, which are often not

optimal and could lead to wrong results.

Principal Components or Factor Analysis?

Both historically and theoretically, PCA and FA

represent different data analysis methods (Gorsuch

1983). There has been a long debate about the

Table 1: Principal components analysis of boldness-related scores

from two populations

Behavioural measure

High predation Low predation

PC1 PC2 PC1 PC2

Locomotion 0.89 )0.34 )0.82 0.01

Aggression )0.49 )0.64 0.51 )0.77

Novel environment )0.82 )0.08 )0.77 )0.11

Novel food )0.12 0.88 )0.03 )0.26

Novel object )0.40 )0.07 )0.35 )0.87

Eigenvalue 1.9 1.3 1.7 1.4

Interpretable factor loadings are in bold. The original data are artificial:

random normal variates generated by the computer.

1The data are artificial, generated by the computer.
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relationship between PCA and FA (see Velicer &

Jackson 1990 and other papers in the same issue).

Often they are considered simply as two types of

‘factor analysis’. Although their results are some-

times very similar (Velicer & Jackson 1990), PCA

and FA represent conceptually distinct models (see

Gorsuch 1983, 1990, 1997). PCA is a dimensional-

ity reduction method, whereas the purpose of FA is

to measure an unobservable latent construct that

accounts for correlations between variables. PCA

assumes that all variability in the data is accounted

for by the PCs, FA provides a two-component

model including both latent common factors and an

error term (unique components specific to each

variable).

Generally, PCA is most appropriate when the main

objective is just to reduce the number of dimensions.

For example, the researcher may wish to avoid multi-

collinearity of independent variables in a regression

analysis, use a single composite index instead of

several available measures of body size or combine

several related (but not mechanistically linked, see

Short & Horn 1984) behavioural measures into a

single score. FA is most appropriate when the main

aim is to determine and assess unobservable behavio-

ural constructs. In particular, most studies seeking to

identify the dimensions of animal personality should

naturally use the FA. The habitual use of PCA instead

of FA is an historical computational compromise:

PCA involves very few simple matrix operations,

whereas FA requires complex iterative calculations.

Although computational difficulty is no longer an

issue (even a feeble desktop PC now outperforms

old mainframes), the historical practices are still

followed.

Principal component analysis does not include an

error term and tends to inflate factor loadings. For

example, low and non-significant correlations can

easily produce high PCA loadings, which is unlikely

in FA (Gorsuch 1983, 1997). The above fictitious

study indicates that PCA of a random correlation

matrix easily produces factors accounting for a

significant proportion of the (very low) common

variance with high loadings. FA of this matrix is

computationally impossible, no factors can be

extracted because all variance goes to the error term.

Nonetheless, if the data are well conditioned – all

variables have high communalities (communality is

the proportion of variance due to common factors),

several variables load highly on the same factor and

the number of factors is correctly specified (model

error is low) – FA and PCA yield almost identical

results (Schneeweiss 1997).

One potential caveat is that there exist several

approaches to factor extraction in FA (see Gorsuch

1983; Tabachnick & Fidell 1996). The maximum

likelihood FA has an advantage of various goodness

of fit indices (e.g., CFI, RMSEA) and statistical signif-

icance tests (Chi-squared test). However, its use in

animal behaviour research is extremely limited by

high sensitivity to deviations from the normality

assumption and requirements of very large sample

size (see Fabrigar et al. 1999). Fabrigar et al. recom-

mend the use of the principal axis factoring in all

other cases, making it the only feasible choice in

animal behaviour research. A simple rule of thumb,

therefore, is to perform PCA if factors are not inter-

preted and used only to reduce the dimensionality,

principal axis FA model is better when measurement

is involved, factors are interpreted and meaningfully

labelled.

Sample Size, the Number of Variables and Their

Sampling Characteristics

Most texts on FA state that quite a large sample size

is needed to ensure stable assessment of the raw

correlation coefficients. Gorsuch (1983) recommends

a minimum sample size of 100, others often require

even larger minimum sample size (see MacCallum

et al. 1999 for a review). Further, many texts point

out that the variable to subject ratio is more crucial

than absolute sample size (see Velicer & Fava 1998;

MacCallum et al. 1999 for reviews). For example,

Nunnally (1978) suggested that the sample size

should be at least ten times the number of variables,

other researchers proposed a less stringent rules of

5:1 (Gorsuch 1983) or 3:1 (Gorsuch 1997). Recent

investigations, however, show that such rigid rules

may be too simplistic: good recovery of the true

population factor structure depends more on

communalities of the variables and the number of

variables per factor (‘overdetermination’, minimum

3, Velicer & Fava 1998; MacCallum et al. 1999,

2001). If the data are well conditioned, then FA can

be legitimately conducted even on much smaller

sample size (MacCallum et al. 1999, 2001; Preacher

& MacCallum 2002). For example, Preacher & Mac-

Callum (2001) found that in the nearly ideal case of

highly reliable variables (e.g., in behavioural genet-

ics, representing stable strain means rather than

individual scores), sample size approx. 20–30 may be

adequate. This is supported by de Winter et al.

(2009) who gave evidence that in such cases FA

can provide reliable results with n = 25 and some-

times even less. Notably, the number of variables in

Principal Components and Factor Analysis S. V. Budaev
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well-conditioned data may even exceed the sample

size, a highly unusual situation explicitly forbidden

by most textbooks (e.g., Gorsuch 1983).

The fact that FA can be used with small samples,

however, does not provide a license for its indiscrim-

inate applications. Well-conditioned data are likely

to be relatively infrequent in animal behaviour stud-

ies. Possible exceptions include highly stable and

reliable morphological measures or aggregated or

composite behavioural indices in animal personality

research. Another notable exception is highly reli-

able measures representing group averages (e.g.,

strains or phenotypes in behavioural genetics

research) rather than individual values (Preacher &

MacCallum 2002). As a general rule, PCA and FA

usually require large sample (n > 100), however, if

the data are well conditioned (original measures are

highly reliable, there are a few well-defined factors,

communalities are all high) it can be adequately

conducted with such small samples as n = 25.

Measures of Sampling Adequacy

Two measures have been developed to determine the

sampling adequacy of the correlation matrix for FA:

the Bartlett sphericity test and the Kaiser–Meyer–

Olkin (KMO) measure of sampling adequacy. The for-

mer tests whether all correlations are zero, whereas

the second compares the observed correlations and

partial correlations among the original variables.

The power of the Bartlett’s test is relatively high

(see Dziuban & Shirkey 1974; Fouladi & Steiger

1993), however it depends on the chi-squared

approximation and assumes that the measures are

normally distributed. In practical applications, it

sometimes rejects the null hypothesis even when

the correlation matrix is ill conditioned (Gorsuch

1983). Dziuban & Shirkey (1974) recommend that

Bartlett’s test ‘may be used as a lower bound to the

quality of the matrix. This is, if one fails to reject

the independence hypothesis, the matrix need be

subjected to no further analysis. On the other hand,

rejection of the independence hypothesis on the

Bartlett test is not a clear indication that the matrix

is psychometrically sound (p. 360).’ There is also a

less known alternative to the Bartlett’s test, proposed

by Steiger (see Fouladi & Steiger 1993) which has

higher power, especially with small samples.

Dziuban & Shirkey (1974) provided a review of

the Bartlett’s test and KMO. Simulation study by

Dziuban et al. (1979) investigated the behaviour of

KMO in relation to the sample size, communality

and other factors. It was shown that KMO increases

with increase of the number of variables and the

correlation coefficients between them but does not

much depend on the sample size. Specifically, corre-

lation matrices with KMO < 0.5 are entirely inappro-

priate whereas those with KMO below 0.6–0.7 must

be treated with caution.

A few general-purpose statistical software packages

(e.g., SAS [SAS Institute Inc., Cary, NC, USA] and

SPSS [SPSS Inc., Chicago, IL, USA]) allow calcula-

tion of the Bartlett’s test and KMO. There is also an

R function cortest.bartlett (package psych, R Devel-

opment Core Team 2008) and a free stand-alone

Windows utility available on the internet (Budaev

1997). Steiger’s test can be calculated using the cor-

test.mat function in R (package psych). It is highly

recommended to calculate the Bartlett’s or Steiger’s

tests and especially KMO prior to PCA or FA: the

correlation matrix is appropriate if the hypothesis of

all zero correlations is rejected and KMO signifi-

cantly exceeds 0.5.

How Many Factors Should be Extracted?

This is one of the most important issues in PCA and

especially FA; what will occur if the number of

factors is wrongly determined? Gorsuch (1983)

discussed several studies that tried to extract succes-

sive factors from the same data with known factor

structure. He found that the factor pattern may

be wrong when too few factors are extracted

(‘underfactoring’, several sources of variability are

confounded), it stabilises around the true number of

factors and does not change much with addition of a

few more factors (‘overfactoring’, the spare factors

will be random and non-reproducible). In case of a

doubt, it is better to extract more factors and simply

drop those which are not theoretically interpretable

or reproducible across studies (also see Gorsuch

1983; Fabrigar et al. 1999).

Several techniques are used to determine the opti-

mal number of factors inherent in the data. The

most widely used rule is to extract factors with

eigenvalues > 1. Although this remains the default

method in most general-purpose statistical packages,

many studies have shown that it performs extremely

poorly in most cases (see Revelle & Rocklin 1979;

Zwick & Velicer 1986; Fabrigar et al. 1999). Another

popular technique, the Cattell’s scree-test, involves

visual examination of the eigenvalue plot and is

therefore relatively subjective, requires some experi-

ence and often involves running several factor anal-

yses with different number of factors (see Gorsuch

1983 for more detail). Though, a non-graphical
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procedure nScree is implemented in R (package

nFactors, R Development Core Team 2008).

More computationally complicated methods for

the assessment of the optimal number of factors

have been developed: Very simple structure (VSS,

Revelle & Rocklin 1979), minimum average partial

(MAP, Velicer 1976), parallel analysis (PA, Horn

1965) and a few others. Modelling studies show that

PA and MAP consistently give the most reliable

results in realistic situations (Zwick & Velicer 1986).

PA is based on comparison of eigenvalues of the

observed correlation matrix with average eigen-

values of random uncorrelated correlation matrices

with the same number of variables and observations.

MAP involves calculation of the average squared

partial correlation after removing successive factors

until a minimum is reached (theoretically, it must

decrease as shared variance is extracted but increases

again once only error variance is left). However,

these procedures are still unavailable in general-

purpose statistical packages. PA, MAP and VSS are

nonetheless implemented in R (libraries paran, psych

and nFactor, R Development Core Team 2008),

Factor (Lorenzo-Seva & Ferrando 2005). SAS and

SPSS syntax scripts allowing to calculate MAP and

PA have been published (O’Connor 2000), there is

also a stand-alone utility for PA (Budaev 1997).

Because FA is a special case of a more general

structural equation modelling (SEM), certain SEM

procedures and indices (e.g., CFI, RMSEA, chi-

squared test) for model selection can also be used to

assess the number of factors (see Fabrigar et al.

1999). However, they are much more complex,

require normal distribution, large sample size and

not easily available. Due to its reliable results, rela-

tive simplicity and availability, PA and MAP are

highly recommended for animal behaviour research-

ers.

Factor Rotation

Factors can be arbitrarily rotated in the multidimen-

sional space, although certain positions correspond-

ing to a ‘simple structure’ allow their easy

interpretation. Unrotated factor solution is typically

biased towards the first general factor that confounds

many variables and does not replicate well, rotation

is necessary in most cases (Gorsuch 1983, 1997).

Numerous rotation methods have been developed.

Some (e.g., Varimax) maintain factors that are

orthogonal whereas other (e.g., Promax, Oblimin)

allow final factors to be correlated (Nunnally 1978;

Gorsuch 1983; Tabachnick & Fidell 1996). Oblique

rotations (e.g., Oblimin and Promax) are usually

recommended because they allow orthogonality as a

special case. However, this recommendation applies

to classical FA with large sample size. The best rota-

tion strategy for a small sample size is unknown.

Because orthogonal rotations are mathematically

simpler and involve estimation of fewer parameters

(Nunnally 1978) they would probably provide more

stable and replicable results in case of small sample

size. Sample estimates of inter-factor correlations in

such cases would be of little value due to very large

standard errors. Thus, if factors are interpreted, rota-

tion is usually required. Oblique rotations (e.g., Obli-

min and Promax) are optimal in most cases,

although orthogonal (Varimax) may be a better

choice when the sample size is very small.

Which Loadings are Interpretable?

There seems to be no universal agreement as to

what minimum factor loadings (absolute value)

should be considered when interpreting factors. Most

textbooks (e.g., Nunnally 1978; Gorsuch 1983;

Tabachnick & Fidell 1996) recommend 0.3 or 0.4 as

a minimum cutoff. However, this classical recom-

mendation is based on the assumption of large

sample size and no rules have been developed for

small samples because of complex relations between

SEs of factor loadings, sample size and other factors

(Cudeck & O’Dell 1994). Although it is possible to

compute confidence intervals of factor loadings and

test statistical significance of loadings (Cudeck &

O’Dell 1994), such a statistical approach has not

been much used and is not available in general-pur-

pose software. Thus, when sample size is large

(>100) it is possible to follow the classical heuristics

(loadings > 0.4), when it is small, minimum inter-

pretable loadings should be higher (higher than 0.5

or even 0.7).

How Factor Scores are Calculated?

In many animal behaviour research factors them-

selves are rarely considered in isolation. The

researcher is usually more interested in correlations

between the factors and other measures or in differ-

ences in the levels of the factors across various

experimental groups. Therefore, factor scores for

each individual are frequently calculated. While

calculation of such scores in PCA is straightforward,

it is a difficult problem in FA (there may be an infi-

nite number of scores consistent with the same

pattern of factor loadings) and several solutions have
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been proposed, the regression method being most

popular and implemented in virtually all statistical

software (see Nunnally 1978; Gorsuch 1983;

Tabachnick & Fidell 1996; Grice 2001). Approaches

have also been proposed to assess the validity of

factor score estimates (Grice 2001). Griece recom-

mends calculation of the maximum proportion of

determinacy q2 (squared multiple correlation

between each factor and the original variables, which

must significantly exceed 0.5), and 2q2 ) 1 (must be

a high positive value). Some general-purpose soft-

ware (e.g., SAS and SPSS) calculate q for the regres-

sion based factor scores. Still, even though the factor

score indeterminancy problem has not been solved,

most common factor score estimation methods

(including regression) well reproduce the same

covariance matrix, so ‘the impact of differences

between score estimates on research results may not

have been very large’ (Beauducel 2007, p. 441).

Thus, commonly used methods for the assessment of

factor scores, especially regression, can be legitimately

used, but indices of determinacy (q, q2, 2q2 ) 1)

should be computed to assess their adequacy.

How Repeated Measures Data Should be Treated?

Animal behaviour research often involve repeated

measurements of the same behaviours or indices.

However, common PCA and FA methods work only

with a ‘flat’ two-mode data matrix (variables by

individuals). Using multiple measures from the same

individuals as independent while computing the

correlation matrix is pseudoreplication and is incor-

rect. For example, such pseudoreplication is involved

when individuals are tested repeatedly and then,

when calculating correlations, repeated tests enter

the raw data matrix as independent ‘rows’. Fortu-

nately, several methods of three-mode PCA and FA

and longitudinal latent variable models were devel-

oped (see Gorsuch 1983; Law et al. 1984; Smilde

et al. 2004). The PARAFAC model is characterised

by simplicity and software availability. It is imple-

mented in R (package PTAk, R Development Core

Team 2008) and as a MATLAB module (Bro 2009).

There is at least one example of its application in

animal behaviour research (Ossenkopp et al. 1994).

Thus, PARAFAC model can be recommended for

repeated measures.

Reassessing the ‘Fish Boldness Study’

It may be informative to consider the above ficti-

tious ‘fish boldness example’ to show how these

guidelines may help in assessment of the analysis

validity. First, analysis of the sampling adequacy

indices indicates that the correlation matrices are

inappropriate (population 1: Bartlett’s sphericity

test v2 = 8.47, df = 10, p = 0.58; KMO = 0.35;

population 2: Bartlett’s sphericity test v2 = 5.75,

df = 10, p = 0.84; KMO = 0.37). Second, as already

noted, FA of random matrices cannot be calculated

(most software packages will result in computation

errors). Third, assessment of the number of

factors using parallel analysis reveals that optimal

number of factors in both cases is just zero.

Without any information about how the data

matrices have been produced, it becomes obvious

that they are not appropriate for FA or PCA and

all further analysis and interpretations are mean-

ingless.

Applicability of Structural Equations: The Sample

Size Issue

Factor analysis is a special case of a more general

framework: SEM. SEM models directional and

non-directional linear relationships between multiple

variables: both manifest and latent (represented by

manifest variables). Confirmatory factor analysis

(CFA) is a special case of SEM in which a hypothes-

ised factor structure is explicitly tested. Although

SEM have long been used in the social sciences, they

are very rare in animal behaviour research. None-

theless, recent examples of SEM application in this

field include CFA of mice temperament (Wall &

Messier 2000; Ibanez et al. 2007) and testing alter-

native models of behavioural syndromes (Dochter-

mann & Jenkins 2007).

Structural equation modelling involves modelling,

parameter estimation and model selection in a

hypothesis-testing framework. Therefore, more strin-

gent sample size requirements are often recom-

mended for SEM than for exploratory FA. The

classical recommendation is to have a minimum of

100 (better, 200) observations (Kline 2005). Model-

ling studies (Bentler & Yuan 1999; Boomsma &

Hoogland 2001) indicate that 200 is a reasonable

minimum sample size. This led to the recommenda-

tion that ‘SEM analyses based upon samples of less

than 200 should simply be rejected outright for

publication’ (Barrett 2007, p. 820). In various

modelling approaches, sample sizes < 200 too often

lead to non-convergence and improper solutions

(Boomsma & Hoogland 2001). This would signifi-

cantly limit the general applicability of SEM in

animal behaviour studies.
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How PCA and FA are used in Animal Behaviour

Studies?

I examined how FA and PCA are used and reported

in animal behavioural research. One whole volume

of four journals from the year 2008 (Animal Behav-

iour vol. 78; Applied Animal Behaviour Sciences vol.

111; Behavioral Ecology vol. 19; Ethology vol. 114)

were searched for the keywords ‘principal compo-

nent’, ‘factor analysis’, ‘PCA’, yielding 51 papers.

Almost all studies used PCA (98%) rather than FA

(only one). More than half of the studies (55%)

provided some interpretation of the extracted factors

and labelled them using conceptual terms, making

FA more suitable. Notably, very few if any of these

studies provided complete and sufficient information

allowing to assess the analysis. Only 35% of studies

explicitly stated the sample size used to calculate the

correlation matrix (either clearly in the text or in

footnote to the factor loadings table).

In most cases, it was difficult to determine the

sample size, especially when the analysis involved

several different groups and complex design. I there-

fore tried to infer sample size from the text and other

reported statistical analyses (e.g., from the degrees of

freedom of other statistical tests), in case of uncer-

tainty using the larger figures (an optimistic approach

assuming the researchers followed the well-known

recommendation of most textbooks for large sample

size). The average sample size was 64 (the minimum,

4 and next 12, are clearly below the normal limits).

Some studies (approx. 10%) may have involved

pseudoreplication while calculating the correlation

matrix, although the description of the analysis in

such cases was typically too vague. In some cases,

pseudoreplication was clearer: ‘We conducted a prin-

cipal component (PC) analysis on these 5 parame-

ters.... We then applied a repeated-measures analysis

of variance (ANOVA) using the PC scores with 2

levels of the within-subject factor....’ (Schmidt et al.

2008, p. 638). Given pseudoreplication has long

been anathematised, it is not surprising that the

authors would try to not reveal questionable analysis

too clearly.

The average ratio of the number of cases to the

number of variables was 8.9, with minimum 0.35

(i.e., 34 variables and only 12 cases, which is an

anathema in virtually all FA textbooks). The ratio of

the number of variables to the number of factors

was on average 4.06 (minimum 2). Thus, although

the average values are in the acceptable range, the

validity of some published papers may be ques-

tioned.

Measures of sampling adequacy were calculated

only in two studies (KMO > 0.5 in both cases). Only

25% of studies clearly described the criteria used to

determine the number of factors. Usually the eigen-

value > 1 rule was used (in one case, parallel analy-

sis) indicating that the default strategy provided by

the software was probably silently followed. Given

the root-one criterion tends to overfactor (see

above), some spurious factors may be extracted and

‘meaningfully’ interpreted. 31% of studies reported

the use of factor rotation (Varimax in 12 cases, one

‘orthogonal’, one Promax, and two unrotated), but

no information (whether rotation was used or not

and why) was given in the majority of studies.

Finally, assessment of the three animal behaviour

papers involving CFA and SEM (Wall & Messier

2000; Dochtermann & Jenkins 2007; Ibanez et al.

2007) provided a mixed result. The quality of the

two CFAs of anxiety (Wall & Messier 2000) and

temperament (Ibanez et al. 2007) in mice appear

more or less satisfactory (sample size, respectively,

200 and 70, several manifest variables per factor).

However, SEM of behavioural syndromes in the

kangaroo rat by Dochtermann & Jenkins (2007) is

clearly flawed. First, both sample size and the

number of variables were unacceptably small

(n = 19 with four manifest and one or two latent

variables). Analysis of the published correlation

matrix (Table 1 in the original paper) revealed that

it was not appropriate for SEM. The maximum cor-

relation coefficient was only 0.28 (not significant at

p < 0.05). I calculated the Bartlett’s sphericity test

(v2 = 3.51, df = 6, p = 0.74) and the Steiger’s test

(v2 = 3.07, df = 6, p = 0.80), clearly indicating that

the correlation matrix is random (KMO = 0.40, also

unacceptable). The authors’ conclusions that ‘SEM is

a more powerful approach to testing behavioural

syndrome hypotheses than is the use of bivariate

correlation coefficients’ (p. 2347) and especially that

they ‘detected an underlying covariance pattern

which would not be interpretable using probability

values’ (p. 2348) are wrong. SEM is not a magical

tool somehow making non-significant data conclu-

sive. If the original correlation or covariance matrix

does not significantly differ from random (or is

otherwise ill-conditioned), then any further multi-

variate analysis is unjustified.

Guidelines for Reporting PCA and FA in Animal

Behaviour Research

Obviously, reporting differences between the experi-

mental and control group as ‘significant at p < 0.05’
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without noting what statistical test is used, what is

the sample size or df is not acceptable in published

research. However, similar omissions in PCA are

currently the norm. Therefore, a set of standards for

reporting the results of PCA and FA in published

research on animal behaviour is needed (see also

Henson & Roberts 2006). FA and PCA involve

several crucial steps outlined above, all decisions

must be reported. The researcher should thence (1)

report whether the correlation or covariance matrix

was used (although the former is used almost exclu-

sively); (2) clearly state sample size used to calculate

the correlation matrix, preferably in a footnote to

the table of factor loadings; (3) present indices of

sampling adequacy; (4) clarify the assessment of the

number of factors; (5) report communalities, espe-

cially with small sample size; (6) report whether

factor rotation was used and what was the rotation

method; (7) present determinacy q2 and 2q2 ) 1 if

factor scores are computed; (8) include the original

correlation matrix (preferably as an on-line supple-

mentary material), making reanalysis possible.
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