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ABSTRACT

Vertical migration is a geographically and taxonomically widespread behaviour among zooplankton that spans across
diel and seasonal timescales. The shorter-term diel vertical migration (DVM) has a periodicity of up to 1 day and was
first described by the French naturalist Georges Cuvier in 1817. In 1888, the German marine biologist Carl Chun
described the longer-term seasonal vertical migration (SVM), which has a periodicity of ca. 1 year. The proximate control
and adaptive significance of DVM have been extensively studied and are well understood. DVM is generally a behaviour
controlled by ambient irradiance, which allows herbivorous zooplankton to feed in food-rich shallower waters during the
night when light-dependent (visual) predation risk is minimal and take refuge in deeper, darker waters during daytime.
However, DVMs of herbivorous zooplankton are followed by their predators, producing complex predator–prey pat-
terns that may be traced across multiple trophic levels. In contrast to DVM, SVM research is relatively young and its
causes and consequences are less well understood. During periods of seasonal environmental deterioration, SVM allows
zooplankton to evacuate shallower waters seasonally and take refuge in deeper waters often in a state of dormancy. Both
DVM and SVM play a significant role in the vertical transport of organic carbon to deeper waters (biological carbon
sequestration), and hence in the buffering of global climate change. Although many animal migrations are expected to
change under future climate scenarios, little is known about the potential implications of global climate change on zoo-
plankton vertical migrations and its impact on the biological carbon sequestration process. Further, the combined influ-
ence of DVM and SVM in determining zooplankton fitness and maintenance of their horizontal (geographic)
distributions is not well understood. The contrasting spatial (deep versus shallow) and temporal (diel versus seasonal) scales
over which these two migrations occur lead to challenges in studying them at higher spatial, temporal and biological res-
olution and coverage. Extending the largely population-based vertical migration knowledge base to individual-based
studies will be an important way forward. While tracking individual zooplankton in their natural habitats remains a
major challenge, conducting trophic-scale, high-resolution, year-round studies that utilise emerging field sampling and
observation techniques, molecular genetic tools and computational hardware and software will be the best solution to
improve our understanding of zooplankton vertical migrations.
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I. INTRODUCTION

Migration involves persistent and active movement of ani-
mals typically from one habitat to another and is often caused
by spatial and temporal variation of resources and risks
(Aidley, 1981; Cresswell, William & Sword, 2011). Through
migration, individuals may elevate the likelihood of encoun-
tering opportunities of feeding and growth (e.g. L’Abée-
Lund & Vøllestad, 1987; Williamson, Williamson &
Ngwamotsoko, 1988; Levey & Stiles, 1992), survival
(e.g. Werner et al., 1983; Hebblewhite & Merrill, 2007;
McKinnon et al., 2010) and reproduction (e.g. Hardy &

Raymond, 1980; Smith & Moore, 2005; van Ginneken &
Maes, 2005). As a result, migrants may enhance their fitness
compared to non-migrants, assuming that the benefits of the
migration outweigh the costs (Aidley, 1981).
An accurate description of migration usually requires

tracking the displacement of migrants across longitudes, lati-
tudes and altitude or depth over time. However, defining
migration as a movement between habitats allows migratory
trajectories to be simplified into one or two spatial dimen-
sions along which the migratory habitats exist
(Southwood, 1962; Dingle & Drake, 2007). In this regard,
migratory trajectories of most terrestrial, aquatic and avian

Biological Reviews 96 (2021) 1547–1589 © 2021 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.
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animals are usually described using two-dimensional geo-
graphic coordinate systems that disregard the vertical dimen-
sion (e.g. Wallace et al., 2003; Block et al., 2005; Egevang
et al., 2010). The vertical trajectory of the migration becomes
significant when migrants exert pronounced diving or flying
behaviour during their excursions (e.g. Weng et al., 2007;
Hawkes et al., 2011). For some animal migrations, depth is
the only behaviourally controlled (active) component and
hence the sole descriptor of the migratory trajectory. These
‘vertical migrations’ are widespread among zooplankton
that swim up and down the water column (reviewed in
Russell, 1927; Cushing, 1951; Banse, 1964).

The concept of zooplankton vertical migration originated
in the 19th century, based on the observations of periodic
appearance and disappearance of pelagic crustaceans from
near-surface waters of freshwater lakes (Cuvier, 1817) and
oceans (Schmidtlein, 1879). Field investigations conducted
in the late 19th century indicated that these periodic patterns
are a result of zooplankton actively migrating through the
water column (Fuchs, 1882; Chun, 1888). Consequently,
the term ‘vertical migration’ was established in the literature
by the early 20th century. Due to the difficulty of tracking
individual zooplankton across space and time, much of the
current evidence for zooplankton vertical migrations come
from observing vertical changes of zooplankton population
centres over time. The predictions and interpretations of
zooplankton vertical behaviour from population observa-
tions are more accurate at higher population sizes and espe-
cially when vertical behaviours among individuals are largely
synchronous (Pearre, 1979). However, asynchronous vertical
migrations also exist among zooplankton populations
(e.g. Cottier et al., 2006) and likely signify among-individual
variability of the migratory behaviour.

Russell (1927) classified zooplankton vertical migrations
based on the timing of the migration (periodicity), areas over
which it takes place (e.g. geographical regions and spawning
habitats) and biological attributes, such as ontogeny and sex.
His classification based on the migration periodicity remains
the most prominent today, and accordingly, two types of ver-
tical migrations exist: the shorter-term diel vertical migration
(DVM) with a periodicity of up to 1 day and the longer-term
seasonal vertical migration (SVM) with a periodicity of up to
1 year. In general, DVM represents the widespread tendency
of zooplankton to occupy deeper waters during the day and
near-surface waters during the night (Hays, 2003;
Brierley, 2014). Unlike DVM, SVM is largely confined to
seasonal environments, such as high-latitude aquatic habitats
(reviewed in Conover, 1988; Falk-Petersen et al., 2009) and
upwelling systems (reviewed in Peterson, 1998; Teuber
et al., 2019) and reflects the tendency of zooplankton to
occupy various vertical habitats during different times of
the year. Since the vertical distribution of the migrants usu-
ally varies across developmental stages, SVM is often
described as an ontogenetic vertical migration (Peterson,
Miller & Hutchinson, 1979; Schnack-Schiel &
Hagen, 1994; Madhupratap, Nehring & Lenz, 1996;
Makabe et al., 2016). Despite the generality of the above

classification, reverse diel and seasonal vertical migrations
also exist (e.g. Ohman, Frost & Cohen, 1983; Schnack-
Schiel & Hagen, 1995).

Since the pioneering work of Cuvier (1817), studies of zoo-
plankton vertical migrations have developed into a rapidly
growing field of study rich in empirical and theoretical
advances, which range from the level of individuals to com-
munities and ecosystems (reviewed in Hays, 2003;
Brierley, 2014; Dawidowicz & Pijanowska, 2018). However,
there are still opportunities for broadening our understand-
ing of the causes and consequences of zooplankton vertical
migrations. We therefore aim this synthesis towards review-
ing some of the key discoveries that led to or have the poten-
tial of leading to an improved understanding of zooplankton
vertical migrations. Although zooplankton are a diverse
group of organisms with a broad range of body sizes, this syn-
thesis mainly focuses on mesozooplankton (0.2–20 mm; Sie-
burth, Smetacek & Lenz, 1978). Since boundaries between
zooplankton size groups are vague, some discussions may
include larger microzooplankton (<0.2 mm) and smaller
macrozooplankton (>20 mm). Orientating on the classifica-
tion of vertical migrations based on periodicity
(Russell, 1927), we focus on both diel and seasonal vertical
migrations and (i) revisit the historical events that led to the
discovery of these migrations, (ii) describe hypotheses about
its proximate control (i.e. how migration occurs) and adap-
tive significance (why migration exists) with an attempt to
trace the historical background of these hypotheses, (iii) dis-
cuss the methods used to study vertical migrations and (iv)
highlight challenges and opportunities, and provide direc-
tions for future research.

II. DIEL VERTICAL MIGRATION OF
ZOOPLANKTON

In Le Règne Animal (The Animal Kingdom), Cuvier (1817)
made what is probably the first written record of zooplankton
DVM. In a clear shallow freshwater lake, he noted Daphnia

retreating to deeper waters during midday and ascending
back to near-surface waters in the evening. However, diel
migrations of zooplankton in deeper lakes and the open
ocean were not studied in detail at the time, probably due
to the lack of appropriate sampling techniques to trace rela-
tively deep vertical movements of planktonic animals. This
limitation was addressed in the late 19th century, when the
Austrian geologist Theodor Fuchs used depth-stratified net
samples and showed that the daytime disappearance of
marine pelagic crustaceans from near-surface waters was
due to their retreat to deeper layers (Fuchs, 1882).

DVM is a widespread behaviour among many freshwater
andmarine zooplankton taxa across all latitudes, and it is one
of the most-studied patterns of animal behaviour
(Hays, 2003; Dawidowicz & Pijanowska, 2018). The most
common form of DVM is the nocturnal DVM, which
involves a night-time ascent to the upper pelagial and a

Biological Reviews 96 (2021) 1547–1589 © 2021 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.
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daytime descent to deeper waters. A comparatively rare var-
iation of this form is the twilight DVM, where the ascent
occurs during the dusk and the descent around midnight,
i.e. midnight sinking (Cushing, 1951). For herbivorous zoo-
plankton, DVM is typically a strategy that allows feeding in
the food-rich upper pelagial during the darker hours when
light-dependent (visual) predation risk is minimal and to take
refuge in the deeper waters during the daytime (Fig. 1)
(Lampert, 1993). In contrast to the above classic patterns,
reverse DVM (daytime ascent and night-time descent) likely
enables zooplankton to evade light-independent (non-visual)
invertebrate predators that perform classic DVM to escape
their own visual predators (Fig. 2) (Ohman et al., 1983).

(1) Control mechanisms

(a) Hypotheses about the proximate control of DVM

Until the mid-20th century, DVM studies were largely
focused on understanding proximate control mechanisms
(Fig. 3). Most proposed hypotheses reflected the tendency
of zooplankton diel vertical behaviour to covary with irradi-
ance (light) and temperature (reviewed in Russell, 1927; For-
ward 1988). It was thus suggested that zooplankton remain at
depths during the daytime and migrate to near-surface
waters during the night either in search of preferred levels
or to avoid harmful levels of irradiance or temperature
(Cuvier, 1817; Weismann, 1874; Parker, 1902;
Russell, 1926; Clarke, 1934). Thermally stratified upper
pelagial of lakes and the ocean may act as a barrier for some
vertically migrating zooplankton, and consequently, many
freshwater and marine zooplankton remain below the ther-
mocline during daytime when the stratification is most pro-
nounced (Russell, 1927; Cushing, 1951). Temperature can
also induce changes in the irradiance sensitivity of some zoo-
plankton, where animals that are negatively phototactic at
lower ambient temperatures may become positively

phototactic at higher temperatures (Esterly, 1919). A
temperature-induced change in the animal’s phototactic
reactions may alter the DVM behaviour if it is controlled
by the ambient irradiance.
Relationships between DVM and irradiance were investi-

gated in detail through myriad field and laboratory experi-
ments conducted in the 20th century. Accordingly, the role
of irradiance (in the spectral range 400–700 nm) in stimulat-
ing zooplankton DVM is described in three main hypotheses:
the isolume hypothesis, absolute intensity hypothesis, and the
rate-of-change hypothesis (Cohen & Forward, 2009). The
oldest of the three, the isolume hypothesis (Ewald, 1910;
Michael, 1911; Russell, 1927), suggests that zooplankton
migrate up and down the water column in an attempt to
maintain their vertical position according to an optimal or
preferred range of light intensities. In the absolute light inten-
sity hypothesis (Sweatt & Forward, 1985a,b), the ascent and
descent reactions are triggered by a threshold irradiance
level, thus producing an all-or-none DVM response. Accord-
ing to the rate-of-change hypothesis (Clarke, 1930;
Ringelberg, 1964), changes in the relative rate and direction
of irradiance are the proximate triggers of DVM. Empirical
evidence supporting each of these hypotheses are paramount
and are extensively reviewed in Forward (1976, 1988) and
Ringelberg (1995b, 1999).
An observation that challenged the temperature- and

irradiance-related hypotheses was mentioned by
Brook (1886), who noted large daytime near-surface aggre-
gates of the copepod Calanus finmarchicus in a Scottish loch
(Loch Fyne) during the spring of 1885. At this time, the abun-
dance of Atlantic herring (Clupea harengus) in the loch was
extremely low, largely due to extensive daytime trawling.
As the trawling ceased in summer, herring abundance
increased and the daytime near-surface aggregations of

Fig 1. Unscaled conceptual model of classic (nocturnal) diel
vertical migration based on Zaret & Suffern (1976). The upper
pelagial is food rich but offers greater detection efficiency for
visual predators (fish) during daytime. Copepods thus remain
at depths during the day and ascend to the upper pelagial for
feeding as the night approaches.

Fig 2. Unscaled conceptual model for reverse diel vertical
migration based on Ohman et al. (1983). Visually feeding
planktivores (fish) prefer larger prey and drive a classic DVM
pattern (indicated in yellow) among larger zooplankton
(chaetognaths). As smaller zooplankton (copepods) are
predated upon by the chaetognaths and are less preferred by
the visual predator, they perform a reverse DVM (indicated
in grey).
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C. finmarchicus rapidly decreased. This is possibly due to
increased predation risk, especially since copepods com-
prised the main diet of Atlantic herring of Loch Fyne
(Brook & Calderwood, 1885). Therefore, it is likely that the
herbivorous copepod C. finmarchicus occupied the food-rich
upper pelagial during daytime when herring predation was
low irrespective of the higher temperatures and irradiance
expected closer to the sea surface. Occupation of the upper
pelagial during daytime and descending to deeper pelagial
during the night is a reverse pattern of the classic DVM.
Although several subsequent authors reported similar reverse
migratory patterns among a number of zooplankton taxa
(e.g. Herdman, 1907; Tattersall, 1911; Bayly, 1963; Bosch &
Taylor, 1973), they did not receive much attention until the
late 20th century, when Ohman et al. (1983) provided the first

comprehensive empirical evidence to support reverse DVM.
Observations of reverse DVM patterns not only highlighted
the plasticity of zooplankton diel vertical behaviour but shed
new light on the role of food availability and predation risk as
potential control mechanisms.

The earliest insights about food- and predation-related
proximate control of classic DVM date back to the late
19th century. These include the views of Forel (1878) that
avoidance of sunlit waters by many pelagic crustaceans is
due to the presence of pelagic fish, and Fuchs (1882) that
DVM could be a feeding migration. However, these food-
and predation-related hypotheses were not much tested at
the time, possibly due to the extensive focus on temperature
and irradiance as the main proximate cues of DVM. Today,
numerous experimental and modelling studies demonstrate

Fig 3. Development of main hypotheses about the proximate control (HPC) and adaptive significance (HAS) of zooplankton diel
vertical migration (DVM).
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how food availability can trigger, halt or modify zooplankton
DVM (e.g. Huntley & Brooks, 1982; Pijanowska &
Dawidowicz, 1987; Fiksen & Giske, 1995; Bandara
et al., 2018). Similarly, myriad studies highlight the ability
of predation risk to modify DVM patterns through
predator-induced mechanical disturbances (e.g. Bollens &
Frost, 1989a; Bollens, Frost & Cordell, 1994) and chemical
exudates (e.g. Loose & Dawidowicz, 1994; Reede &
Ringelberg, 1995; Von Elert & Pohnert, 2000; Lass &
Spaak, 2003; Beklioglu, Telli & Gozen, 2006).

Cues that stimulate DVM are not always exogenous
(i.e. having an external cause or origin). Esterly (1917)
observed persistent DVM behaviour in copepods kept under
continuous darkness and hypothesised that DVM is regu-
lated by an endogenous (i.e. having an internal cause or ori-
gin) mechanism. Ringelberg & Servaas (1971) investigated
the previously reported circadian rhythm in the vertical
migratory behaviour of Daphnia magna (Harris, 1963) and
found that it shifted from 24 to 28 h when the daily light
regime was altered from 12 h:12 h to 24 h:0 h (light: dark).
The authors wrote: “The persistence of the rhythm in what seems

to be constant conditions and above all the phase shift demonstrates that

the change in readiness to perform a phototactic reaction is endogenous”
(Ringelberg & Servaas, 1971, p. 291). Endogenous circadian
rhythms (circa = approximately, dies = day) are not the only
biological clocks through which zooplankton DVM is modu-
lated. DVM and related swimming or metabolic activities
sometimes co-oscillate with tidal cycles [circa-tidal rhythms
of ca. 12.4-h periodicity (Cronin & Forward, 1979;
Hill, 1991; Douglass, Wilson & Forward, 1992; Kimmerer,
Buran & Bennett, 1998)], daily lunar cycle and monthly
lunar phase [circa-lunar rhythms of ca. 24.8-h and 29.5-day
periodicities (Alldredge & King, 1980; Gliwicz, 1986a;
Benoit-Bird, Au & Wisdoma, 2009)]. For example, Last
et al. (2016) reported a periodical shift of DVM from a 24-h
circadian rhythm in the autumn to a 24.8-h circa-lunar
rhythm during the winter in the high Arctic. Further, their
acoustic observations showed a large-scale periodic sinking
behaviour of pelagic zooplankton during the periods of full
moon in synchrony with a 29.5-day lunar phase.

Although the molecular basis of the circadian rhythms of
insects and mammals are extensively studied, those of zoo-
plankton have only been investigated recently. In many
plants and animals, a group of photoreceptor proteins called
cryptochromes are responsible for the reception and signal-
ling of UV-A and blue light (Lin & Todo, 2005). The amino
acid sequence of cryptochromes is strikingly similar to photo-
lyase enzymes, which play a central role in repairing UV-
induced DNA damage. This led to the hypothesis that cryp-
tochromes are evolutionary descendants of photolyases
(Sancar, 2003). Since photolyases have a functional role
interconnecting both DNA and irradiance, it is likely that
DVM behaviour is synchronised to predictable diel oscilla-
tions of irradiance through cryptochrome-mediated changes
in gene expression (Cashmore et al., 1999; Gehring &
Rosbash, 2003). Recent research on numerous freshwater
and marine zooplankton taxa suggests that endogenous

circadian clocks are mediated by the interactions of clock
genes and their protein products that produce cyclic gene
activity with diel periodicity (e.g. Tilden et al., 2011; Biscontin
et al., 2017; Häfker et al., 2017; Maas et al., 2018; Hüppe
et al., 2020). However, endogenous circadian clocks are not
entirely accurate and need to be entrained (calibrated) by
exogenous cues, which appears to be irradiance in many spe-
cies of invertebrates, vertebrates and plants (e.g. Giuliano
et al., 1988; Zeng et al., 1996; Whitmore, Foulkes &
Sassone-Corsi, 2000). Accordingly, DVM is likely a behav-
iour that is founded in genetic material, entrained and
expressed with the aid of ambient irradiance (the primary
exogenous cue), which may be modified by secondary factors
such as temperature, food availability and predation risk
(Gehring & Rosbash, 2003; Gaten et al., 2008).
Apart from the main hypotheses discussed above, several

alternative hypotheses on the proximate control of DVM
exist. In his Beagle diary, Charles Darwin noted that the peri-
odic retreat of zooplankton from near-surface waters was
driven by the intense wave action on the sea surface
(Darwin, 1833). Diel changes in salinity, density
(e.g. Esterly, 1919; Eyden, 1923; Rudjakov, 1970) and dis-
solved gases (e.g. Ostwald, 1902) are also seen as proximate
cues for DVM. In an extensive literature review,
Pearre (2003) hypothesised that DVM may be driven by
the state of hunger and satiation of individual zooplankton
– hence the observed variability in the timing of migration
among the individuals of a population (e.g. Pearre, 1979;
Hays, Kennedy & Frost, 2001).

(b) Hypotheses about the adaptive significance of DVM

Initial insights into the adaptive significance of zooplankton
DVM were made in the early 20th century (Fig. 3).
Ewald (1912) and Moore (1912) discussed whether DVM is
a behaviour that minimises the exposure of zooplankton to
harmful UV radiation. According to Gehring & Ros-
bash (2003), zooplankton use their blue-light reception capa-
bility to perceive diel variation of irradiance and perform
DVM to reduce UV-induced DNA damage. A comprehen-
sive theoretical basis of the UV-avoidance hypothesis was
recently formulated byWilliamson et al. (2011), with a wealth
of supporting evidence sourced from clear freshwater lakes
(e.g. Rhode, Pawlowski & Tollrian, 2001; Wissel &
Ramacharan, 2003; Alonso et al., 2004;Mous, VanDensen &
Machiels, 2004; Cooke et al., 2008; Kessler et al., 2008).
A different line of reasoning led Hardy & Gunther (1935)

to suggest that migrating to deeper waters would allow zoo-
plankton to drift with water currents to regions with better
feeding opportunities. Empirical evidence supporting this
hypothesis is common but comes mostly from estuarine
systems (e.g. Bosch & Taylor, 1973; Kimmerer &
McKinnon, 1987; Hill, 1991). Following his theoretical
modelling work, McLaren (1963) suggested that feeding for
part of the day in warmer, near-surface waters and occupying
colder waters for the rest of the day is metabolically advanta-
geous for zooplankton (see also Enright, 1977). In a different
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perspective, McLaren (1974) posited that spending part of
the day in deeper colder waters can result in increased zoo-
plankton size at sexual maturity. Lower temperatures
increase development times and thus allow longer time win-
dows at each developmental stage for the organisms (inverte-
brates) to grow (Campbell et al., 2001; Forster & Hirst, 2012;
Maps, Pershing & Record, 2012a), producing relatively large
females in the population with higher fecundity (Bandara
et al., 2019). Although these studies appear to be theoretically
sound, empirical evidence suggests that these model predic-
tions are not entirely accurate (Lock & McLaren, 1970;
Orcutt & Porter, 1983; Reichwaldt & Stibor, 2005).

A weakness shared among the above hypotheses is their
inability to provide a satisfactory explanation for reverse
DVM. In the mid-20th century, ecologist George Evelyn
Hutchinson addressed this weakness. In A treatise on limnology,
Hutchinson (1967) revisited the earlier ideas of Forel (1878)
and Fuchs (1882) and suggested that DVM of zooplankton
is a behaviour that utilises feeding opportunities in near-
surface waters when predation risk is minimal. Although
several contemporary studies highlighted the trophic rela-
tionships between planktivorous fish and vertically migrating
zooplankton (e.g. Beamish, 1966; Reif & Tappa, 1966;
Narver, 1970), the observed DVM patterns were not inter-
preted in the light of predator avoidance. Hutchinson’s
synthesis strongly echoed in the work of Zaret &
Suffern (1976), who provided the first comprehensive field
evidence to support the predator-evasion hypothesis. Zaret &
Suffern (1976) related the DVM behaviour of the pelagic
copepod Diaptomus gatunensis to the efficiency of near-surface
daytime feeding behaviour of the visually hunting planktivor-
ous fishMelaniris chugresi in a tropical lake. As observations of
the gut contents of the planktivore indicated a surprising lack
ofD. gatunesis in its diet (despite a preference for the latter), the
authors argued that the daytime avoidance of near-surface
waters by the copepod minimised the risk of being captured
by M. chugresi. Zaret & Suffern (1976, p. 808) further wrote:
“our data strongly suggest that the vertical migration pattern of

D. gatunensis in Gatun Lake is adaptive in that it reduces fish preda-
tion and that this pattern may have evolved as a response to predation

pressures”. A wealth of evidence emerging from field and lab-
oratory experiments (e.g. Gliwicz, 1986b; Dodson, 1990; Bol-
lens & Frost, 1991; Lampert, 1993; Onsrud &Kaartvedt, 1998;
Fortier et al., 2001) and modelling studies (e.g. De
Robertis, 2002; Thygesen & Patterson, 2018; Bandara
et al., 2019; Pinti & Visser, 2019) support the predator-evasion
hypothesis.

(2) Plasticity of DVM

The predator-evasion hypothesis, which is based on light-
dependent predation risk, does not consider the ability of
predators to adjust their behavioural strategies in response
to those of their prey. However, complex vertical habitat
selection ‘games’ can emerge when both the predator and
prey become vertical migrants, i.e. where the strategy fol-
lowed by one actor, such as prey, impacts what is optimal

for the predator, and vice versa. Game theory and the concept
of evolutionarily stable strategies (ESS) have been central to
evolutionary ecology (Maynard Smith, 1982) and zooplank-
ton migrations and habitat choice have been modelled as
games. Early efforts typically modelled two habitats
(Iwasa, 1982; Gabriel & Thomas, 1988) whereas more recent
efforts have extended this to a continuum of habitats (Pinti &
Visser, 2019). Results from game models highlight the com-
plex inherent dynamics of migrations as environmental con-
ditions and properties of prey or predators change (Hugie &
Dill, 1994; Pinti & Visser, 2019).

Reverse DVM is an excellent example of the plastic nature
of zooplankton migrations. Ohman et al. (1983) observed a
reverse DVM in smaller copepods of the genus Pseudocalanus
and a concurrent classic DVM in several species of predatory
copepods and chaetognaths in a temperate fjord (Dabob
Bay, Puget Sound). Gut content analysis of the dominant fish
species of the bay showed a strong preference towards larger
predatory zooplankton and weaker preference towards the
smaller Pseudocalanus spp. These findings led the authors to
conclude that the classic DVM of larger zooplankton is a
strategy to minimise fish encounters and the reverse DVM
of smaller copepods is a strategy to minimise the spatial over-
lap with vertically migrating invertebrate predators. In fact,
zooplankton DVMs may (i) transit from the classic variant
to the reverse variant (daytime ascent and night-time
descent), (ii) alter periodicity and amplitude, and (iii) some-
times completely cease depending on the vertical migratory
behaviour of invertebrate (e.g. Levy, 1990; Neill, 1990;
Frost & Bollens, 1992; Gilbert & Hampton, 2001; Tarling
et al., 2002; Irigoien, Conway & Harris, 2004) or vertebrate
predators (e.g. Bollens & Frost, 1991; Sims et al., 2005; Shep-
ard et al., 2006;Wilson et al., 2006; Gleiss et al., 2013; Hozumi
et al., 2018). In addition, the periodicity and amplitude of
DVM can be plastic to a number of external environmental
variables (Table 1) and shows extraordinary diversity among
species and among individuals of the same species depending
on their ontogeny, body size, colour, body condition and sex
(e.g. Uye, Huang & Onbe, 1990; Hays et al., 1994, 2001;
Osgood & Frost, 1994; Sekino & Yamamura, 1999; De Rober-
tis, Jaffe & Ohman, 2000; Pearre, 2003; Tarling, 2003; Sain-
mont et al., 2014). For example, the ability to swim faster and
efficiently over longer distances increases with developmental
progression (as new swimming appendages emerge) and body
size of zooplankton (Mauchline, 1998). Further, the size-
dependent predation risk caused by visually searching predators
also increases with the body size of the prey (zooplankton). Con-
sequently, larger zooplankton in advanced developmental
stages (e.g. late juveniles and adults) tend to perform frequent
diel vertical excursions with greater amplitude compared to
smaller bodied animals in earlier developmental stages
(Hays, 1995; Ohman & Romagnan, 2016).

(3) Costs and risks of DVM

Herbivorous diel vertical migrants periodically abandon
warmer, food-rich, near-surface waters and spend a part of the

Biological Reviews 96 (2021) 1547–1589 © 2021 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

Zooplankton vertical migration 1553

 1469185x, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/brv.12715 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [30/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



day in colder, usually food-limited deeper waters. This tends to
reduce growth and development rates and induces fecundity
losses (Stich & Lampert, 1984; Ohman, 1990; Dawidowicz &
Loose, 1992b; Loose & Dawidowicz, 1994; Ringelberg & Van
Gool, 2003; Bandara et al., 2018). The energetic demands of
swimming incur additional metabolic costs among diel vertical
migrants, which is estimated to range between 0 and 300% of
the basal metabolic rate (Petipa, 1966; Vlymen, 1970;
Klyashtorin & Yarzhomb, 1973; Foulds & Roff, 1976; Morris,
Gust & Torres, 1985; Alcaraz & Strickler, 1988; Dawidowicz &
Loose, 1992a). However, given the difficulties of experimental
manipulation and the number of internal (e.g. lipid and buoy-
ancy, diversity of swimming patterns) and external
(e.g. temperature, salinity, dissolvedoxygen, predation) variables
that influence zooplankton vertical movements, it is difficult to
deriveanaccurateestimateofDVM-relatedmetabolicdemands.
An accurate estimation of energetic demands of DVM should
also include those of crossing sharpdensity gradients, as stratified
water can act as a barrier that tends to entrap smaller zooplank-
ton species and younger developmental stages (Wells, 1960;
Madhupratap et al., 1981;Marcogliese & Esch, 1992).

Diel vertical migrants face the risk of being horizontally
transported (advected) from their home range (habitat) by
surface or sub-surface water currents or tides (Cronin &
Forward, 1979; Anderson&Stolzenbach, 1985;Kimmerer&

McKinnon, 1987; Hill, 1991; Kimmerer et al., 1998; Smith
et al., 2001; Carr et al., 2008). The degree of risk induced by
these lateral drifts depends on the timing and depth dynamics
of the migration in relation to those of the tide or current, and
the contrasting conditions encountered at the home range
and the advected environment.
Microscale turbulences caused by diel migrants during

swimming make them increasingly vulnerable to tactile pred-
ators that rely on hydrodynamic disturbances to detect prey
(Greene, 1986). Consequently, vertically moving zooplank-
ton become more conspicuous prey for predators, such as
chaetognaths that lay in ambush (sit and wait) in the water
column (Saito & Kiørboe, 2001). Apart from predation, diel
migrants also have an increased probability of encountering
pathogenic microorganisms that occupy different parts of
the water column (Heuch, Parsons & Boxaspen, 1995; Gros-
sart et al., 2010).

(4) Community and ecosystem consequences
of DVM

The abandoning of sunlit near-surface waters by diel migrat-
ing herbivorous zooplankton allows a time window (daytime
in the case of classic DVM) of low grazing pressure and
high growth potential for phytoplankton populations

Table 1. External environmental variables that may influence the periodicity and amplitude of diel vertical migration. The cited
literature serves as examples and do not represent an exhaustive review

Environmental variable References

Sunlight Ewald (1910); Michael (1911); Russell (1927); Clarke (1930); Ringelberg (1964); Sweatt & Forward (1985a);
Sweatt & Forward (1985b); Błachowiak-Samołyk et al. (2006); Cottier et al. (2006); van Haren &
Compton (2013)

Moonlight Alldredge & King (1980); Gliwicz (1986a); Webster et al. (2015); Last et al. (2016); Petrusevich et al. (2016)
Starlight and light from
aurorae

Cohen & Forward (2002); Berge et al. (2009); Båtnes et al. (2015); Cohen et al. (2015)

Artificial sources of light Moore et al. (2000); Davies et al. (2014); Ludvigsen et al. (2018)
Ultraviolet radiation Speekmann, Bollens & Avent (2000); Leech & Williamson (2001); Rhode et al. (2001); Alonso et al. (2004);

Wold & Norrbin (2004); Fischer et al. (2006); Cooke et al. (2008)
Bottom depth and water
transparency

Dickson (1972); Gliwicz & Pijanowska (1988); Wissel & Ramacharan (2003); Mous et al. (2004); Kessler
et al. (2008); Williamson et al. (2011); Tiberti & Iacobuzio (2013); Fischer et al. (2015); Leach et al. (2015);
Aarflot et al. (2019)

Food availability Isaacs, Tont & Wick (1974); Huntley & Brooks (1982); Johnsen & Jakobsen (1987); Pijanowska &
Dawidowicz (1987); Andersen &Nival (1991); Dini & Carpenter (1992); Loose &Dawidowicz (1994); Fiksen
& Giske (1995); Fiksen & Carlotti (1998); Van Gool & Ringelberg (1998); Tarling et al. (2000); Muluk &
Beklioglu (2005); Beklioglu et al. (2008); Bandara et al. (2018)

Temperature Calaban & Makarewicz (1982); Gerritsen (1982); Haney (1993); Loose & Dawidowicz (1994); Fiksen &
Giske (1995); Williamson et al. (1996); Winder, Boersma & Spaak (2003); Muluk & Beklioglu (2005); Berge
et al. (2014); Glaholt et al. (2016); Bandara et al. (2018)

Salinity Lance (1962); Grindley (1964); Kimmerer et al. (1998); Coyle & Pinchuk (2005)
Dissolved oxygen Longhurst (1967); Svetlichny et al. (2000); Hidalgo, Escribano & Morales (2005); Muluk & Beklioglu (2005);

Bezerra-Neto & Pinto-Coelho (2007); Tremblay et al. (2010); Bianchi et al. (2013); Doubek et al. (2018)
Ice cover Haney & Hall (1975); Fischer & Visbeck (1993); Saito & Hattori (1997); Brierley & Watkins (2000); Fortier

et al. (2001); Cisewski et al. (2010); Wallace et al. (2010); Cohen et al. (2015); Cisewski & Strass (2016);
Petrusevich et al. (2016)

Cloud cover, smoke and dust Wold & Norrbin (2004); Kyba et al. (2011); Urmy et al. (2016)
Solar and lunar eclipses Sherman & Honey (1970); Bright et al. (1972); Tont & Wick (1973); Kampa (1975); Tarling, Buchholz &

Matthews (1999); Strömberg et al. (2002); Economou et al. (2008)
Diseases and parasites Decaestecker, De Meester & Ebert (2002); Fels, Lee & Ebert (2004); Duffy et al. (2011); Johnson et al. (2018)
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(Bowers, 1979; Lampert & Taylor, 1985; Lampert, 1987). In
his group selection discussions, Hardy (1936) mentioned the
DVM of herbivorous zooplankton as a phenomenon that
prevents overexploitation of pelagic primary production.
However, DVM cannot have evolved to prevent resource
overexploitation, as this would not be an evolutionarily stable
strategy that would prevent the spread of cheating strategies
(e.g. feeding at daytime, when competition is low) in the pop-
ulation (Maynard Smith 1979). Rather, the positive correla-
tion observed between phytoplankton growth and DVM
intensity in mathematical models (e.g. McAllister, 1969;
Petipa & Makarova, 1969; Petzoldt et al., 2009), laboratory
experiments (Reichwaldt, Wolf & Stibor, 2004; Haupt
et al., 2009) and field studies (Reichwaldt & Stibor, 2005)
appears to be simply a consequence of DVM.

DVM behaviour is not confined to zooplankton but is
observed in various pelagic species of both lower and higher
trophic levels. Laboratory experiments by Latta, O’Don-
nell & Pfrender (2009) and Bollens, Quenette & Rollwagen-
Bollens (2012) demonstrated how DVM of several autotro-
phic flagellates could be top-down driven by zooplankton
grazers. Such top-down-regulated migrations are referred
to as ‘cascading vertical migrations’ (Bollens et al., 2010).
However, diel migratory patterns of adjacent trophic levels
are not always regulated top-down. For example, DVMs of
many visually feeding zooplanktivorous fish andmega-plank-
tivores, such as ocean sunfish, filter-feeding sharks and baleen
whales are commonly seen as diel prey-following behaviours
(Table 2). Similarly, DVM of a variety of higher-level pelagic
predators, such as mesopelagic fish and sharks, toothed
whales, dolphins and seals are usually explained in the light
of diel vertical behavioural patterns of their prey, often con-
sisting of squids and various mid-trophic-level fish
(Table 2). Therefore, contrasting and complex selection pres-
sures seem to underlie the adaptive significance of DVM pat-
terns observed along pelagic food webs. While the DVM of
primary producers (flagellates) and primary consumers (her-
bivorous zooplankton) appear to be driven by predation risk,
that of higher-order consumers is likely driven by spatio-
temporal dynamics of food (prey) availability (Table 2). How-
ever, with the exception of a few model predictions
(e.g. Thygesen & Patterson, 2018), there is little empirical
evidence for trophic links between the observed DVM pat-
terns of pelagic top predators and those of zooplankton.
Therefore, it seems unlikely that the taxonomically wide-
spread phenomenon of DVM is entirely a cascading top-
down effect of trophic interactions.

Zooplankton play a central role in the ocean’s biologically
driven carbon sequestration process, which involves a
downward flux of carbon from the atmosphere through dee-
per waters into the sediment [‘biological pump’
(Longhurst & Glen Harrison, 1989; Ducklow, Steinberg &
Buessler, 2001; Hain, Sigman & Haug, 2014)]. Apart from
feeding in near-surface waters and production of sinking fae-
cal pellets (which are greater in density compared to dead
phytoplankton and thus have a greater chance of reaching
the seafloor), DVM adds a dynamic component to the

biological pump because zooplankton tend to respire and
defecate at greater depths (usually in the aphotic zone) during
part of the day. The magnitude of the DVM-induced flux of
organic matter depends on the species composition and bio-
mass of zooplankton communities and is estimated to
account for 4–70% of the total particulate organic carbon
flux (reviewed in Ducklow et al., 2001). However, the influ-
ence of cascading DVMs on the biological carbon sequestra-
tion process is not well understood and may add significantly
to present estimates (Bollens et al., 2010; Brierley, 2014).

Synchronised vertical movements of zooplankton can
have a significant impact on the fluid motion and vertical
water column structure at smaller spatial scales (Prairie
et al., 2012). Several studies have shown that macroplankton,
micronekton and large groups of mesozooplankton can cause
considerable turbulence during their diel vertical excursions.
For example, Kunze et al. (2006) used a microstructure pro-
filer to detect turbulence generated by a dense krill aggregate
(densities >104 individuals m−3) ascending to near-surface
waters at dusk. They measured relatively high turbulence
levels (10−5–10−4 W kg−1) in the upper pelagial for a short
period of time during the peak ascent. They wrote: “These
values are 100 to 1000 times the dissipation rates associated with tur-

bulence patches in the stratified deep ocean and are comparable to values

found in strongly turbulent tidal channels” (Kunze et al., 2006,
p. 1769). According to Katija & Dabiri (2009) vertically
migrating jellyfish can transport fluids that adhere to their
bodies across the water column (fluid drift), with possible
implications for translocating nutrients and other particulate
matter across density gradients. As zooplankton vertical
migrations are followed by higher-order consumers, they
produce a significant amount of turbulent kinetic energy,
estimated to be ca. 4.5 × 1011 W throughout the world’s
oceans (Dewar et al., 2006).

III. SEASONAL VERTICAL MIGRATION OF
ZOOPLANKTON

Combining his own observations with those of Georg Ossian
Sars, Peter Erasmus Müller and Anton Frič, the German
biologist August Weismann summarised the ability of lacus-
trine daphnids to evacuate the pelagial seasonally and occupy
the sediment as resting eggs (Weismann, 1876). Although this
phenomenon was unknown in the marine realm at the time,
Schmidtlein (1879) noted the tendency of some marine crus-
taceans to disappear from the upper pelagial in the summer–
autumn months and reappear in the following spring. To
investigate this further, Chun (1888) used depth-stratified
net samples in the Mediterranean Sea and showed that the
seasonal disappearance of jellyfish and crustaceans from the
upper pelagial was due to their migration to depths below
1000 m. By the early 20th century, scientists started to use
the term ‘seasonal vertical migration’ (SVM) to refer to this
behaviour. Although not as widespread as DVM, SVM is a
behavioural strategy common among many planktonic

Biological Reviews 96 (2021) 1547–1589 © 2021 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

Zooplankton vertical migration 1555

 1469185x, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/brv.12715 by U

niversitetsbiblioteket I, W
iley O

nline L
ibrary on [30/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Table 2. Trophic-linked diel vertical migrations observed among pelagic communities. Migrations of motile primary producers
(flagellates) and primary consumers (zooplankton) are largely viewed as predator-evasion strategies. Migrations of higher-order
consumers (fish, cetaceans and diving birds) are largely viewed as prey-following strategies. The cited literature serves as examples
and do not represent an exhaustive review

Trophic
link

Migration undertaken by Migration driven by
Primary
selection
pressure

References

PP–PC Photosynthetic flagellates
Akashiwo sanguinea
Chlamydomonas reinhardtii

Herbivorous zooplankton
Acartia spp.
Daphnia spp.

Top-down Latta et al. (2009); Bollens et al. (2012)

PC–SC Herbivorous zooplankton
Daphnia spp.
Bosmina spp.
Diaptomus spp.
Moina spp.
Cyclops spp.
Acartia spp.
Pseudocalanus spp.
Calanus spp.
Meganyctiphanes norvegica

Carnivorous zooplankton
Parasagitta spp.
Themisto spp.
Zooplanktivorous fish
Clupea harengus (Atlantic
herring)
Osmerus mordax (rainbow
smelt)
Melaniris chagresi (chagres
silverside)
Gasterosteus aculeatus (three-
spined
stickleback)
Leucaspius delineates
(sunbleak)
Boreogardus saida (polar cod)
Perca fluviatilis (European
perch)

Top-down Brook (1886); Reif & Tappa (1966); Zaret
& Suffern (1976); Gliwicz (1986b); Bollens
& Frost (1989b); Bollens & Frost (1991);
Lampert (1993); Bollens et al. (1994); Loose
& Dawidowicz (1994); Reede &
Ringelberg (1995); Hays, Warner
& Lefevre (1996); Onsrud & Kaartvedt (1998);
Fortier et al. (2001); Picapedra, Lansac-Tôha
& Bialetzki (2015)

Visual feeding and filter
feeding planktivores
Alosa pseudoharengus (alewife)
Mola mola (ocean sunfish)
Rhincodon typus (whale
shark)
Cetrohinus maximus (basking
shark)
Megachasma pelagios
(megamouth shark)
Eubalaena glacialis (North
Atlantic right
whale)
Balaenoptera borealis (sei
whale)

Herbivorous zooplankton
Copepods (e.g. Calanus
spp.)
Krill (Meganyctiphanes
norvegica,
Thysanoessa spp.)

Bottom-up Winn et al. (1995); Nelson et al. (1997); Cartamil
& Lowe (2004); Sims et al. (2005); Shepard
et al. (2006); Wilson et al. (2006); Baumgartner
& Fratantoni (2008); Baumgartner et al. (2011);
Gleiss et al. (2013); Ishii et al. (2017); Hozumi
et al. (2018)

SC–TC
SC–QC

Pelagic top predators
Thunnus thynnus (Atlantic
bluefin tuna)
T. obesus (bigeye tuna)
Xiphias gladius (swordfish)
Coryphaena hippurus
(dolphinfish)
Alopias superciliosus (bigeye
thresher
shark)
A. vulpinus (common
thresher shark)
Galeorhinus galeus (school
shark)
Prionace glauca (blue shark)
Lamna ditropis (salmon
shark)

Mid-trophic-level fish and
cephalopods

Bottom-up Carey & Robinson (1981); Horning &
Trillmich (1999); Dagorn, Bach & Josse (2000);
Baird et al. (2001); West & Stevens (2001); Robin
et al. (2002); Musyl et al. (2003); Born et al. (2004);
Weng & Block (2004); Baird, Hanson &
Dill (2005); Block et al. (2005); Aoki et al. (2007);
Campana et al. (2011); Merten et al. (2014); Coffey
et al. (2017); Heard et al. (2018)

(Continues)
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inhabitants of seasonal environments (Conover, 1988;
Hagen & Auel, 2001; Teuber et al., 2019).

Some aquatic environments are characterised by predictable
degradation of habitat quality in the (upper) pelagial during part
of the year. In high-latitude environments and coastal upwelling
systems, this occurs through seasonal depletion of primary pro-
duction due to light or nutrient limitation. In many small fresh-
water systems (e.g. ponds and small lakes), summertime
droughts often lead to seasonal temperature extremes in the
pelagial and totally dry off under severe circumstances. Irrespec-
tive of the latitude, most pelagic environments exhibit seasonal
oscillations of predation pressure. Consequently, life in the
upper pelagial may become challenging for planktonic inhabi-
tants during summer, due to harmful temperatures, droughts
and predation risk, or in winter, due to freezing and loss of pri-
mary production (Clarke, 1988; Conover & Siferd, 1993;
Hagen & Auel, 2001). As the conditions in these near-surface
waters deteriorate, zooplankton descend (passively sink or
actively swim down) to deeper waters or to the sediment and
may enter a state of inactivity and suppressed development
termed ‘dormancy’ (reviewed in Andrewartha, 1952;
Vegis, 1964; Danks, 1987). When favourable environmental
conditions return, dormancy terminates, and zooplankton
ascend back to the upper pelagial. This periodic seasonal move-
ment in and out of the upper pelagial characterises the SVM.

To date, there is no widely received definition for zoo-
plankton SVMs. Zooplankton SVMs typically refer to exten-
sive vertical movements, such as those with hundreds or
thousands of metres of amplitude in the open ocean
(e.g.Østvedt, 1955; Auel, Klages &Werner, 2003; Slagstad &
Tande, 2007). Relatively shallow (low-amplitude) seasonal
migrations also occur in many shallow coastal and freshwater
bodies (Bagøien, Kaartvedt & Øverås, 2000; Cáceres &
Tessier, 2004; Bandara et al., 2016). In freshwater systems,
these shallow vertical movements are seldom referred to as
SVMs, possibly due to their trivial amplitudes compared to
those in the open ocean. However, in this synthesis, we use
the term SVM to denote a broad range of zooplankton

seasonal vertical movements irrespective of the habitat and
amplitude. This allows us to describe an array of interesting
vertical habitat selection strategies related to dormancy of
many marine and freshwater zooplankton in the light of
SVM. In this regard, we refer to the Dahms (1995) definition
and classification of zooplankton dormancy. Accordingly,
dormancy is a state of suppressed development, which can
either represent a relatively short episode of developmental
retardation that occurs in response to a limiting factor in
the environment, termed ‘quiescence’ or a long-lasting
period of arrested development cued by predictable and
cyclic environmental changes with an underlying genetic reg-
ulation, termed ‘diapause’ (see also Danks, 1987). Based on
different diapause strategies of zooplankton, SVM can be
classified into: (i) low-amplitude (depth) SVM of resting
stages that undergo diapause in or on the sediment, and (ii)
high-amplitude SVM of late-juvenile and adult stages that
‘overwinter’ or ‘oversummer’ in the deeper pelagial.

(1) Low-amplitude SVM of resting stages

The production of resting stages is largely limited to freshwa-
ter zooplankton occupying shallow ponds, rivers and lakes,
and marine zooplankton inhabiting coastal waters (reviewed
in Uye, 1985; Marcus, 1996; Gyllström & Hansson, 2004).
The SVM amplitude of resting-stage-producing zooplankton
thus ranges from a few centimetres to several metres in most
freshwater habitats (Wood, 1932; Garcia-Roger, Carmona &
Serra, 2006) and seldom exceeds 100 m in the ocean
(Lindley, 1990; Engel & Hirche, 2004). Zooplankton can
enter diapause as either embryonic or non-embryonic resting
stages.

(a) SVM of embryonic resting stages

Wintertime developmental suppression and the production
of dormant embryos of freshwater cladocerans have been
studied since the early 18th century (Fryer, 1996). For

Table 2. (Cont.)

Trophic
link

Migration undertaken by Migration driven by
Primary
selection
pressure

References

Physeter macrocephalus (sperm
whale)
Globicephala melas (pilot
whale)
Orcinus orca (killer whale)
Stenella attenuate
(pantropical spotted
dolphin)
Arctocephalus sp. (fur seals)

TC–QC Mesoplodon densirostris
(Blainville’s beaked whale)

Orcinus orca (killer whale) Top-down Baird et al. (2008)

PP, primary producers; PC, primary consumers; SC, secondary consumers; TC, tertiary consumers; QC, quaternary consumers.
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example, Cuvier (1817, p. 342) combined his own observa-
tions and those of Straus Durkheim and Claude Schaeffer
on dormant embryos of Daphnia and wrote: “…each capsule

encloses an egg, with a horny and greenish shell, similar in other respects
to the common eggs, but remaining longer without being developed, and
passing the winter under this form”. By the late 19th century, the
term ‘resting eggs’ was widely used to represent these dor-
mant embryonic stages (e.g. Weismann, 1876; Forel, 1882).
Numerous freshwater and marine zooplankton, including
rotifers, cladocerans and copepods produce resting eggs
(reviewed in Grice & Marcus, 1981; Pourriot &
Snell, 1983; Onbé, 1991). For example, in small barnyard
ponds, females of the freshwater cladoceran Moina macrocopa

switch from a parthenogenetic reproductive mode to a game-
togenic mode when the water level drops and the pond
becomes increasingly crowded in summer (Wood, 1932;
Zadereev, 2003). Following gametogenesis, each female pro-
duces about two resting eggs, which are deposited in a special
egg case called the ephippium (Grosvenor & Smith, 1913;
Cheng, 1947). Resting eggs are usually larger than partheno-
genetic (subitaneous) eggs, rich in lipid droplets and have a
thicker chorion that protects against desiccation, predation
and bacterial degradation (Dahms, 1995; Strachan, Ches-
ter & Robson, 2015). Once fertilization occurs, the egg case
is released into the water and sinks to the sediment, where
they may remain in a state of diapause for several months.
During diapause, resting eggs often can sustain harsh condi-
tions of summertime droughts and wintertime freezing and
hatch when the pond refills with rainwater in the following
spring (Wood, 1932). Newly hatched instars return to the
pelagial and develop into adults, thus completing the life
cycle (Fig. 4).

(b) SVM of non-embryonic resting stages

Some zooplankton can enter diapause in their late-juvenile
or adult stages that descend to the sediment in shallow
aquatic habitats. In rotifers and copepods, these resting
stages are sometimes encysted in a cuticulin housing that
facilitates sinking and provides protection from predation
and desiccation (reviewed in Dahms, 1995; Ricci, 2001;
Radzikowski, 2013). If the encystment of the developmental
stages occurs in the pelagial, they sink passively and settle
on the sediment (Baumgartner & Tarrant, 2017).
Late-juvenile or adult developmental stages of some zooplank-
ton species swim actively into the sediment, within which their
encystment occurs (Gyllström&Hansson, 2004). Inmany other
species, resting stages remain non-encysted during diapause
(Fryer & Smyly, 1954; Elgmork, 1962; Sarvala, 1979). For
example, Næss &Nilssen (1991) documented non-encysted dia-
pausing adults of the freshwater copepod Cyclops strenuus from
the sediments of a ca. 20 m-deep lake in southern Norway.
C. strenuus occupies the upper pelagial during spring and sum-
mer and develop into sexually mature adults (see also
Elgmork, 1955, 1959). Although females are fertilised in
autumn, their egg production does not start until the following
year. Instead, lipid-rich adult females store sperm in their

spermathecae, swim down to the sediment and enter diapause.
Females (together with viable sperm) remain in diapause for ca.
6 months until their subsequent emergence and seasonal ascent
to the upper pelagial in late winter (see also Bruno et al., 2001).
As the stored sperm are released and eggs are fertilised, the pro-
duction of the new generation ofC. strenuus occurs in early spring
in the absence of adult males, who do not undergo diapause
(Fig. 5). The occurrence of diapausing fertilised females and
the ensuing early reproduction are thus seen as adaptive strate-
gies to avoid intense competition for food andminimise mortal-
ity risk that usually peak in late spring and summer (Næss &
Nilssen, 1991).

(2) High-amplitude SVM of overwintering and
oversummering stages

High-amplitude vertical migrations are typically undertaken
by late-juvenile or adult stages that swim down to greater
depths in response to or preceding seasonal deteriorations
of the environment that occur in the upper pelagial during
winter (overwintering; Sømme, 1934) or summer (oversum-
mering; Wang, Zuo & Wang, 2003). Since the observations
of oversummering are comparatively rare, this synthesis will
primarily focus on SVM patterns related to overwintering
strategies of zooplankton.
Overwintering is not an exclusively marine phenomenon,

but is common among several species of freshwater cladoc-
erans and copepods occupying relatively deep, seasonally
ice-covered lakes (e.g. Elgmork, 1959; Hall, 1964; Santer
et al., 2000; Schneider et al., 2016). In freshwater literature,
overwintering is often referred to as ‘active diapause’
(Wolcott, 1934) because the metabolic activity of overwinter-
ing stages is relatively high compared to resting eggs
(Hand, 1991). Reviewing vertical distribution data of numer-
ous temperate freshwater lakes, de Senerpont Domis
et al. (2007) found a shift in Daphnia spp. diapause strategy
from resting egg production in shallower lakes to overwinter-
ing in deeper lakes. Similarly, in the marine realm, resting
egg production is more common among zooplankton occu-
pying shallow coastal habitats (Marcus, 1996). Therefore,
overwintering appears to be a more successful strategy in
deep marine environments, possibly driven by the decreased
viability of resting eggs at greater depths. For example, a rest-
ing egg released closer to the surface in a several hundred
metres deep water column has a high probability of being
predated prior to reaching the bottom (see also Brendonck &
DeMeester, 2003). Further, unless assisted by upwelling cur-
rents and positive buoyancy, it is less likely for the newly
hatched instars to ascend to the upper pelagial in the follow-
ing spring, given their slow swimming speeds and greater
migration depths (Mauchline, 1998).
In the marine realm, SVM and overwintering strategies

are documented across various latitudes extending from
the tropics to polar regions (Record et al., 2018; Kvile,
Ashjian & Ji, 2019). While the classic SVM and overwin-
tering observations are generally made in high-latitude
systems, similar observations are not uncommon at lower
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latitudes, where the seasonality is driven mainly by peri-
odic upwelling events.

(a) SVM in high-latitude environments

In Arctic and Antarctic settings where the productive season is
typically short, herbivorous copepods in the genera Calanoides,
Eucalanus, Calanus and Neocalanus are well known to perform
SVM (Longhurst, Sameoto & Herman, 1984; Miller
et al., 1984; Schnack-Schiel & Hagen, 1994; Atkinson, 1998;
Gislason, 2018). Younger developmental stages of these cope-
pods often thrive in warmer, food-rich, near-surface waters,
and grow and develop rapidly during the productive season
(spring and summer) (Conover, 1988; Schnack-Schiel, 2001;
Varpe, 2012). Seasonal changes of irradiance, nutrient limita-
tion and grazing pressure tend to limit the pelagic primary pro-
duction during late summer and autumn (Lalli & Parsons, 1993;
Sakshaug et al., 2009). Consequently, the growth and develop-
ment of species with relatively larger body size (e.g. Calanus gla-
cialis,C. hyperboreus) become time-constrained, and consequently,
they cannot usually complete the life cycle within a single pro-
ductive season. Although species with smaller body size
(e.g. C. finmarchicus, Eucalanus bungii) may complete several gener-
ations within a single productive season (Tsuda, Saito &
Kasai, 2004; Melle et al., 2014), overwintering becomes inevita-
ble as the food supply fades towards autumn. Older develop-
mental stages of these copepods (e.g. copepodite stages III, IV
and V) migrate to deeper waters with accumulated lipid
reserves for overwintering (Lee, 1975; Hagen & Auel, 2001;

Falk-Petersen et al., 2009). These overwintering stages remain
in deeper waters with limited physical and physiological activity
(reviewed inHirche, 1996a) and ascend back to the near-surface
waters and complete their life cycle at the onset of the following
productive season (Fig. 6).

Some high-latitude herbivorous copepods start their seasonal
descent relatively early in the season, sometimes well before the
termination of pelagic primary production (Schnack-Schiel,
Hagen & Mizdalski, 1991; Kaartvedt, 2000). The actual cues
that the copepods use to predict the termination of pelagic pri-
mary production and descend to overwintering habitats before
the habitat quality deteriorates in the upper pelagial are not well
known,but among the candidates are external cues, such aspho-
toperiod (Sømme, 1934; Fiksen, 2000) or internal cues related to
developmental stage and reserve levels (Johnson et al., 2008).
Further, factors other than food depletion, such as the
summertime increase of temperature (Pu et al., 2004), irradiance
intensity (Russell, 1926) and predation risk (Kaartvedt, 2000;
Varpe & Fiksen, 2010) may also be important drivers of these
earlier seasonal descents. SVMpatterns characterised by a sum-
mertimeseasonaldescentandanautumn–winter seasonalascent
are underlined by oversummering strategies. Oversummering
has been documented for the temperate copepod Calanus sinicus
in the Yellow Sea (Wang et al., 2003; Li et al., 2004) and the
high-latitude copepod C. finmarchicus in the Gulf of Maine
(Durbin et al., 1997; Saumweber & Durbin, 2006; Maps
et al., 2012b).

SVMs are often observed among high-latitude carnivorous
zooplankton, such as jellyfish, euphausiids and chaetognaths,
and are generally seen as tracking the vertical trajectories of
their herbivorous prey through the water column

Fig 4. Unscaled conceptual model for summer diapause and
low-amplitude seasonal vertical migration of a pond-dwelling
cladoceran based on Wood (1932). As the shallow pond
gradually dries out due to extensive evaporation during
summer, male and female encounter rates increase, and sexual
reproduction begins. This results in the production of resting
eggs (ephippia), which are cast to the sediment and undergo
diapause. Resting eggs hatch when rain refills the pond in the
following spring. Until next summer, the animals reproduce
asexually by parthenogenesis. Diel environmental and
behavioural dynamics are not presented.

Fig 5. Unscaled conceptual model for winter diapause and
seasonal vertical migration of a high-latitude lacustrine
cyclopoid copepod based on Næss & Nilssen (1991). Animals
feed in the upper pelagial during the relatively short
productive season and sexually reproduce in autumn.
Although no eggs are produced, females store the sperm and
swim down to the sediment for diapause. Diapause terminates
at the onset of the following productive season and fertilised
females ascend to shallower waters to produce eggs. Diel
environmental and behavioural dynamics are not presented.
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(David, 1958; Siferd & Conover, 1992; Torres et al., 1994a;
Bagøien et al., 2000; Bandara et al., 2016). Compared to their
herbivore and carnivore counterparts, SVMs of high-latitude
omnivorous zooplankton seem to be less pronounced, and this
is viewed in the light of a year-round food supply
(e.g. Metz, 1995; Richter, 1995; Falkenhaug, Taude &
Semenova, 1997; Lischka & Hagen, 2005; Darnis &
Fortier, 2014).

(b) SVM in upwelling environments

Oligotrophic waters of tropical and sub-tropical coastal
regions become seasonally productive during the upwelling
period, which is characterised by low temperatures and
strong advection of water masses through Ekman transport
(Barber & Smith, 1981; Brink, 1983). Numerous zooplankton
taxa, including copepods, euphausiids and larval stages of var-
ious other crustaceans perform SVMs in these environments
(e.g. Makarov, 1979; Pillar, Armstrong & Hutchings, 1989;
Auel&Verheye, 2007;Morgan&Fisher, 2010). For example,
in theOregon and southernCaliforniaCurrent upwelling sys-
tems, the older developmental stages (copepodite stages IV
and V) of the herbivorous copepods Calanus marshalle and
C. pacificus overwinter in deeper waters 25–50 kmoff the conti-
nental shelf (Peterson et al., 1979; Wroblewski, 1982;
Alldredge et al., 1984). Physical activity of part of the overwin-
tering population commences before the onset of the
upwelling season, and they ascend to shoreward-moving
downwelling currents, within which moulting to adult stages
occurs (Peterson, 1998). As the physical activity of the other
individuals commences in synchrony with the upwelling sea-
son, they ride upwelling currents to ascend shoreward and
moult to adults (Peterson et al., 1979). The reproduction of
the newly moulted adults occurs within shallow, highly pro-
ductive near-shore waters. This strategy allows C. marshalle
and C. pacificus to produce several generations during the pro-
ductive season before being eventually advected offshore,
where they overwinter at depth as lipid-rich older develop-
mental stages (Peterson, 1998) (Fig. 7).

The unproductive season of some tropical coastal upwell-
ing systems can often extend over 10 months of the year
(Demarcq, 2009; Hutchings et al., 2009). For example, in
the northern Benguela upwelling system, the productive
upwelling season lasts for only a few months, and some zoo-
plankton, such as the copepod Calanoides carinatus overwinter
for up to 8–10 months of the year (Verheye, Hutchings &
Peterson, 1991; Timonin et al., 1992). To survive such pro-
longed overwintering periods at relatively high temperatures
(6–8�C), C. carinatus reduces its wintertime metabolic rate by
ca. 96% (Auel & Verheye, 2007). In comparison, high-
latitude copepods occupying relatively colder waters (<4�C)
only require an ca. 75% decrease of metabolic rate to survive
a typically 6–8 month-long overwintering period (Maps,
Record & Pershing, 2013).

SVM patterns in coastal upwelling regions have also been
reported for carnivorous zooplankton and micronekton
(e.g. Gorbunova, Evseenko & Garetovsky, 1985; Gibbons &

Stuart, 1994; Rodríguez et al., 2015). Similar to those
observed among their high-latitude counterparts, these
SVMs most likely represent seasonal prey-following strate-
gies (see Fortier & Harris, 1989; Aita, Yamanaka &
Kishi, 2003).

(3) Control mechanisms

(a) Hypotheses about the proximate control of SVM

Compared to DVM, zooplankton SVMs operate on broader
spatial (vertical) and temporal scales. Consequently, proxi-
mate control hypotheses focus on three main aspects of the
migration, including the seasonal descent, seasonal ascent
and the migration amplitude (i.e. vertical habitat selection).
For most zooplankton (especially herbivores), the seasonal
descent and ascent are either preceded or followed by a
period of diapause. Due to this, any internal or external cues
that induce or terminate diapause can be generally regarded
as a cue for SVM (Fig. 8).
(i) Hypotheses about seasonal descent and diapause
induction. Although the seasonal pelagic to benthic descent
of lacustrine daphnids was well studied in the 19th century,
the broad species- and location-specific variability of the tim-
ing of these migrations hindered drawing strong conclusions
about the underlying proximate cues (Weismann, 1876;

Fig 6. Unscaled conceptual model for seasonal vertical
migration and overwintering of a high-latitude marine
calanoid copepod based on Conover (1988). Animals feed in
the upper pelagial during the short productive season (spring–
summer) and late-juvenile (pre-adult) stages with accumulated
lipid stores descend to overwintering depths on or before the
termination of primary production (autumn–winter). The
spring ascent occurs on or before the commencement of the
following productive season, which is followed by moulting to
adults, sexual reproduction and spawning. Diel environmental
and behavioural dynamics are not presented.
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Forel, 1882; Frič & Vávra, 1897). Chun (1888) was probably
the first to suggest that the seasonal descent of many species of
marine jellyfish and crustaceans is likely due to their inability
to tolerate higher summertime temperatures in the upper
pelagial. Gran (1902) doubted whether the deep overwinter-
ing migrations of the copepods Calanus finmarchicus and
C. hyperboreus in the Norwegian Sea is due to the seasonal
depletion of phytoplankton in the upper pelagial.
Birge (1904) observed a non-seasonally migrating population
of the freshwater cladoceran Daphnia longiremis and suggested
that it may underpin the year-round food availability in their
lacustrine habitat. Birge (1904) also noted a seasonally
migrating population of another daphnid (D. pulicaria), which
occupied near-surface waters in spring and descended to dee-
per waters as summer approached. Birge suggested that the
evacuation of near-surface waters may reflect the inability
of D. pulicaria to tolerate elevated summertime irradiance. A
similar observation was made in the marine realm by Rus-
sell (1926). He investigated the seasonal vertical distribution
of the high-latitude copepod C. finmarchicus and suggested that
its gradual summer–autumn descent is an adaptation to
occupy depths with a preferred light intensity. Russell (1926,
p. 427) wrote: “we see then that if an animal is to be adapted to a cer-
tain light intensity, we should expect it to show variations in depth

throughout the year, and that it should be at its deepest at mid-day on
a sunny day in the middle of June”.

The best-known hypotheses for diapause induction and sea-
sonal descent of freshwater zooplankton involve temperature
(e.g. Bhajan & Hynes, 1972; Hairston & Olds, 1986; Bernot
et al., 2006) irradiance (e.g. Gilbert, 1963; Kuo-Cheng
Shan, 1974; Pasternak & Arashkevich, 1999) and food limita-
tion (e.g. Scharfenberg, 1910; D’Abramo, 1980; Hansen &
Hairston, 1998; Drillet, Hansen &Kiørboe, 2011) as proximate
cues. However, given the typically large vertical extent (ampli-
tude) of the migration, it is inexpedient to view most marine
SVMs as a behaviour to avoid harmful irradiance or tempera-
ture (see also Banse, 1964;Marshall &Orr, 1972). For instance,
neither Chun’s temperature hypothesis (Chun, 1888) nor
Russell’s irradiance hypothesis (Russell, 1926) explain why the
upper pelagial residents often descend several thousands of
metres to take refuge from harmful temperature or irradiance
when the waters below a few hundred metres are typically
within a tolerable range.

Proximate control hypotheses based on cues of biological
origin began to emerge in the early 20th century. The oldest
of these is the induction of diapause among freshwater
zooplankton in response to crowding (Grosvenor &
Smith, 1913). In species whose resting eggs are sexually pro-
duced, crowding increases the chances of female and male
encounters and thus elevates the production of resting eggs
(Wood, 1932). Crowding can also elevate the concentrations
of conspecific or competitor exudates, metabolites and
excretory substances in the water column (Hobaek &
Larsson, 1990; Ban & Minoda, 1994), which promotes rest-
ing egg production through the suppression of parthenoge-
netic reproductive output (Zadereev & Lopatina, 2007) or
inhibition of feeding (Lürling et al., 2003). Strickler & Twom-
bly (1975) forwarded a different perspective, in which they
highlighted the possibility that freshwater cyclopoids enter
diapause in response to elevated invertebrate predation.
Through field observations, Hairston, Walton & Li (1983)
suggested that the freshwater copepod Onychodiaptomus sangui-
neus (syn. Diaptomus sanguineus) abandons the pelagial in spring
to remain in the sediment as resting eggs to avoid intense
summertime sunfish predation. Fish-induced changes of dia-
pause initiation and seasonal descent have been documented
both in the freshwater and marine realms (e.g. Hairston &
Dillon, 1990; Kaartvedt, 2000). Through experimental evi-
dence, �Slusarczyk (1995) and Pijanowska & Stolpe (1996)
concluded that early developmental stages of Daphnia that
were exposed to predator (fish) exudates had a greater
chance of producing resting eggs in their adult stages.

According to Weismann (1876), the transition from par-
thenogenetic egg production to resting egg production in
Daphnia spp. is controlled by an ‘internal rhythm’ rather than
external cues. However, the nature of this internal rhythm
remains unclear. Based on the observations on Pseudocalanus

populations in Loch Striven, Corkett & McLaren (1979)
hypothesised that individuals with larger lipid stores descend
to overwintering depths earlier in the season, while those with

Fig 7. Unscaled conceptual model for seasonal ontogenetic
vertical migration of a calanoid copepod in a coastal upwelling
region based on Peterson (1998). Lipid-rich late-juvenile (pre-
adult) stages overwinter off the shelf during the unproductive
season. The overwintering period typically ends at the onset of
the short productive season, and the copepodites ascend to
rising upwelling currents, moult into adults and reproduce.
Eggs are laid near the surface, and younger generation(s)
develop in nearshore productive waters while drifting offshore
over time. At the end of the productive season, copepodites
descend to deeper waters for overwintering. The general
direction of the water current is marked with green arrows. Diel
environmental and behavioural dynamics are not presented.
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smaller stores continue to develop towards adulthood in an
attempt to reproduce within the same calendar year. These
arguments were strongly echoed in the later work of
Rey-Rassat et al. (2002), who hypothesised that high-latitude
calanoid copepods perform their seasonal descent after accu-
mulating ‘sufficient’ energy reserves for overwintering (the
lipid accumulation window hypothesis). According to the
conceptual model of Irigoien (2004), the sufficient (threshold)
lipid level that triggers the seasonal descent may be
individual-specific, which is a trait that varies within the pop-
ulation. Irigoien (2004, p. 261) wrote: “This hypothesis suggests
that year after year the depth of the convective mixed layer and the timing

of the bloom will be a strong source of natural selection, leaving animals

that get their lipid level wrong without offspring”. Although criticised
for its over simplicity (see Campbell, 2004; Fiksen, Varpe &
Kaartvedt, 2004), recent field evidence indicates that an
influence of the size of lipid reserves on the timing of seasonal
descent cannot be overlooked (Johnson et al., 2008; Schmid,
Maps & Fortier, 2018). Potential lipid thresholds are most
easily understood and predicted for income breeders, while
lipid levels should be more variable and plastic if the lipid
reserves are also intended for reproduction the following
spring (Varpe & Ejsmond, 2018b).
(ii) Hypotheses about diapause termination and seasonal
ascent. In the early 18th century, British entomologist
James Petiver noted that he was able to hatch resting eggs

Fig 8. Development of the main hypotheses related to the proximate control (HPC) and adaptive significance (HAS) of seasonal
vertical migration (SVM) (indicated in blue and green) and diapause (indicated in grey). DI, diapause induction; DT, diapause
termination; MA, migration amplitude; SD, seasonal descent; SA, seasonal ascent. aThe first written record of hatching of resting
eggs, most likely through hydration.
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of the fairy shrimp Chirocephalus diaphanus (syn. Squilla lacustris
minima, dorso natante) (Petiver, 1704). As these eggs are buried
in the sediment and withstand prolonged droughts
(Bratton & Fryer, 1990), Petiver likely used a rehydration
technique (e.g. incubate in water) to hatch them. In fact,
short- or long-term hydration is the main cue for diapause
termination of zooplankton occupying small ponds that sea-
sonally dry out (e.g. Calman, 1909; Green, 1919;
Wood, 1932; Fryer, 1997; Spencer & Blaustein, 2001b; Rossi
et al., 2012). In perennial freshwater systems, such as large
ponds and lakes, the termination of diapause and the sea-
sonal ascent of resting stages appears to be triggered by sea-
sonal variations of temperature (e.g. Cooley, 1971;
Marcus, 1980; Uye, 1980; Schwartz & Hebert, 1987;
Maier, 1990). Laboratory experiments in this regard date
back to the early 19th century. For example, according to
Straus-Dukerheim (1815), the hatching success of Daphnia
resting eggs increases when incubated at typical summertime
temperatures. Similarly, Pancella & Stross (1963) observed a
substantial improvement in the hatching success of D. pulex
resting eggs when incubated at room temperature. While
the spring–summer increase in photoperiod is a likely cue
for hatching of resting eggs of many freshwater zooplankton
(e.g. Shan, 1970; George, 1973; Gyllström, 2004), the spring-
time increase in irradiance intensity has been suggested as a
proximate cue for the seasonal ascent of high-latitude cala-
noid copepods in relatively deep marine environments
(e.g. Bigelow, 1926; Sømme, 1934; Ussing, 1938; Grigg &
Bardwell, 1982).

In a study of deep seasonal migrations of Calanus spp. in the
Norwegian Sea, Østvedt (1955, p. 45) doubted that irradi-
ance or temperature could act as proximate cues for their
seasonal ascent. He wrote: “But whether variations of temperature
affect the sign of geotropic reactions or not, this cannot be the explanation
of the spring ascent of copepods at station-M, as in the 1000 m level the

temperature was almost constant during the whole year [……] phototac-

tic responses cannot occur at depths where the illumination is so diffuse

that its direction is no longer perceptible to the copepod”. Instead,
Østvedt (1955) suggested the gradual development of over-
wintering stages and approach towards sexual maturity as
the likely trigger for the spring ascent and called it a ‘spawn-
ing migration’. However, Østvedt’s observations were
mainly for the copepod C. finmarchicus, which mostly overwin-
ters at a near-adult copepodite stage (CV; reviewed in Falk-
Petersen et al., 2009). Spawning migration thus does not
explain the seasonal ascents of early copepodite stages
(CIII, CIV) and adult females of other high-latitude Calanus
congeners, such as C. glacialis and C. hyperboreus

(Dawson, 1978; Hirche et al., 1994; Kosobokova, 1999).
The focus on the role of endogenous mechanisms in dia-

pause termination and seasonal ascent considerably
expanded in the 20th century, underpinning two general
observations: first, the prevalence of diapause termination
and seasonal ascent in the absence of obvious environmental
cues (Smyly, 1961, 1962; Conover, 1965) and second, the
pronounced variability in the timing of diapause termination
within many freshwater and marine zooplankton

populations (Miller et al., 1991; Rossi et al., 2012). Carlisle &
Pitman (1961) studied neurosecretions of the high-latitude
copepods Calanus helgolandicus and C. finmarchicus and invoked
the role of endocrinal regulation of diapause termination.
Subsequent studies highlighted the significance of endoge-
nous circannual timers (annual biological clocks) in diapause
termination and seasonal ascent of several zooplankton
taxa (e.g. Elgmork, 1967; Uye, 1980; Miller et al., 1991;
Williams-Howze & Coull, 1992; Campbell, Boutillier &
Dower, 2004). Although the molecular basis of an endoge-
nous circannual timer remains uncertain, recent studies point
to differential gene expression patterns between diapausing
and non-diapausing populations of calanoid copepods. For
example, while genes related to lipid synthesis and metabo-
lism, moulting, digestive enzyme activity and photoreception
appear to be down-regulated (suppressed) among copepods
in diapause, those related to stress regulation and moulting
prevention (e.g. the ecdysteroid receptor, EcR) are highly
up-regulated (expressed) in non-diapausing individuals
(Tarrant et al., 2008; Seear et al., 2009; Aruda et al., 2011;Häf-
ker et al., 2018; Skottene et al., 2019). Although endogenous
mechanismsare still notwidely studied, theyappear toprevent
unnecessary prolongation of diapause in habitats deprived of
environmental cues (Harris, 1963; Dahms, 1995).

The ability of predators to terminate diapause and drive
diapausing populations away from the deeper pelagic and
benthic habitats is not well studied. However, predator pres-
ence can override the influence of other exogenous and
endogenous cues. For example, Blaustein (1997) noted a sig-
nificant hatching delay in the resting eggs of the copepod Arc-
todiaptomus similis and the cladoceran Ceriodaphnia quadrangular

when near-eastern fire salamander larvae (Salamandra infraim-
maculata) were present in the environment. Since the experi-
mental results did not change when salamander larvae were
caged in a meshed enclosure, it is possible that exudates from
the predator provided chemical signals to the resting eggs
that led to prolonged diapause. Predator-induced hatching
delays of resting eggs were also observed among clam
shrimps (Spencer & Blaustein, 2001a) and fairy shrimps
(De Roeck, Artois & Brendonck, 2005). In two recent winter-
time studies conducted in the high-Arctic, Daase, Varpe &
Falk-Petersen (2013b) and Błachowiak-Samołyk et al. (2015)
observed large numbers of calanoid copepods in the upper
pelagial. Although the authors invoked the possibility of
pelagic invertebrate predators (e.g. chaetognaths) driving
the overwintering copepods towards the upper pelagial, it
was not extensively tested.

Bioturbation, the turbulent mixing of sediments via biolog-
ical processes (Meysman, Middelburg & Heip, 2006) can
either promote or demote diapause termination by exposing
or masking the benthic resting stages from environmental
cues (Brendonck & De Meester, 2003; Gyllström &
Hansson, 2004). In an experimental study, Marcus &
Schmidt-Gengenbach (1986) observed contrasting roles
played by different benthic polychaetes in the hatching suc-
cess of resting eggs of the marine copepod Labidocera aestiva.
Bioturbation caused by polychaetes tended to bury the
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resting eggs several centimetres down in the sediment, where
they were not able to hatch. Conversely, eggs translocated
toward the sediment–water interface through accidental
ingestion and defecation by polychaetes had a greater chance
of hatching, since they remained viable after predator gut
passage and were exposed to environmental cues
(e.g. irradiance and temperature) upon settling on the
sediment–water interface.
(iii) Hypotheses about migration amplitude (vertical habi-

tat selection). The SVM amplitude of resting stages that
sink passively to the bottom is solely constrained by the water
depth. A fraction of these resting stages can settle on macro-
phytes and may not reach the sediment (Caceres &
Hairston, 1998). Resting stages that actively swim to the sed-
iment can burrow several centimetres into it, causing their
seasonal migration to transit across both pelagic and benthic
habitats. For example, Elgmork et al. (1990) studied the SVM
patterns of the planktonic cyclopoids Cyclops scutifer andMeso-

cyclops leuckarti and found that they burrow into anaerobic
sediments prior to the initiation of diapause. Occupying
anaerobic habitats during the several-months-long diapause
can significantly increase the chances of survival, since many
predators tend to avoid oxygen-deficient habitats
(Gyllström & Hansson, 2004). Most zooplankton that over-
winter in the deep pelagial can tolerate lower oxygen concen-
trations through elevated production of the oxygen-transport
metalloprotein haemoglobin (Weider & Lampert, 1985;
Sell, 1998). They can also withstand higher concentrations
of toxic sulfidic compounds that are common in deeper
waters (Borcherding et al., 2017). Therefore, zooplankton
are generally capable of venturing into deeper waters than
their predators (Voss & Mumm, 1999; Larsson &
Lampert, 2011). Although overwintering migrations of some
high-latitude fjord zooplankton populations are seen as
predator-avoiding strategies (Kaartvedt, 1996; Dale
et al., 1999), whether selection of deep overwintering habitats
is driven by low ambient oxygen concentrations is not yet fully
known. It is more likely that deep pelagial overwintering is a
light-mediated predator-avoidance behaviour, since darker
deepwaters canhamper thedetectionefficiencyof visually ori-
entating planktivores (e.g. Gislason & Astthorsson, 2002;
Gislason, 2003; Sentyabov & Prokopchuk, 2006).

Temperature plays a key role in the vertical habitat selec-
tion of overwintering zooplankton. According to Corkett &
McLaren (1979), the preference for colder water masses by
the high-latitude Pseudocalanus spp. during overwintering is a
strategy that reduces their metabolic rate and conserves
energy reserves. Hirche (1991) described the contrasting ver-
tical distributions of Calanus spp. in the eastern and western
boundaries of the Fram strait in relation to temperature.
On the eastern side, copepods of genus Calanus avoided the
upper pelagial dominated by warmer Atlantic water masses
and overwintered between 500 and 1500 m in the colder
waters off the western Spitsbergen shelf. However, the verti-
cal distribution of Calanus spp. was shallower (<500 m) in the
western side of the Fram strait, where colder polar waters
dominated the upper pelagial. As observed in numerous

subsequent studies, the tendency of North Atlantic and Arctic
Calanus spp. to occupy colder water masses during overwin-
tering likely reflects the need for these ectotherms to conserve
their energy reserves at a reduced metabolic cost (Heath &
Jónasdóttir, 1999; Astthorsson & Gislason, 2003; Halvorsen
et al., 2003; Heath et al., 2004). Occupation of colder waters
during typically 4–6 months of overwintering is an essential
survival strategy for predominantly herbivorous zooplank-
ton, since their lipid reserve is probably the sole wintertime
energetic input (Ingvarsdóttir et al., 1999; Grosbois
et al., 2017; Schneider et al., 2017).
According to Vinogradov, Arashkevich & Ilchenko (1992),

the overwintering habitat selection of seasonally migrating
high-latitude copepods is influenced by water density, where
they settle at a depth that provides neutral buoyancy. Vino-
gradov et al. (1992, p. 457) wrote: “the thin layer (or two layers)
with the maximal Calanus concentration often appears to be timed per-
fectly to the same ‘niches’, which gives them an opportunity to reduce

mobility to a minimum and with it use of energy, enabling them to survive

the winter diapause more efficiently”. This idea was further devel-
oped by Visser & Jónasdóttir (1999) who suggested a
buoyancy-driven overwintering habitat selection mechanism
for high-latitude calanoid copepods. Accordingly, lipid-rich
copepods (typically CIV or CV stages) swim down against
positive buoyancy to a depth where neutral buoyancy is
attained, which becomes their overwintering habitat. The
maintenance of neutral buoyancy at greater depths may be
attained via two mechanisms. First, unsaturated wax esters,
a crucial component of the lipid store of many high-latitude
zooplankton (Lee, Hagen & Kattner, 2006), undergo a
liquid-to-solid phase transition typically at depths below
500 m (Pond & Tarling, 2011). This allows some zooplank-
ton (e.g. the copepods Calanus finmarchicus and Calanoides acu-

tus) to compensate positive buoyancy forces, since solidified
unsaturated wax esters are denser compared to their liquid
phase (Clark, Brierley & Pond, 2012; Pond et al., 2012). Sec-
ond, copepods likely compensate negative buoyancy forces
by replacing ions with heavier molecular mass (e.g. Na+,
Mg2+) with those of lighter molecular mass (e.g. NH4

+) in
their haemolymph (Sartoris et al., 2010). Negative buoyancy
forces may also be countered via selective catabolisation of
unsaturated wax esters during overwintering (Clark
et al., 2012). However, the roles of ionic exchange and phase
transition of wax esters in overwintering habitat selection of
high-latitude copepods are still not widely agreed (see Pond &
Tarling, 2013; Wilson, Speirs & Heath, 2013) and further
studies are required to test the generality of these hypotheses.

(b) Hypotheses about the adaptive significance of SVM

In ephemeral freshwater habitats that annually dry out, dia-
pause may ensure the long-term survival of the pelagic inhab-
itants. In perennial lakes and marine environments, SVM
and diapause are essential for surviving predictable annual
degradation of habitat quality, especially the termination of
primary production (Sømme, 1934; Mariash, Cusson &
Rautio, 2017) and increased predation risk (Strickler &
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Twombly, 1975; Hairston et al., 1983; Kaartvedt, 2000;
Varpe & Fiksen, 2010).

When the habitat quality varies dramatically within and
between years, the production of resting stages becomes a
conservative bet-hedging strategy (Cohen, 1966; Hairston &
Fox, 2009). While some of these resting eggs may hatch
within a shorter timespan (e.g. the following year) others
may remain dormant for many years, thus adding to an egg
bank (Brendonck & De Meester, 2003). Egg banks are useful
for population persistence during prolonged periods of envi-
ronmental extremes, such as droughts and pollution events
(Carlisle, 1968; Belk, 1970; Novikova et al., 2011). For exam-
ple, the native pelagic community (phytoplankton, zooplank-
ton and fish) of an Italian lake (Lake Orta) were decimated
due to unprecedented industrial discharge of copper and
ammonium sulphate during the late 1920s (Bonacina &
Pasteris, 2001; Calderoni & Tartari, 2001). However, core
samples taken from the deep parts of the lake (ca. 150 m)
showed an abundance of zooplankton resting eggs (Piscia
et al., 2016). Owing to conservation efforts, the lake ecosys-
tem was restored during the late 1980s, and several years
later, the zooplankton community reappeared in the pela-
gial. Despite the loss of habitat quality of the pelagial, the
zooplankton community of lakeOrta survived due to the per-
sistent egg bank and recolonised the pelagial upon environ-
mental restoration (Piscia et al., 2016; Zweerus et al., 2017).

SVM also can promote zooplankton dispersal. Benthic
resting stages of zooplankton inhabiting lakes and ponds that
seasonally dry out are dispersed by the wind and likely colo-
nise adjacent aquatic habitats (Brendonck & Riddoch, 1999;
Vanschoenwinkel et al., 2008). Resting stages can also be
transported across different habitats by aquatic insects
(e.g. Lansbury, 1955; Van de Meutter, Stoks & De
Meester, 2008), fish (e.g. Antsulevich & Välipakka, 2000;
Jarnagin, Swan & Kerfoot, 2000; Hansson, Fagerberg
&Gorokhova, 2004), birds (e.g. Malone, 1965; Proctor, Mal-
one & DeVlaming, 1967; Frisch, Green & Figuerola, 2007),
amphibians (e.g. Brown, 1933; Mellors, 1975) and mammals
(e.g. Allen, 2007) either through gut passage or attachment
mechanisms. Conversely, the SVM of overwintering zoo-
plankton in deeper waters is sometimes regarded as a mech-
anism of geographic redistribution. For example,
Mackintosh (1937) studied SVM patterns of many zooplank-
ton species in relation to the horizontal movement of water
masses in the Southern Ocean and suggested that the sum-
mertime inhabitants of northward-moving Antarctic surface
waters are returned as they descend to overwinter in
southward-moving Antarctic deeper water. Mackin-
tosh (1937, p. 380) wrote: “We have evidence then of a general cir-

culation on a very large scale, the majority of organisms drifting

northwards in the surface layers in summer and returning southwards

in the warm deep water in winter”. SVM-driven retention or dis-
persal mechanisms have been suggested for ice-associated
amphipods in the central Arctic ocean (Berge et al., 2012),
copepods occupying higher latitudes (Irigoien, 2004) and
coastal upwelling zones (Peterson et al., 1979; Verheye
et al., 1991). The production of resting eggs may also aid

retention in upwelling environments. For example,
Marcus (1995) observed large aggregates of benthic resting
eggs of the marine calanoid copepod Acartia clausi in the
Northern California Current upwelling system and sug-
gested that it may be a strategy to remain in these seasonally
productive waters.

(4) Plasticity of SVM

The periodicity and amplitude of SVM often vary between
geographic locations, time, habitats, species and individuals.
This variability is partly driven by the seasonal dynamics of
physical environmental variables, such as temperature (e.g.
Hirche, 1991; Astthorsson & Gislason, 2003; Halvorsen
et al., 2003; Bernot et al., 2006), food availability (Herman,
1983; Head &Harris, 1985; Hansen &Hairston, 1998; Hind
et al., 2000), predation risk (e.g. Hairston & Walton, 1986;
Kaartvedt, 1996; Fernö et al., 1998), water clarity, bottom
depth and topography (e.g. Bagøien et al., 2001; de Sener-
pont Domis et al., 2007; Slagstad & Tande, 2007; Dupont &
Aksnes, 2011). For example, when environmental conditions
become potentially harmful (e.g. due to pollution and preda-
tion), diapause termination and seasonal ascent of resting
stages may be delayed for several years or decades
(Madhupratap et al., 1996). On the other hand, in environ-
ments with brief and highly unpredictable food supply, a sin-
gle individual may perform several annual vertical excursions
before reaching sexual maturity (Dawson, 1978; Hirche
et al., 1994). The interspecific variability in the timing and
amplitude of SVM largely underpins differential body sizes
(and size-specific predation risk), foraging tactics and repro-
ductive strategies (Hairston, Olds & Munns, 1985;
Norrbin, 1996; Madsen, Nielsen & Hansen, 2001; Darnis &
Fortier, 2014; Bandara et al., 2016). For example, in some
fjord communities of North Atlantic and Arctic Calanus

spp., the timing of the seasonal ascent occurs earliest in
C. hyperboreus, whose egg production does not rely on food
availability (Plourde et al., 2003; Henriksen et al., 2012) – a
reproductive strategy termed capital breeding (Varpe
et al., 2009). Using stored energy reserves, C. hyperboreus pro-
duce eggs at overwintering depths prior to the commence-
ment of pelagic algal bloom, which gradually ascend to the
surface due to positive buoyancy (Hirche & Niehoff, 1996).
By contrast, C. finmarchicus ascends from overwintering depths
relatively later in the season since it has to feed on
pelagic algae to fuel its spawning (Marshall & Orr, 1972;
Hirche, 1996b), termed income breeding (Varpe et al.,
2009). The seasonal ascent of C. glacialis may occur in
between the two other congeners (e.g. Madsen et al., 2001;
Arnkværn, Daase & Eiane, 2005) since it follows an interme-
diate breeding strategy, where the egg production is fuelled
partly by energy reserves and partly by feeding on ice-
associated and pelagic algae (Søreide et al., 2008; Daase
et al., 2013a). These are mixed breeders in terms of capital
and income (cf. Varpe & Ejsmond, 2018b). The variability
of timing and amplitude of SVM observed between individ-
uals of the same species is largely dependent on their
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nutritional state and the size of the lipid reserve (Pedersen,
Tande & Ottesen, 1995; Johnson et al., 2008; Schmid
et al., 2018) – a finding also predicted by several models
(e.g. Varpe et al., 2009).

(5) Community and ecosystem consequences
of SVM

SVM patterns of the herbivore zooplankton community are
often followed by pelagic predators of both invertebrate
(e.g. Sullivan, 1980; Terazaki & Miller, 1986;
Samemoto, 1987; Larson & Harbison, 1989; Siferd &
Conover, 1992; Torres et al., 1994b; Lundberg et al., 2006;
Purcell et al., 2010; Grigor, Søreide & Varpe, 2014) and ver-
tebrate origin (e.g. Bagøien et al., 2001; Sims et al., 2003;
Shepard et al., 2006; Geoffroy et al., 2011). Lipids accumu-
lated in the upper pelagial during the productive season are
brought to depths by overwintering individuals (e.g. high-
latitude Calanus spp.) and provide an important source of
energy for an array of carnivores, such as mesopelagic fishes.
Energy sourced from these lipids flows along trophic chains
and may be consumed by apex predators, such as marine
mammals, seabirds, polar bears and humans (Falk-Petersen
et al., 2007; Wirta et al., 2015; Eysteinsson et al., 2018). The
earliest comprehensive record of the trophic-wide implica-
tions of zooplankton SVM was probably documented by
Macdonald (1927). He collected vertical net hauls in the
Firth of Clyde and found large numbers of younger develop-
mental stages of the euphausiid Meganyctiphanes norvegica

(northern krill) in shallow waters in spring and summer. In
the late winter, most of the M. norvegica population had des-
cended below 100 m, and their gut contents largely com-
prised remnants of the copepod Calanus finmarchicus and
detritus. Since M. norvegica is an omnivore that switches
between a phytoplankton and zooplankton diet
(Schmidt, 2010), Macdonald suggested that the euphausiid
followed the overwintering migration of C. finmarchicus to
greater depths. Macdonald (1927) further cited the contem-
porary observations made in Norwegian Fjords and Gulf of
Maine about sudden wintertime surfacing of M. norvegica,
possibly driven upwards from their deep wintertime feeding
habitats by Atlantic pollock (Pollachius virens). Such studies
are rare because most high-latitude field investigations sel-
dom focus beyond one or two trophic levels. For example,
David (1956) noted that the seasonal changes of the vertical
distribution of the chaetognath Pseudosagitta gazellae was due
to seasonally following their copepod prey. However, he
did not study how this vertical behaviour could influence
their predators (e.g. planktivorous fish). Similarly, in a recent
year-round study, Bandara et al. (2016) derived statistically
significant associations among seasonal vertical distributions
of prey and predator zooplankton taxa across three adjacent
trophic levels. Nonetheless, their investigation did not sample
the pelagic fish community, and thus overlooked the seasonal
vertical dynamics at higher ends of the food chain.

Seasonally migrating zooplankton play a prominent role
in the deep-ocean carbon sequestration process. The lipid

reserves accumulated by herbivore zooplankton in spring
and summer are carried down into the deep ocean during
their autumn–winter descent. At these depths, stored lipids
are metabolised typically at a rate accounting for ca. 25%
of the basal metabolic rate (Maps et al., 2013). Despite the
reduced metabolism, a 6–8 month-long overwintering
period can exhaust a substantial fraction (44–93%) of the
stored lipids (Jónasdóttir et al., 2015). Further, only a part of
the overwintering population ascends to the near-surface
waters in the following spring, while the rest are either con-
sumed by deep-dwelling predators or die due to starvation,
disease and other sources of mortality (Bagøien et al., 2000;
Arnkværn et al., 2005; Gislason, Eiane & Reynisson, 2007;
Daase et al., 2013b). The lipid-based carbon flux driven by
the zooplankton SVM (the ‘lipid pump’) is thus a largely uni-
directional process that transports carbon directly to the deep
ocean with little losses on the way (Jónasdóttir et al., 2015;
Visser, Grønning & Jónasdóttir, 2017). Longhurst and Wil-
liams (1992) made the first attempt to quantify the lipid pump
in the North Atlantic and suggested that its contribution to
the total particulate organic carbon flux is insignificant (esti-
mated at 0.275 g C m−2 year−1 by Calanus spp.). However,
recent estimates of <11.5 g C m−2 year−1 by Jónasdóttir
et al. (2015) and 2.0–6.0 g C m−2 year−1 by Jónasdóttir
et al. (2019) for the North Atlantic C. finmarchicus and 3.5–
6.0 g Cm−2 year−1 by Visser et al. (2017) for C. hyperboreus sug-
gest that the initial figures are likely significant underesti-
mates. These updated North Atlantic SVM-driven carbon
flux estimates are in line with those made elsewhere, such
as the estimated 3.1 g C m−2 year−1 in the Amundsen Gulf
for Calanus spp., 1.965–4.3 g C m−2 year−1 in the Western
subarctic Pacific for Neocalanus spp. (Kobari, Shinada &
Tsuda, 2003; Kobari et al., 2008) and 1.7–9.3 g C
m−2 year−1 in the Southern Ocean for N. tonsus (Bradford-
Grieve et al., 2001).

IV. METHODS OF STUDYING ZOOPLANKTON
VERTICAL MIGRATIONS

Methods of studying zooplankton vertical migrations have
developed significantly over the past two centuries and can
be classified into three broad categories: (i) sampling or col-
lection methods, (ii) in-situ observation methods, and (iii)
tracking and simulation methods.

(1) Sampling methods

The classic method for studying vertical migrations involves
sampling zooplankton populations from different depths
and interpreting changes in their vertical distributions as
migratory patterns (Pearre, 1979). Some of the commonly
used sampling devices include towed nets, traps and pump
systems. The preferred device may differ notably between
marine and freshwater realms, primarily due to differences
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in turbidity, flow regimes, bottom topography and depth
dynamics.

(a) Sampling in marine systems

The earliest evidence of zooplankton vertical migration orig-
inated from samples collected from the upper pelagial using
simple plankton nets. For example, Charles Darwin’s
hypothesis that pelagic animals retreat from the upper pela-
gial due to wave action was based on samples collected using
a simple plankton net during the Beagle survey voyage
(Darwin, 1833). Since these early net designs lacked a closing
mechanism, they did not uncover the vertical dimensionality
of the migration and the descriptions were solely based on the
periodic appearance and disappearance of zooplankton from
the upper pelagial. Fuchs (1882) and Chun (1888) used prim-
itive opening/closing nets to obtain depth-stratified samples
and provided initial insights about the amplitude of diel
and seasonal vertical migrations. Due to the cumbersome
nature of sampling several depth layers with a single net,
the use of dual net systems became popular during the first
half of the 20th century. Hoyle (1889) used probably the first
dual opening/closing net system, in which each net could be
closed independently using two separate weighted messenger
and cable systems. The first vertically towed multiple net sys-
tem, termed the Multiple Plankton Sampler (MPS) with four
sequentially opening/closing nets was developed by Bé,
Ewing & Linton (1959). The weighted messenger and cable
system of the MPS was later refitted with a pressure-actuated
closing mechanism by Bé (1962). MPS was further improved
by Weikert & John (1981) to carry five vertically towed nets
and equipped with a programmable electronic release mech-
anism. This device, commercially known as the MultiNet
(Hydro-Bios, Kiel), is widely used today to take depth-
stratified zooplankton samples both in shallow coastal water
bodies, such as estuaries and fjords (e.g. Criales-Hernández
et al., 2008; Daase, Hop & Falk-Petersen 2016) and deeper
ocean basins (e.g. Auel et al., 2003; Gaardsted, Tande &
Basedow, 2010). Apart from vertically towed nets, obliquely
towed multiple net systems are also commonly used to study
zooplankton vertical migrations. One of the pioneering
designs is the Multiple Opening/Closing Net and Environ-
mental Sensing System (MOCNESS; Wiebe et al., 1976).
The MOCNESS includes up to 10 electronically operated
nets and carries an array of sensors for environmental moni-
toring (e.g. temperature, fluorescence, dissolved oxygen and
irradiance sensors). The initial MOCNESS design was
improved and upscaled in a number of recent developments,
such as the Bedford Institute of Oceanography Net and Envi-
ronmental Sensing System (BIONESS; Sameoto, Jaros-
zynski & Fraser, 1980) and the Large Opening/Closing
High-Speed Net and Environmental Sampling System
(LOCHNESS; Dunn et al., 1993b).

Early efforts to minimise the avoidance of towed nets by
larger zooplankton included the design of downward-falling
nets (e.g. Buchanan-Wollaston, 1911; Heron, 1982). How-
ever, these free-falling nets are not widely used today, and

instead, net avoidance is typically reduced by increasing the
towing speed (Skjoldal et al., 2013) or mounting powerful
strobe lights at the front of the net (Wiebe et al., 2004). Due
to the availability of a diversity of plankton nets with varying
dimensions and mesh sizes, some form of standardisation was
required to reduce variability of zooplankton sampling
among scientific investigations (Motoda, Anraku &
Minoda, 1957). In 1968, the International Council for the
Exploration of the Seas (ICES), Scientific Committee on
Oceanic Research (SCOR) andUnited Nations Educational,
Scientific and Cultural Organization (UNESCO) jointly
published standards for zooplankton sampling in the marine
realm, most of which are currently in use (Fraser, 1968).
Accordingly, a net with a smaller opening (0.25 m2) and a
mesh width of 200 μm vertically towed at moderate speeds
(ca. 0.5 ms−1) was adopted to capture smaller mesozooplank-
ton (WP-2 net). For capturing larger mesozooplankton and
macrozooplankton, a fast-towed net (ca. 1 ms−1), with a
larger mouth opening (1 m2) and larger mesh width
(1000 μm) was adopted (WP-3 net). For capturing smaller
zooplankton (e.g. microzooplankton), water bottle samplers,
pump systems and nets with smaller mesh widths
(50–70 μm) were suggested.

A different class of plankton-collecting devices called
‘high-speed plankton samplers’ emerged in the late 19th cen-
tury. High-speed plankton samplers are towed in the upper
pelagial typically at speeds of 1–12 ms−1 over long distances,
during which zooplankton are strained using nets and pre-
served within the sampler itself (Wiebe, Bucklin &
Benfield, 2017). Most high-speed samplers, such as the Con-
tinuous Plankton Recorder (CPR; Hardy, 1935), Longhurst-
Hardy Plankton Recorder (LHPR; Longhurst et al., 1966)
and Autosampling and Recording Instrumented Environ-
mental Sampling System (ARIES; Dunn et al., 1993a) oper-
ate at prescribed depths in the upper pelagial and thus do
not produce data with vertical resolution. Consequently,
descriptions of zooplankton vertical migrations from high-
speed samplers are based on the periodic appearance and
disappearance of zooplankton in the upper pelagial. Such
data are nonetheless useful, as in a recent study, Strand
et al. (2020) used 8 years of CPR data collected in Nordic
Seas and described a previously undocumented fraction of
the Calanus finmarchicus population that occupy warmer Atlan-
tic water masses of the Norwegian and Icelandic Seas until
autumn and descend relatively late for overwintering. At
the time of writing, CPR has been towed for nearly 16million
kilometres (https://www.cprsurvey.org/) and contributed
significantly to the development of the zooplankton vertical
migration knowledgebase.

(b) Sampling in freshwater systems

Although Cuvier (1817) was the first to document the DVM
of Daphnia, the method that he used to observe it remains
unclear. The use of nets to collect freshwater zooplankton
appears in the literature in the late 19th century
(Birge, 1882; Forbes, 1882). To minimise the loss of
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zooplankton through the net’s mesh and to account for the
inability to capture zooplankton in a preferred depth stra-
tum, Juday (1916) developed a pelagic zooplankton sampler
termed the Juday plankton trap. The trap is lowered into
the water column with its top and bottom doors open, and
when the desired depth is reached, a messenger is released
along a cable to close the doors. The trap is then hauled to
the surface and the sample (ca. 5 l) is drained and filtered.
Juday’s initial design received several iterative upgrades
(e.g. Juday, 1926) and was significantly modified by
Clarke (1942). This design has ultimately evolved into an
array of pelagic plankton traps, such as the Rüttner sampler
(Ruttner, 1953), Schindler–Patalas trap (Patalas, 1954;
Schindler, 1969) and its subsequent modifications. High-
speed samplers were introduced to freshwater systems in
the late 1960s. For example, Swain (1970) used a Continuous
Plankton Recorder and a Multi-depth Plankton Indicator to
obtain depth-stratified zooplankton samples in lakes Supe-
rior, Michigan and Huron, and described vertical migration
patterns of numerous zooplankton taxa. Later, Swain & Roi-
jackers (1985) developed a downscaled version of the Multi-
depth Plankton Indicator to investigate vertical migration
of crustacean zooplankton in smaller lakes.

High-speed samplers are not necessary in lotic (moving
water) systems, as zooplankton can be collected easily in the
downstream flow using mounted plankton nets [‘drift sam-
plers’ (Cushing, 1964; Field-dodgson, 1985)]. However,
plankton nets and traps deployed in lotic systems, especially
under high-turbidity, fast-flowing conditions often encounter
operational difficulties, such as clogging and towing inconsis-
tencies (McQueen & Yan, 1993; Mack et al., 2012). There-
fore, pump systems are generally better suited for sampling
in lotic waters. For example, in a recent study conducted in
the Upper Mississippi River, Appel et al. (2020) compared
the sampling efficiency and operational practicability of a
Schindler–Patalas trap (volume = 30 l), an integrated tube
sampler (diameter = 50 mm, length = 50 cm), diaphragm
pump (diameter = 13 mm, length = 2 m) and a tow net
(opening ≈ 0.20 m2, mesh width = 504 μm). Collections
using the pump system yielded the highest numerical abun-
dance. Although the Schindler–Patalas trap produced some-
what comparable abundance estimates to the pump system,
its operation in fast-flowing sections of the river was compro-
mised by water currents. The plankton net produced a lower
estimate of zooplankton abundance but captured a broad
spectrum of lifeforms. Despite being operationally conve-
nient, the tube sampler significantly underestimated the
abundance and species richness of the investigated riverine
zooplankton community.

(2) In-situ observation methods

The sampling of zooplankton is a destructive method and
requires labour-intensive enumeration and identification
steps to be completed before quantitative estimates of vertical
migration can be produced. An alternative is to observe

zooplankton in their natural habitats, typically using acoustic
and optical techniques.

(a) Acoustic observations

(i) Acoustic observations in marine systems. The earliest
acoustic device for depth detection was invented by the Nor-
wegian Hans Sundt Berggraf, who published in the Teknisk

Ukeblad (Technical Weekly) in 1904 under the translated title
An apparatus by which the depth of the sea can be measured, without the
apparatus being connected to the seabed (Berggraf, 1904). However,
it was the German physicist Alexander Bhem who patented
this device almost a decade later in 1912 (Behm, 1921).
These early echosounders were primarily used for naviga-
tional purposes. The use of acoustic devices to detect zoo-
plankton vertical migrations dates to the World War II era,
where sonars affixed to German U-boats operating in the
Atlantic detected a ‘dynamic false bottom’ that remained
deeper during the daytime and ascended gradually at dusk.
Scientific research on this phenomenon was conducted in
the early 1940s, and this dynamic false bottom was named
the ECR layer, in honour of Carl F. Eyring, Ralph
J. Christensen and Russell W. Raitt who provided its first
detailed acoustic characterisation (Eyring, Christensen &
Raitt, 1948). The ECR layer was later referred to as the Deep
Scattering Layer (DSL) and its biological origin was first
described by the American oceanographer Martin
W. Johnson (Johnson, 1948). He collected depth-stratified
net hauls and found large concentrations of zooplankton
(e.g. copepods and euphausiids) at depths corresponding to
the DSL. Johnson (1948, p. 457) wrote: “The deep scattering layer
has been shown by its diurnal vertical migrations to be biological in

nature. The partial reflection of fathometer signals in this layer promises

to be a useful ecological tool in studying the organisms involved”.
The technology used for acoustic characterisation of zoo-

plankton and detection of their vertical migrations has
advanced rapidly in recent decades (Stanton, 2012). For
example, the early single-beam echo sounders could only
estimate the integrated energy returning from all sound scat-
terers in a given ensonified volume (i.e. the volume backscat-
tering intensity). In addition, multi-beam systems can detect
the backscattering strength of individual sources in the enso-
nified volume (i.e. the target strength) and thus allow tracking
of individuals across space and time (Ehrenberg, 1974;
Greene, Wiebe & Burczynski, 1989; Wiebe &
Benfield, 2003). Further, the development of modelling tech-
niques to interpret backscattering signals (e.g. frequency-
dependent characterisation of lifeforms) has advanced signif-
icantly in recent times (reviewed in Lavery et al., 2007).
Recent developments in high-resolution broadband acous-
tics have enabled the seamless use of a wide range of sound
frequencies (e.g. 1–1000 kHz) for the detection, monitoring
and tracking of zooplankton and fish using a single echosoun-
der (Lavery & Stanton, 2016; Lee, Chu & Dosso, 2019). For
example, in a recent study, Skaret et al. (2020) used a broad-
band echosounder to monitor diel vertical behaviour across
multiple trophic levels, including krill (Thysanoessa spp.),
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capelin (Mallotus villosus), polar cod (Boreogadus saida) and adult
Atlantic cod (Gadus morhua) in the northern Barents Sea
(a relatively shallow shelf sea). Their acoustic data showed
that the krill performed classic DVM and were followed to
deeper waters (ca. 150 m) by planktivorous capelin and polar
cod at dusk. Predatory Atlantic cod remained in deeper
waters and fed on the descending planktivores, thus provid-
ing a daytime refuge for the vertically migrating krill.
(ii) Acoustic observations in freshwater systems. The use

of acoustic devices to observe freshwater zooplankton dates
to the late 1960s, when McNaught (1969) used a side-
scanning echosounder system to characterise the cladoceran
populations inhabiting the North American Great Lakes.
The effectiveness of acoustic devices in estimating the abun-
dance and vertical distribution of freshwater zooplankton
was tested rigorously during the 1980s and 1990s
(e.g. Morton & MacLellan, 1992; Smith et al., 1992; Green-
law, Player & Samilo, 1994). Although not as widespread as
in the marine realm, acoustic techniques to observe lacus-
trine populations of zooplankton and fish have gained popu-
larity over the past two decades. For example, Hembre &
Megard (2003) used a 192-kHz side-beam sonar device to
study the spatio-temporal habitat selection strategies of the
cladoceran Daphnia pulicaria and the planktivore rainbow
trout (Oncorhynchus mykiss) in Long Lake, Minnesota. During
daytime, D. pulicaria aggregated in dense patches in a deep-
water ‘refuge zone’ where oxygen concentrations were low
(3–5 mg l−1), which was below the typical tolerable range of
the planktivore. Similarly, Warren, Leach & William-
son (2016) observed likely predator-driven dense patches of
cladocerans and copepods across four lakes in Sierra Nevada,
California using two simultaneously deployed single-
frequency echosounders operating at 120 kHz and 710 kHz
frequencies.

(b) Optical techniques

In the early 1950s, a group of Japanese scientists used a
device called the ‘Kuroshio undersea observation chamber’
to obtain in-situ photographs of zooplankton in the Sea of
Japan (Inoue, Saskai & Oaki, 1953). Nishizawa, Fukuda &
Inoue (1954) used these photographs to analyse the swim-
ming patterns and speeds of zooplankton. The use of imaging
techniques to observe the inhabitants of DSLs became wide-
spread from the mid-1950s onwards (e.g. Edgerton &
Hoadley, 1955; Backus & Barnes, 1957; Myrberg &
Arthur, 1973). While these early imaging instruments pre-
dominantly facilitated qualitative work, the development of
the Video Plankton Recorder (VPR) allowed the observation
of zooplankton in a defined volume of water and thus pro-
duced quantitative estimates of zooplankton abundance
and vertical distribution (Davis, Gallager & Solow, 1992).
For example, Sainmont et al. (2014) used a VPR alongside
a CTD (Conductivity, Temperature and Depth device) and
an irradiance sensor to profile the water column of Disco
Bay, Greenland covering an entire diel cycle. They observed
a classic DVM pattern among copepods (Calanus spp.) that

followed a preferred light intensity of ca. 10−9 μmol photons
m−2 s−1 throughout the diel cycle, likely to minimise visual
predator encounters. The VPR was subsequently upgraded
with digital colour video recording, on-board storage and
data processing systems (Davis et al., 2005). Alternative sys-
tems to VPR aimed to increase accuracy by allowing obser-
vations of zooplankton in greater biological detail in a
larger volume of water. Some of these alternative systems
include the Large Area Plankton Imaging System (LAPIS;
Madin et al., 2006), Underwater Vision Profiler (UVP;
Gorsky et al., 1992) and In Situ Ichthyoplankton Imaging Sys-
tem (ISIIS; Cowen & Guigand, 2008). Apart from the devel-
opment of imaging hardware, software used for automated
zooplankton identification and classification has also signifi-
cantly improved during the past few decades (reviewed in
Benfield et al., 2007; Sieracki et al., 2010).

Particle detection devices are a separate group of optical
zooplankton observation systems that estimate the size of par-
ticles passing through an illumination field (Sprules, 1992).
The earliest particle detection system, named the Electronic
Zooplankton Counting Device (EZCD) estimated the size of
the zooplankton bymeasuring the interference caused by par-
ticles crossing an electrical field (Boyd & Johnson, 1969). The
use of illumination fields and photodetectors instead of electri-
cal fields for particle detection began in the 1970s (Cooke
et al., 1970). The most prominent was the Optical Plankton
Counter (OPC), which produces size distributions of zoo-
plankton approximating to an equivalent spherical diameter
(Herman, 1988, 1992). Sprules et al. (1998) experimentedwith
the optimal beam length and developed calibration algo-
rithms for using OPCs in quantitative zooplankton surveys
in freshwater lakes, which were later implemented to assess
zooplankton communities of theNorthAmericanGreatLakes
by Yurista, Kelly & Miller (2005). The second generation of
OPCs named the Laser Optical Plankton Counter (LOPC;
Herman, Beanlands & Phillips, 2004) was better suited for
studying zooplankton distributions in turbid freshwater sys-
tems, given its ability to resolve high densities of smaller parti-
cles compared to OPCs (Finlay, Beisner & Barnett, 2007).

(3) Tracking and simulation methods

(a) Tracking vertical migrations of individuals

Since the mid-19th century, significant advances have been
made to trace zooplankton vertical migrations in experimen-
tal enclosures using videography. Baylor (1959) introduced a
method to videotape planktonic microcrustaceans illumi-
nated with submerged infrared lights using infrared-sensitive
video cameras (silhouette videography). This method was
used in classic plankton tower experiments (Lampert &
Loose, 1992) to analyse the diel vertical migration and swim-
ming behaviour of Daphnia spp. by tracing individuals across
time and two-dimensional space (Lampert, 1993; Dodson,
Tollrian & Lampert, 1997; Winder, Spaak & Mooij, 2004).
Infrared-based silhouette videography was also employed in
the tracking of individual zooplankton in more recently
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introduced miniature plankton columns (Maszczyk, 2016).
As analysing individual trajectories is a time-consuming pro-
cess that involves the stopping of the video playback at regu-
lar intervals and measuring the animal’s position, automated
zooplankton motion-analysing systems were developed in the
1980s (Buskey, 1984). These systems significantly improved
the efficiency of individual tracking and allowed motion tra-
jectories and swimming speeds to be monitored seamlessly in
three dimensions. As a result, Ramacharan & Sprules (1989)
used four mirrors simultaneously to project two orthogonal
views of a plankton aquarium into a single infrared-sensitive
video camera to obtain a three-dimensional perspective.
Since zooplankton appeared on the videotape as bright spots
on a dark background, their computer-based tracking system
was instructed to trace these bright spots across space
and time.

An alternative to infrared-based silhouette videography
was recently developed by Lard et al. (2010). This method
is based on a nano-labelling technique that involves the
coating of zooplankton with commercially available
nanometre-sized fluorescent probes (quantum dots), which
do not affect the behaviour of the animals. Instead of infra-
red light, the scene is illuminated with blue light (excitation
wavelength ≈ 465–495 nm), where the individuals are
recorded and tracked using fluorescence-sensitive cameras.
Ekvall et al. (2013) used this labelling technique to study the
swimming behaviour of several freshwater zooplankton
species. They used a dual camera system facing a cube-
shaped aquarium at a 90� angle to monitor the zooplank-
ton behaviour in three dimensions. In a recent study, Fer-
nández et al. (2020) used the same quantum labelling and
tracking technique to assess the morphological and beha-
vioural responses of two Daphnia pulex populations against
UV exposure. Here, in an aquarium with a surface flux of
UV irradiance, the D. pulex population collected from a
high-UV environment took refuge at its deeper end, while
those collected from a low-UV environment developed
photo-protective compounds and reduced the refuge-
taking behaviour. Nanotechnology-based tracking of zoo-
plankton is still in its infancy and there is a need to develop
these methods for marine taxa. Although these tracking
methods are currently limited to small aquaria (largely
due to the limitations of the camera field of view), recently
developed aquatic inelastic hyperspectral LiDAR (Light
Detection and Ranging) profilers (Zhao et al., 2016) offer
great promise to conduct these experiments in larger
experimental enclosures (Zhao et al., 2018).

(b) Simulating vertical migrations of virtual individuals

Since the 1980s, Individual Based Models (IBMs) have pro-
vided a cost-effective alternative to simulate the vertical
behaviour of virtual individuals in computer-generated
model environments (reviewed in Carlotti, Giske &
Werner, 2000; Everett et al., 2017). As model environments
can be easily manipulated, IBMs have become a useful tool
for studying individual- and population-level responses of

zooplankton to environmental variability. However, to main-
tain computational efficiency, the virtual individuals in IBMs
are significantly simplified compared to real zooplankton.
For example, Fiksen (2000) represented the individuals of
the high-latitude marine copepod Calanus finmarchicus as enti-
ties with a body mass, energy reserve mass and grouped
developmental stage (eggs, nauplii, and copepodites). Most
IBMs simulate the entire life cycle of individuals, which
includes growth and development, survival (e.g. starvation
tolerance, vertical migration, energy storage, overwintering)
and reproduction.
The simulation of vertical migrations in IBMs requires: (i)

proxies to represent the timing and amplitude of the migra-
tion; (ii) an estimate of the vertical swimming velocity of indi-
viduals; and (iii) a mechanism for depth (vertical habitat)
selection. Several proxies are used to represent the timing
and amplitude of zooplankton vertical migrations in IBMs.
DVM is usually represented by the photoreactive behaviour
of individuals, which is learned during their lifespan in
machine learning-driven behavioural models (e.g. Eiane &
Parisi, 2001; Strand, Huse & Girske, 2002) or evolves across
generations in optimisation-driven behavioural and life-
history models (e.g. Giske et al., 1997; Tarling et al., 2000).
The adoption of proxies to represent the timing and ampli-
tude of SVM remains challenging, as little is known about
its proximate drivers. Consequently, some models impose
hard constraints to fix the timing of the seasonal ascents
and descents to match empirical estimates. For example,
the IBM for Calanus finmarchicus by Carlotti & Wolf (1998)
was formulated such that the simulated population enters
overwintering after day 210 (July 29) and exits overwintering
after day 95 (April 5). Many other models allow the timing
and amplitude of SVM to vary among individuals of the pop-
ulation by introducing evolvable parameters, which are opti-
mised using evolutionary algorithms or stochastic dynamic
programming (e.g. Fiksen, 1997, 2000; Bandara et al., 2018;
Huse et al., 2018). The vertical swimming velocities and pat-
terns simulated in IBMs are usually adopted from empirical
estimates. For example, Ringelberg (1995a) developed a
DVM model for Daphnia, which used trigonometric oscilla-
tory functions to simulate their ‘hop and sink’ behaviour.
The model simulations were comparable to the empirical
patterns, since the periodicity of the modelled sine curve
was adjusted to match those observed in experimental enclo-
sures. By contrast, the recent model for high-latitude Calanus
spp. by Bandara et al. (2019) adopted the ‘cruising’ behaviour
of copepods and assumed a constant cruising velocity, which
was allometrically scaled to replicate intra- and inter-
individual variability based on the vertical migration veloci-
ties recorded using acoustic devices. Among the commonly
used techniques for depth selection are random-walk algo-
rithms (e.g. Schmitt & Seuront, 2001; Dupont et al., 2009),
position calculation and placement methods (e.g. Carlotti &
Wolf, 1998; Bandara et al., 2019) and vertical habitat-
selection methods based on optimisation (e.g. Fiksen &
Giske, 1995) or game theory approaches (e.g. Pinti &
Visser, 2019).
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V. CHALLENGES, OPPORTUNITIES AND
DIRECTIONS FOR FUTURE RESEARCH

The present understanding of zooplankton vertical migra-
tions is the outcome of a wealth of field investigations, labora-
tory experiments and modelling studies conducted over the
past two centuries. The rapid ongoing methodological devel-
opments are placing us at an exciting time point in the devel-
opment of research on vertical migrations and there are
several avenues where much progress can still be made.

(1) Improving the quality of zooplankton vertical
distribution data

(a) Strategies to improve data resolution

Zooplankton sampling methods (e.g. plankton nets, traps and
pump systems) produce data with excellent biological resolu-
tion and allow the identity of migrations to be resolved to the
individual and developmental-stage levels and the estimation
of many individual attributes, such as body size, lipid levels,
sex and respiration rates. However, sampling data come with
coarse vertical spatial resolution, since traps and pumps work
at prescribed depths and plankton nets are hauled along large
vertical stretches of tens to hundreds of metres. Further, due
to operational difficulties and laborious enumeration and iden-
tification processes involved in data processing, plankton sam-
pling systems are not suited to produce data at higher
temporal resolution. By contrast, acoustic observation systems,
such as high-frequency echosounders, produce data with excel-
lent vertical spatial and temporal resolution. However, acoustic
devices lack the biological resolution to describe the species-
and stage-specificity of vertical migrations. The best alternative
is to use acoustic devices alongside zooplankton sampling
devices or optical in-situ observation systems, which allows
extensive groundtruthing of the data (Stanton et al., 1994).
For example, Kahn & Lavery (2019) used a broadband echo-
sounder alongside a digital zooplankton imaging system to
describe the summertime vertical dynamics of DSLs off the
shelf break of New England. The three-dimensional holo-
graphic images collected by the imaging system were useful
for verifying the biological characterisation of the acoustic data
and also aided in cross-validating the sound-scattering models
used to estimate zooplankton abundance and biomass. Zoo-
plankton imaging systems, such as the VPR and its subsequent
developments, are superior to acoustic devices in terms of bio-
logical resolution. Although the biological resolution of zoo-
plankton imaging systems is not yet fully comparable to that
produced by zooplankton sampling devices, significant
improvements can be expected with the rapid advances in
high-resolution camera hardware and development of state-
of-the-art image-recognition algorithms.

(b) Strategies to improve data coverage

Although plankton nets provide excellent vertical spatial cover-
age down to thousands of metres of depth, they do not sample

the near-bottom (hyperbenthic) zooplankton communities.
Studies conducted using epibenthic samplers (reviewed in
Wiebe & Benfield, 2003) have indicated that the hyperbenthic
zone is used as a refuge during the DVMof many coastal ocean
zooplankton (Koulouri et al., 2009) and serves as a prominent
overwintering habitat for high-latitude copepods (Auel
et al., 2003; Hirche et al., 2006). Therefore, it is important to use
samplingdevices thatarecapableofcoveringtheentirewatercol-
umn in zooplankton vertical migration studies. Further, since
overwintering in deeper waters and diapause in sediments are
common to both marine and freshwater zooplankton, sampling
efforts should encompass both the water column and the sedi-
ment to study a broader spectrumof zooplankton seasonal verti-
cal strategies.

Despite the use of horizontally or obliquely towed high-speed
samplers to address the lack of horizontal spatial coverage of
plankton nets, they yield little information about the vertical
dimensionality of zooplankton migrations (i.e. they lack vertical
spatial coverage).A cumbersomeapproach to solve this problem
is simultaneously to use multiple high-speed sampling devices
attached to the same towline at various depths (e.g.Miller, 1961;
Swain & Roijackers, 1985). However, this requires a significant
additional post-processing effort for the collected samples. The
use of acoustic or optical in-situ observation devices on autono-
mous underwater vehicles (AUVs) or remotely operated under-
water vehicles (ROVs) is a better alternative to collect
zooplankton vertical distribution data with greater horizontal
and vertical spatial coverage. Thesemobile operations are facili-
tatedby theuseof compactandpower-efficientglider-class echo-
sounders (e.g. Benoit-Bird et al., 2018; Pedersen et al., 2019),
acoustic Doppler profilers (e.g. Baumgartner & Fratantoni,
2008; Powell & Ohman, 2012), digital imaging systems (Guo
et al., 2018; Ohman et al., 2019) and optical plankton counters
(e.g. Pedersen et al., 2010; Ohman et al., 2013), which provide
three-dimensional spatial coverage of zooplankton distributions.

Compared to high-speed samplers and AUV-mounted in-

situ observation systems, airborne (e.g. Churnside &
Thorne, 2005) and spaceborne (e.g. Winker et al., 2009)
LiDAR provides unprecedented horizontal spatial coverage
of the upper ocean vertical migrants (Hostetler et al., 2018).
For example, Behrenfeld et al. (2019) used the backscattering
signals of neodymium-doped yttrium aluminium garnet
lasers (Nd:YAG) measured onboard the Cloud Aerosol
LiDAR and Infrared Pathfinder Satellite (CALIPSO) and
observed pronounced DVM patterns in subtropical gyres,
which are usually associated with clearer waters. However,
the identity of these migrants and the proximate drivers of
their DVM remained unclear given the poor biological reso-
lution in LiDAR data and due to the lack of regional- and
global-scale zooplankton sampling or observation data for
groundtruthing. The availability of spaceborne LiDAR data
with global coverage should encourage modellers to develop
broader spatial-scale generalised DVM models, because
these data can be used for model validation.

Another advantage of spaceborne remote observation is
that it provides data with unprecedented temporal coverage.
For example, Behrenfeld et al. (2019) compiled a 20-year
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timeseries of the aboveCALIPSONd:YAG laser backscatter-
ing data and used it to derive correlations between the esti-
mated DVM biomass and pelagic primary production.
Manymarine observatories keep consistent long-term records
of zooplanktonnet data indifferentparts of theworld’s oceans.
The National Oceanic and Atmospheric Administration’s
coastal and oceanic plankton ecology production and obser-
vation database lists many such marine zooplankton time-
series (https://www.st.nmfs.noaa.gov/copepod/metabase/).
Similar long-term collections of freshwater zooplankton data
also exist and are listed in the Freshwater Information Plat-
form’s freshwater biodiversity data portal (http://data.
freshwaterbiodiversity.eu/). Since many of these data sets
are freely accessible, they should be used to study the interann-
ual and decadal variations of zooplankton vertical migrations
and their environmental correlates. Moored and vessel-
mounted acoustic devices, such as Acoustic Doppler Current
Profilers (ADCPs) are also used to generate long-term in-situ

observations of zooplankton vertical distributions. TheWest-
ernNorthAtlantic andPacificADCPdata sets are listed in the
NOAA Joint Archive of Shipboard ADCP (https://uhslc.
soest.hawaii.edu/sadcp/). Although FerryBoxes (instrumen-
tal assemblages attached to commercial and routinemaritime
patrol vessels) are becoming increasingly popular for surface-
ocean environmental monitoring in the Eastern North Atlan-
tic (Petersen et al., 2003; Ainsworth, 2008; Petersen, 2014),
zooplankton profilers are not yet used as standard in these
instrument packages. As a cost-effective means of generating
long-term zooplankton vertical distribution data, the feasibil-
ity of including high-frequency echosounders, ADCPs or rela-
tively inexpensive inelastic hyperspectral LiDAR profilers
(Zhao et al., 2016) in FerryBox systems should be evaluated.
Advances in power management, under-ice communication,
obstacle avoidance and navigation systems (e.g. Jones, Moro-
zov & Manley, 2013; Freitag et al., 2015) should be used to
expand AUV operations into polar regions, where in-situ

year-round zooplankton vertical distribution data are rare.
As zooplankton vertical migrations are often linked to the

dynamics of the food and predation environments, data cov-
ering multiple trophic levels are required to generate a
broader understanding of their causes and consequences.
However, improvement of biological coverage of data is
challenging, as sampling, observation or tracking devices
usually focus on a narrow range of lifeforms and sizes. The
best alternative is the combined use of zooplankton monitor-
ing techniques in community-wide zooplankton vertical
migration studies. A common approach used in marine
meso- and macrozooplankton studies is to combine several
nets, such as WP-2 and WP-3, with intermittent pelagic
trawls to capture planktivorous fish (Skjoldal et al., 2013). In
freshwater systems, plankton nets are used alongside traps
and pump samplers (Masson et al., 2004). The use of multifre-
quency echosounders for zooplankton and fish monitoring is
an elegant way to reduce the laborious post-processing of
zooplankton samples. However, none of these techniques
are well suited to monitor megaplanktivores (e.g. filter-
feeding sharks, rays and whales), who, although not

numerous, can have a significant predatory impact on zoo-
plankton populations (Kenney et al., 1986; Armstrong
et al., 2016). Therefore, future community-wide zooplankton
vertical migration studies should use techniques such as pop-
up archival tagging for monitoring non-sound-producing
megaplanktivores (e.g. filter-feeding sharks; Sims
et al., 2003) and passive acoustics, such as hydrophone arrays
to identify and track sound-producing megaplanktivores
(e.g. cetaceans; Giraudet & Glotin, 2006).
Environmental DNA (eDNA) approaches (Ogram,

Sayler & Barkay, 1987) provide a possible alternative to
simultaneous monitoring of multiple trophic levels in
community-wide vertical migration studies. This involves
the use of next-generation sequencing (NGS) technologies
for mass DNA sequencing and concurrent molecular identi-
fication of multiple taxa in water samples (Shokralla
et al., 2012; Taberlet et al., 2012). Due to the rapid degrada-
tion of eDNA, it is suitable to identify shorter-term pelagic
occurrences of lifeforms (e.g. planktivorous fish) and make
rough estimations of their abundances (Lacoursière-Roussel,
Rosabal & Bernatchez, 2016; Stoeckle, Soboleva & Charlop-
Powers, 2017). However, further studies are required to test
if an eDNA approach could be effective in the vertical char-
acterisation of lifeforms.

(2) The need to broaden SVM research

Compared toDVM, SVM is a relatively understudied behav-
iour. Although many studies directly focus on overwintering
and diapause, the related seasonal vertical movements are
often taken for granted. However, SVM possesses notable
community-wide implications and contributes significantly
to the buffering of human-mediated global climate change
(Baumgartner &Tarrant, 2017;Record et al., 2018).One par-
ticular area that needspriority is researchon the controlmech-
anisms underlying diapause termination and seasonal ascent
of high-latitude zooplankton. This knowledge holds the key
to understanding the ‘unexpected’ levels of wintertime activ-
ity of herbivorous zooplankton recently observed during the
polar night (reviewed in Berge et al., 2020). For example,
Bandara et al. (2016) found that Calanus spp. occupying a
high-Arctic sill fjord gradually ascended from overwintering
depths from late-November onwards andmost of the popula-
tion was in the upper 50 m by mid-February – ca. 5 months
aheadof the onset of pelagic primaryproduction.Recentfind-
ings point to elevated invertebrate predation at overwintering
depths (Błachowiak-Samołyk et al., 2015), energy resource
exhaustionand starvation (Daase et al., 2013b), andavailability
of alternative food sources (Hobbs et al., 2020) as potential
drivers of these mid-winter ascents. However, further studies
areneeded todevelopabetter understandingof theproximate
drivers and the adaptive significance of these migrations
and the dark-season survival strategies of high-latitude
zooplankton.
The biggest challenge to studying the diapause termina-

tion and seasonal ascent of high-latitude zooplankton is the
logistics of sampling zooplankton populations during the
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winter-to-spring transition, when the ascent migrations usu-
ally occur. In addition, there are obvious difficulties involved
with conducting proper experimental studies of SVM. For
example, unlike most freshwater zooplankton (e.g. Daphnia
spp.), it is difficult to induce and terminate diapause among
marine zooplankton under laboratory conditions
(Hirche, 1996a). Further, data with individual-level resolu-
tion will be needed to understand proximate drivers and
adaptive value fully, as state-dependent responses are com-
mon (Hays et al., 2001) and key states, such as lipid reserves
should ideally be measured at the level of individuals
(Vogedes et al., 2010) and not from pooled samples. Addres-
sing these challenges will involve devoting more effort
towards sampling or observing zooplankton populations
and the individual variability within them (Varpe, 2012),
and relating their vertical distributions to environmental var-
iables. In this regard, environmental variables should be
tested for combined influence, as the phenology of diapause
induction and termination can be altered when variables
such as irradiance, temperature, food availability and preda-
tion risk operate in concert (Walsh, 2013; Bandara
et al., 2019). Studying SVMs in marine environments with
higher advective potential is a challenging task. This is due
to the impact of advection on zooplankton recruitment and
the difficulties it offers when interpreting vertical changes of
zooplankton abundance over time purely as a behavioural
(active) process (Pearre, 1979). To minimise the advective
influence, SVM studies conducted in semi-isolated marine
environments, such as bays, sill fjords and lochs
(Kosobokova, 1999; Clark et al., 2012; Bandara et al., 2016)
should be encouraged.

(3) The importance of studying DVM and SVM in
concert

As most zooplankton vertical migration studies either focus
on DVM or SVM, the present understanding of the interac-
tions between these two migrations remains limited. The
combined influence of DVM and SVM on the fitness and
phenology of zooplankton has been a focus of some studies
(e.g. Loose & Dawidowicz, 1994; Fiksen, 1997; Fiksen &
Carlotti, 1998). In the recent unidimensional high-resolution
models of Bandara et al. (2018, 2019), DVM of high-latitude
calanoid copepods emerged as an immediate response to ele-
vated visual predation risk. This reduced the growth rates of
the modelled copepods as they had periodically to abandon
food-rich near-surface waters (see also Houston, McNa-
mara &Hutchinson, 1993). Consequently, the predicted sea-
sonal descent and overwintering occurred with a significant
delay at higher visual predation risk, since the DVM-induced
reduction in growth rate yielded more time for the copepods
to develop to a late-juvenile stage (CIII, CIV or CV) with suf-
ficient reserves. These novel findings should be tested further
in refined models and validated against field data before
being generalised.

The modification of behavioural and life-history strategies
in response to environmental variability can have a feedback

effect on the spatial distribution of zooplankton (McManus &
Woodson, 2012). For example, predation-induced changes
of diel and seasonal vertical behaviour (i.e. changes in the
timing and amplitude of DVM and SVM) can drive zoo-
plankton across differential water masses, which may eventu-
ally lead to advective or retentive processes. Since the extent
of zooplankton vertical behaviour is strongly related to their
body size and developmental stage, a size- and stage-specific
variability can also be predicted in the expected advective or
retentive feedback. For example, individual based Lagrang-
ian simulation models have shown that diel vertical migrants
possess a better chance of retention within the productive
nearshore upwelling regions, since the typical night-time off-
shore surface drift brought about by Ekman transport is com-
pensated by the daytime descent to sub-surface shoreward-
moving currents (Batchelder, Edwards & Powell, 2002,
Marta-Almeida et al., 2006). Nonetheless, since younger
developmental stages do not usually have the capability to
perform high-amplitude DVM, a net offshore movement of
the zooplankton population is expected over time. These
offshore-advected older developmental stages overwinter
off the shelf breaks, and ascend to shoreward moving subsur-
face upwelling currents in the following year (Peterson
et al., 1979). Maps et al. (2011) used a three-dimensional phys-
ical circulation model of the Gulf of St. Lawrence to drive a
unidimensional behavioural and life-history simulation
model of the high-latitude copepod Calanus finmarchicus and
found that the timing and amplitude of DVM and SVM
are crucial for their retention within the study area. How-
ever, whether similar DVM–SVM interactions exist in
high-latitude coastal marine environments, which are influ-
enced by substantial variations of tidal regimes and cross-
shelf exchange of water masses is not well known.

One possible reason why DVM–SVM interactions are less
studied in high-latitude systems is the argument that there is
no pronounced (synchronised) DVMduring most of the year.
The absence of DVM during much of the high-latitude pro-
ductive season (particularly in summer) is often discussed in
relation to the lack of ‘perceivable’ diurnal variations of irra-
diance (Buchanan & Haney, 1980; Błachowiak-Samołyk
et al., 2006; Cottier et al., 2006). However, although not nec-
essarily perceivable to the human eye, diurnal variations of
irradiance occur during the high-latitude summer (the period
of midnight sun), which are detectable by instruments and
perhaps by zooplankton. Further, recent studies show that
several species of Arctic copepods and krill are highly sensi-
tive to light (with lower detection thresholds ~10−8 μmol
photons m−2 s−1) and perform DVMs during the high-Arctic
winter (polar night) using moonlight, starlight and light from
aurorae as proximate cues (Båtnes et al., 2015; Cohen
et al., 2015; Last et al., 2016). This indicates that diurnal var-
iations of summertime irradiance should be a sufficient visual
cue for these highly light-sensitive zooplankton. The preva-
lence of high-latitude summertime DVM under the threat
of visual predation hints that the absence of DVM in certain
studies may be due to the absence of planktivorous fish
(as demonstrated in some lower-Arctic settings; e.g. Fortier
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et al., 2001) or due to alterations of the underwater light cli-
mate following the loss of sea ice (Wallace et al., 2010). As
more planktivorous fish are expected to migrate poleward
due to oceanic climate shifts (Perry et al., 2005) and experi-
ence more light in the water column as sea ice melts
(Langbehn & Varpe, 2017), DVM at higher latitudes will
become more pronounced (e.g. lesser near-surface foraging
time and greater migration amplitude) and, therefore,
DVM–SVM interactions deserve significant attention.

A challenge to study DVM and SVM in concert is that
they occur over contrasting spatial and temporal scales. Field
campaigns (e.g. shipboard sampling) seldom last for more
than a few weeks at higher latitudes and are usually con-
ducted in the ice-free periods of the year due to logistic chal-
lenges. Moreover, experimental enclosures cannot
accurately reproduce abiotic and biotic environmental
dynamics (e.g. predation risk, bottom depth) encountered
in nature, especially in the marine realm. Although mecha-
nistic simulation models appear to be a cost-effective alterna-
tive to address these problems, most high-latitude
zooplankton life-history and biogeography models tend to
disregard shorter-term diel vertical behaviour due to the ele-
vated computational demands of simulating higher biologi-
cal detail in shorter time steps. Therefore, modellers should
aim to utilise emerging computer hardware [e.g. advanced
central, graphical and neural processing units (CPUs, GPUs
and NPUs)] and methods such as high-performance comput-
ing (e.g. Džeroski, 2001; Owens et al., 2008) and artificial
intelligence (e.g. Huse, Strand & Giske, 1999; Eiane &
Parisi, 2001) to improve the computational efficiency of
mechanistic simulation models.

(4) Vertical migration and climate change

Many animal migrations are expected to change due to cli-
mate warming and related environmental change
(Cotton, 2003; Wilcove & Wikelski, 2008; Bauer &
Hoye, 2014). It is largely unknown how zooplankton vertical
migrations are responding to climate change, but some stud-
ies provide insights. Work conducted in lentic freshwater sys-
tems indicate that increased summertime surface
temperatures and UV irradiance will hinder the entry of cla-
doceran zooplankton to the epilimnion and thus reduce the
amplitude of their DVM (De Stasio et al., 1996; Snucins &
John, 2000; Cooke et al., 2008). Nonetheless, further studies
are required to test if starvation effects and predation pres-
sure can alter these patterns. In shallow freshwater systems,
temperature increases can be expected throughout the water
column, which can drive changes in SVM timing as hatching
phenology of resting eggs is altered (Chen & Folt, 1996).
However, temperature effects will not be pronounced in sys-
tems where photoperiod acts as the primary cue for the
hatching of resting eggs (Winder & Schindler, 2004). Some
studies conducted in temperate freshwater lakes suggest that
SVM of planktonic inhabitants will gradually diminish in
response to climate change. For example, according to Tsu-
geki, Ishida & Urabe (2009), wintertime upper pelagial

temperatures of Lake Biwa (Japan) increased gradually from
the mid-1960s to early 2000s, causing primary production to
continue more or less year-round (which did not occur in the
winter months prior to the warming). Due to the year-round
food supply, the resting egg production, diapause and SVM
of herbivorous zooplankton (e.g. Daphnia galeata) gradually
diminished over the years as they could occupy the upper
pelagial year-round.
In the marine realm, climate-related changes in vertical

migrations should be particularly pronounced in high-
latitude systems due to the predicted increase of upper ocean
temperatures, loss of sea ice cover (and improved underwater
light regime), elevated primary production and poleward
migration of pelagic planktivores (Meredith et al., 2019).
Although research is scarce, several testable predictions can
be made. First, the extent of DVM can be expected to
increase in the future, especially among the herbivore zoo-
plankton community due to elevated food availability and
increased visual predation risk. However, the effects of ambi-
ent temperature and size-dependent visual predation risk on
the body size of zooplankton should also be considered in
predicting climate change influences of DVM, since zoo-
plankton vertical behaviour is proportional to their body size
(Ohman & Romagnan, 2016). Similarly, changes in turbid-
ity, for instance caused by more run-off from land, will com-
plicate these processes and possibly lead to less DVM and
altered zooplankton phenology. Second, the timing of SVM
will also shift in future high-latitude oceanic environments
due to the predicted earlier onset and longer duration of
pelagic primary production (Sydeman & Bograd, 2009) –
but note that the seasonal primary production may occur
later in some seas (Opdal, Lindemann & Aksnes, 2019).
However, an assessment of predation risk is required to make
accurate predictions about the extent and direction of shifts
in SVM timing. Third, the predicted climate-related warm-
ing of the deeper pelagial will lead to faster catabolisation
of stored lipids and thus shorten the overwintering duration
of high-latitude zooplankton (Saumweber & Durbin, 2006;
Wilson et al., 2016). The failure to prolong overwintering
duration until the onset of the following productive season
could be catastrophic for many herbivorous zooplankton
populations, particularly if the animals cannot survive on
alternative food sources in the absence of their primary food
source (phytoplankton). However, whether the warming of
the deeper pelagial will drive changes in the vertical habitat
selection of zooplankton remains unclear.
If climate change-related future DVM and SVM shifts

become pronounced, it will likely have significant impacts
on the ocean’s biologically driven carbon sequestration. In
a recent mini-synthesis, Brierley (2014) hypothesised that
increased DVM in a future ocean will enhance the carbon
pump. He wrote: “More primary production will support more graz-

ing zooplankton, which will undertake more vertically extensive diel

migrations to avoid the better-illuminated surface zone. This will trans-

port fixed carbon deeper into the ocean interior, removing it from the atmo-

sphere for longer in a climatically beneficial negative feedback loop”
(Brierley, 2014, p. 1076). Both supporting and opposing
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evidence exist in this regard. For example, Behrenfeld
et al. (2019) analysed a ca. 20-year DVM timeseries and found
a temporal increase in DVM biomass in highly productive
subtropical marine realms and a decrease in the North Atlan-
tic. These findings were corroborated by a 55-year timeseries
study conducted in the North Atlantic by Brun et al. (2019).
Accordingly, the vertical carbon flux driven by zooplankton
DVM, SVM and faecal pellet production decreased in the
North Atlantic since the 1960s, except for the north-western
boundary of the study area. According to the authors, these
changes largely underpin the climate-related spatio-
temporal changes in vertical migration biomass. An emerg-
ing hypothesis is that climate-related warming of the upper
ocean will favour the proliferation of smaller zooplankton,
while larger taxa will be numerically diminished or redistrib-
uted further north (Arctic) or south (Antarctic) (Chust
et al., 2014;Mäkinen, Vuorinen &Hänninen, 2017;Møller &
Nielsen, 2020). Whether the predicted future climate trends
will enhance the vertical migration contribution to the bio-
logical pump thus hinges on the ability of a larger number
of smaller-bodied zooplankton taxa to compensate the car-
bon flux effects of fewer larger-bodied taxa. Further research
is needed to obtain a better understanding of these complex
trade-offs and feedbacks.

In coastal regions where vertical migrations may aid as
retentive or advective facilitatory mechanisms, climate
change-related shifts of DVM and SVM may lead to alter-
ations of geographic distributions of zooplankton (Heath
et al., 1999). This is one of the least addressed areas of
research, where the predictive potential of mechanistic simu-
lation modelling approaches can be harnessed. One particu-
lar approach is to couple a unidimensional species-specific
behavioural and life-history simulation model (biological
model) to a three-dimensional ocean circulation model (phys-
ical model) of the region of interest. Usually, these coupled
models work in a way that the physical model simulates the
circulation patterns for a selected calendar year and the bio-
logical model runs for multiple annual iterations over the
simulated physical environment until some stabilisation crite-
rion is met (e.g. Huse et al., 2018). What has not been widely
attempted to date is to use a climate model to alter the envi-
ronmental forcing of the physical model and establish a time
series into the future (e.g. from present day to the year 2100
using IPCC predictions). The biological model can be exe-
cuted over this timeseries (rather than iterating over the same
annual circuit) and the modeller can investigate the extent to
which climate change-related changes of DVM and SVM
influence the geographic distribution of the modelled zoo-
plankton species.

(5) From genes to ecosystems: the importance of
integrated and collaborative approaches

As for any animal migration, zooplankton vertical migration
is not a population attribute but is a collection of behavioural
decisions made by individual zooplankton (Zink, 2002).
Since most zooplankton are relatively small and seldom

exceed a few millimetres in size, their behavioural decisions
and position in the water column can be sensitive to fine-scale
variations of the environment. Therefore, future research
should emphasise the role of individual variability in making
diel and seasonal habitat choice decisions (Kralj-Fišer &
Schuett, 2014). Further, since individual motivations for
behavioural decisions may be rooted in the genetic material
(Häfker et al., 2017), molecular genetic studies should be
prioritised to formulate a comprehensive theory on the prox-
imate control of zooplankton vertical migrations. There is
also a growing need to explore the community and ecosystem
consequences of vertical migrations, both under present and
future environmental contexts, as vertical migrations are
connected across trophic levels through predator–prey inter-
actions (Bollens et al., 2010) including complex game-type
interactions (Pinti & Visser, 2019) and perform a crucial role
in the buffering of human-mediated global climate change
(Brierley, 2014; Record et al., 2018).

Studying a behaviour with such broad ecological, evolu-
tionary and economic consequences not only requires the
integration of various classic and state-of-the-art zooplankton
vertical migration study techniques (as discussed in
previous sections) but also warrants interdisciplinary research
involving animal physiology and biochemistry, marine and
evolutionary ecology, behaviour, molecular genetics, mathe-
matical modelling, hydrography and climatology. Collabo-
rations and comparisons across disciplines are also likely to
facilitate advances, such as comparing terrestrial and aquatic
arthropods (Varpe & Ejsmond, 2018a). Further, collabora-
tive efforts across marine and freshwater realms could also
contribute significantly to improving the zooplankton verti-
cal migration knowledgebase. For example, behavioural
and life-history patterns of the freshwater cladoceran Daphnia
have been studied extensively over the past two centuries,
and consequently, it is now considered a ‘model system’ to
improve the mechanistic understanding of the interplay
between various traits at the levels of genes, individuals and
populations and its consequences for community and ecosys-
tem dynamics (Miner et al., 2012). Themyriad experiments con-
ducted on the proximate cues of DVM and diapause (with
respect to resting eggs) of daphniids should be studied bymarine
planktologists to shed new light on the cues for overwintering
entry and exit and SVMof marine zooplankton, especially with
respect to the presence of predators where research is still largely
model- and theory-driven but with limited empirical data. On
the other hand, advances in marine research could contribute
to exploring under-visited avenues in freshwater systems. One
particular area that may benefit in this regard is the duality of
freshwater zooplankton diapause systems, which can switch
between the production of resting eggs and overwintering in
advanced developmental stages (Block, 2017). Methodological
developments regarding sampling, observing and quantifying
overwintering strategies of marine zooplankton, especially
involving high-frequency acoustics, should be adopted in fresh-
water systems. We envisage considerable pay-offs from
more integrative approaches to research on zooplankton
migrations.
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VI. CONCLUSIONS

(1) Research on zooplankton migrations has developed as a
continuous process of mainly curiosity-driven work with
200 years of history and scientific developments charac-
terised by important and considerable descriptions of
diversity as well as theoretical and mechanistic
understanding.

(2) The DVM knowledgebase is broad and its causes and
consequences are well studied in both marine and
freshwater systems. Comparatively, our understanding
of SVMs is more limited, and studies of the interac-
tions between the two timescales and forms of migra-
tions are largely lacking.

(3) While SVM research should be encouraged, a generic
emphasis is needed to improve current zooplankton
sampling, observation, tracking and simulation tech-
niques towards producing vertical distribution data
with better spatial, temporal and biological resolution
and coverage, including more and better individual-
level observations and measurements.

(4) Key focal points for future research include DVM–
SVM interactions, climate change implications on ver-
tical migrations and integrative approaches combining
rapid developments within many fields from genetics
to ecosystem science. Collaborative research across
multiple disciplines is likely to lead to new and impor-
tant findings about zooplankton migrations: the great-
est synchronised animal movement of our planet.

VII. ACKNOWLEDGEMENTS

This work was funded by VISTA, a basic research program
in collaboration between The Norwegian Academy of Sci-
ence and Letters, and Statoil™ and by the project GLIDER,
unmanned ocean vehicles, a flexible and cost-efficient off-
shore monitoring and data-management approach project
(No. 269188/E30). L.W. received funding from the German
Academic Exchange Service (DAAD, grant no. 91690872)
during this work. We are grateful to the three reviewers for
critically reading earlier drafts and suggesting substantial
improvements. We also thank the Associate Editor, Dr Alison
Cooper for suggesting necessary changes towards further
improving the text.

VIII. REFERENCES

Aarflot, J. M.,Aksnes, D. L.,Opdal, A. F., Skjoldal, H. R.& Fiksen, Ø. (2019).
Caught in broad daylight: topographic constraints of zooplankton depth
distributions. Limnology and Oceanography 64, 849–859.

Aidley, D. (1981). Questions about migration. In Animal Migration (ed. D. AIDLEY),
pp. 1–9. Press Syndicae of the University of Cambridge, New York.

Ainsworth, C. (2008). FerryBoxes begin to make waves. Science 322, 1627–1629.
Aita, M. N., Yamanaka, Y. & Kishi, M. J. (2003). Effects of ontogenetic vertical

migration of zooplankton on annual primary production–using NEMURO
embedded in a general circulation model. Fisheries Oceanography 12, 284–290.

Alcaraz, M. & Strickler, J. R. (1988). Locomotion in copepods: pattern of
movements and energetics of Cyclops. Hydrobiologia 167, 409–414.

Alldredge, A. & King, J. M. (1980). Effects of moonlight on the vertical migration
patterns of demersal zooplankton. Journal of Experimental Marine Biology and Ecology

44, 133–156.
Alldredge, A., Robison, B., Fleminger, A., Torres, J., King, J. &Hamner, W.

(1984). Direct sampling and in situ observation of a persistent copepod
aggregation in the mesopelagic zone of the Santa Barbara Basin. Marine Biology 80,
75–81.

Allen, M. R. (2007). Measuring andmodeling dispersal of adult zooplankton. Oecologia
153, 135–143.

Alonso, C., Rocco, V., Barriga, J. P., Battini, M. �A. & Zagarese, H. (2004).
Surface avoidance by freshwater zooplankton: field evidence on the role of
ultraviolet radiation. Limnology and Oceanography 49, 225–232.

Andersen, V. & Nival, P. (1991). A model of the diel vertical migration of
zooplankton based on euphausiids. Journal of Marine Research 49, 153–175.

Anderson, D. & Stolzenbach, K. (1985). Selective retention of two dinoflagellates
in a well-mixed estuarine embayment: the importance of diel vertical migration and
surface avoidance. Marine Ecology Progress Series 25, 39–50.

Andrewartha, H. (1952). Diapause in relation to the ecology of insects. Biological
Reviews 27, 50–107.

Antsulevich, A. & Välipakka, P. (2000). Cercopagis pengoi—new important food
object of the Baltic herring in the Gulf of Finland. International Review of Hydrobiology:

A Journal Covering all Aspects of Limnology and Marine Biology 85, 609–619.
Aoki, K., Amano, M., Yoshioka, M., Mori, K., Tokuda, D. & Miyazaki, N.

(2007). Diel diving behavior of sperm whales off Japan. Marine Ecology Progress Series

349, 277–287.
Appel, D. S., Gerrish, G. A., Fisher, E. J. & Fritts, M. W. (2020). Zooplankton
sampling in large riverine systems: a gear comparison. River Research and Applications
36, 102–114.

Armstrong, A. O., Armstrong, A. J., Jaine, F. R., Couturier, L. I., Fiora, K.,
Uribe-Palomino, J., Weeks, S. J., Townsend, K. A., Bennett, M. B. &
Richardson, A. J. (2016). Prey density threshold and tidal influence on reef
manta ray foraging at an aggregation site on the great barrier reef. PLoS One 11,
e0153393.

Arnkværn, G., Daase, M. & Eiane, K. (2005). Dynamics of coexisting Calanus

finmarchicus, Calanus glacialis and Calanus hyperboreus populations in a high-Arctic
fjord. Polar Biology 28, 528–538.

Aruda, A. M., Baumgartner, M. F., Reitzel, A. M. & Tarrant, A. M. (2011).
Heat shock protein expression during stress and diapause in the marine copepod
Calanus finmarchicus. Journal of Insect Physiology 57, 665–675.

Astthorsson, O. S. & Gislason, A. (2003). Seasonal variations in abundance,
development and vertical distribution of Calanus finmarchicus, C. hyperboreus and
C. glacialis in the East Icelandic Current. Journal of Plankton Research 25, 843–854.

Atkinson, A. (1998). Life cycle strategies of epipelagic copepods in the Southern
Ocean. Journal of Marine Systems 15, 289–311.

Auel, H., Klages, M. & Werner, I. (2003). Respiration and lipid content of the
Arctic copepod Calanus hyperboreus overwintering 1 m above the seafloor at 2,300 m
water depth in the Fram Strait. Marine Biology 143, 275–282.

Auel, H. & Verheye, H. M. (2007). Hypoxia tolerance in the copepod Calanoides

carinatus and the effect of an intermediate oxygen minimum layer on copepod
vertical distribution in the northern Benguela current upwelling system and
the Angola–Benguela front. Journal of Experimental Marine Biology and Ecology 352,
234–243.

Backus, R. H. & Barnes, H. (1957). Television-echo sounder observations of
midwater sound scatteres. Deep Sea Research 4, 116–119.

Bagøien, E., Kaartvedt, S., Aksnes, D. L. & Eiane, K. (2001). Vertical
distribution and mortality of overwintering Calanus. Limnology and Oceanography 46,
1494–1510.
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