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INTRODUCTION

Pronounced seasonal oscillations in abiotic (e.g.
solar radiation, temperature, sea ice) and biotic (e.g.
food availability, predation pressure) environments
offer challenges to zooplankton in high latitudes. In
particular, seasonality in food availability is believed
to be a significant challenge (Clarke & Peck 1991,
Conover & Huntley 1991, Hagen 1999, Varpe 2012).
Arctic zooplankton possess adaptations to counter a
seasonally variable food supply, such as energy stor-

age (Lee et al. 2006, Varpe et al. 2009), diapause
(Carlisle 1961, Hirche 1996), and seasonal vertical
migrations (Conover 1988). Zooplankton seasonal
vertical migrations are understood as an adaptive be -
havior that optimizes their position in the water col-
umn in response to seasonal variability in the envi-
ronment (Werner & Gilliam 1984). We refer to this
behavior as their ‘seasonal vertical strategy’. Sea-
sonal vertical strategies of some high-latitude herbi -
vorous zooplankton are well-documented (e.g. Con -
over 1988, Falk-Petersen et al. 2009), and their adap-
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ABSTRACT: We studied the larger (>1000 µm) size fraction of zooplankton in an Arctic coastal
water community in Billefjorden, Svalbard (78°40’ N), Norway, in order to describe seasonal ver-
tical distributions of the dominant taxa in relation to environmental variability. Calanus spp.
numerically dominated the herbivores; Aglantha digitale, Mertensia ovum, Beroë cucumis, and
Parasagitta elegans were the dominant carnivores. Omnivores and detritivores were numerically
less important. Descent to deeper regions of the water column (>100 m) between August and
October, and ascent to the shallower region (<100 m) between November and May was the overall
seasonal pattern in this zooplankton community. In contrast to other groups, P. elegans did not
exhibit pronounced vertical migrations. Seasonal vertical distributions of most species showed
statistical associations with the availability of their main food source. The vertical distribution of
later developmental stages of Calanus spp. was inversely associated with fluorescence, indicating
that they descended from the shallower region while it was still relatively productive, and
ascended before the primary production had started to increase. Strong associations between the
vertical distributions of secondary consumer M. ovum and Calanus spp., and tertiary consumer
B. cucumis and M. ovum indicated that these carnivores seasonally followed their prey through
the water column. We conclude that seasonal vertical migrations are a widespread trait in the high
Arctic community studied, and predator−prey interactions seem particularly central in shaping
the associations between the seasonal vertical strategies of adjacent trophic levels.
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tive value has also been analyzed in modeling stud-
ies (e.g. Fiksen 2000, Varpe et al. 2007).

The underlying regulation of zooplankton seasonal
vertical strategies has been a subject of interest since
early 1900s (Russell 1927, Banse 1964). Seasonal
variability in hydrography (Hirche 1991), photo -
period (Sømme 1934, Miller et al. 1991), and visual
predation (Kaartvedt 1996, Dale et al. 1999, Kaart -
vedt 2000) are some external environmental cues
that are thought to regulate seasonal vertical strate-
gies. Internal (endogenous) regulation through sea-
sonal changes in gonad development (Østvedt 1955),
lipids and buoyancy (Visser & Jónasdóttir 1999), and
long-term endogenous timers (Miller et al. 1991,
Hirche 1996) have also been suggested.

Many components of zooplankton life strategies are
viewed as adaptations to seasonal variations in food
supply (Ji et al. 2010, Varpe 2012), but the influence
of food availability on seasonal vertical strategies re-
mains poorly understood, particularly for carni vorous
species. As the seasonal food supply is more pro-
nounced for Arctic herbivorous zooplankton (Conover
& Huntley 1991, Hagen 1999), whose energetic de-
mands mainly depend on a short period of annual pri-
mary production (Falk-Petersen et al. 2009), it can be
argued that their seasonal vertical strategies are
tightly coupled with food availability. Although verti-
cal distributions of Calanus spp. appear to be associ-
ated with food availability (chlorophyll a distrib -
utions) in spring (Herman 1983, Søreide et al. 2008,
Basedow et al. 2010), it is less well-studied for the rest
of the year. Compared to herbi vores, Arctic carnivo-
rous and omnivorous zooplankton rely to a greater
extent on a year-round food supply (Hagen 1999).
Therefore, it has been suggested that their seasonal
adaptations are less pronounced compared to herbi-
vores (Ji et al. 2010, Varpe 2012). As vertical distribu-
tions vary seasonally in a number of carnivorous hy-
dromedusae (e.g. Pertsova et al. 2006), ctenophores
(e.g. Siferd & Conover 1992), chaetognaths (e.g.
Grigor et al. 2014), euphausiids (e.g. Lass et al. 2001),
and copepods (e.g. Vestheim et al. 2005), it appears
that seasonal vertical strategies of Arctic carnivo -
rous zooplankton are more diverse than previously
thought. Since many carnivores rely on herbivores as
their main food source, the potential influence of the
vertical strategies of herbivorous zooplankton on
their predators may be ecologically significant. This is
portrayed in the findings of Nelson et al. (1997) and
Sims et al. (2005), where a close resemblance be -
tween the vertical behavior of planktivorous sharks
and the diel vertical migration (DVM) of herbivorous
zooplankton were reported. Whether such relation-

ships exist on seasonal timescales is not known, and
open for investigation.

Investigating the seasonality of zooplankton strate-
gies and interactions requires studying pelagic com-
munities over the course of an annual cycle. Apart
from a few studies (e.g. Hop et al. 2006), year-round
zooplankton community investigations are rare in the
Arctic. Here, we investigated seasonal vertical distri-
butions of the dominant herbivore and carnivore zoo-
plankton in a high-latitude coastal zooplankton com-
munity during a 10-month period in 2008 and 2009.
We studied the extent to which the seasonal vertical
distributions of the above zooplankton could be ex -
plained by the seasonal dynamics of their primary
food source, or physical environmental variables
such as temperature, salinity, and irradiance.

MATERIALS AND METHODS

Study site

Environmental variables and zooplankton samples
were collected monthly between August 2008 and
May 2009 at a 189 m deep station (78° 39.72’ N,
16°44.34’ E) within the inner basin of Billefjorden,
located at the west coast of Spitsbergen, the largest
island in the Svalbard archipelago (Fig. 1). The inner
basin of Billefjorden remains ice-covered from ca.

50

Fig. 1. Study area; sampling site is indicated by the red dot. x
and y indicate coarse locations of the inner and outer sills of
Billefjorden respectively. Positions of the west Spitsbergen
current (WSC) and the coastal current (CC) were adopted
from Svendsen et al. (2002). s: Spitsbergen, n: Nordaust-

landet, e: Edgeøya
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December to June (Arnkværn et al. 2005). Two 50 to
70 m deep sills located near the mouth of the fjord
(Fig. 1) act as a topographical barrier that hinders the
advection of the Atlantic water masses into Billefjor-
den (Cottier et al. 2005, Nilsen et al. 2008). Because
of this, Arnkværn et al. (2005) argued that zooplank-
ton population dynamics in Billefjorden are influ-
enced more by internal processes than by ad vection.

Environmental variables

Temperature and salinity were profiled in situ
using either a CTD/STD model DS 204 (SAIV) or a
Seabird™ CTD (Sea-Bird Electronics). Since no
CTDs were deployed on 27 August and 07 Septem-
ber 2008, and 23 March 2009 (Table 1), we ob -
tained temperature and salinity data for these dates
from a moored instrument series (www.sams. ac. uk/
oceans-2025/arctic-mooring) deployed <0.5 nautical
miles away (78° 39.76’ N, 16° 11.24’ E) from the sam-
pling site (see Supplement 1 at  . int-res. com/
articles/suppl/m555 p049_ supp. pdf). We measured
photosynthetically active radiation (PAR) from a
QSP 2300 log quantum scalar irradiance sensor
(Biospherical Instruments), and fluorescence from a
Seapoint™ chlorophyll fluoro meter (Seapoint Sen-
sors) affixed to the above mooring at 29 m. Fluores-
cence could not be accurately estimated due to the
lack of fluorometer calibration coefficients for most

of the year. Therefore, raw voltage outputs of the
fluoro meter were presented as normalized values
between 0 and 1 after removing some extreme
readings (sensor noise). This provided an approxi-
mate variation of the fluorescence during the study,
because according to the calibration equation (Sea-
point Sensors; data not shown), fluorescence is esti-
mated as a linear function of the voltage outputs.

Raw voltage outputs (Oi) of the irradiance sensor
were converted to PAR by applying a wet calibration
factor (C = 5.05 × 1012), and a dark voltage of 0.0130 V
(Biospherical Instruments) as:

PAR = C (10Oi – 100.0130) (1)

Temperature and salinity measurements were
visualized using the Spatial Analyst™ extension of
ArcGIS™ version 9.3 (ESRI). Here, the data were
interpolated temporally over the depth range using
the natural neighbor method (Sibson 1981). Fluores-
cence and PAR data are presented as daily means.
Sea ice charts developed by the Ice Information Por-
tal of the Norwegian Metrological Institute (http://
polarview.met.no/) were used to describe the sea ice
extent in Billefjorden during the study period.

Zooplankton

Zooplankton were sampled by vertical hauls using
a WP-3 net (area of the opening: 1 m2; mesh size:
1 mm) fitted with a Nansen-type messenger-operated
closing device. Samples were taken from the vessel,
or with a tetrapod-mounted cable towed by a snow-
mobile at ca. 1 m s−1 when sampling from sea ice.
Three depth strata were sampled (0–50, 50–100, and
100–180 m), excluding the bottommost 10 m. Larger
(>10 mm) gelatinous zooplankton that could dissolve
upon formaldehyde preservation were identified,
and their body lengths were measured immediately
after collection. The rest of the samples were pre-
served in a borax-buffered 4% formaldehyde-in-sea-
water solution.

In the laboratory, the larger specimens were
counted from the entire samples. The smaller and
more numerous individuals (predominantly cope-
pods) were counted in subsamples obtained using a
box splitter (Motoda 1985) until a minimum of 100
individuals were counted per sample. On average,
~24% (range: 0.15 to 100%) of the total sample vol-
ume was used. Zooplankton were identified to the
lowest possible taxonomic level, and classified into
trophic groups according to the literature (see
Table 2).
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Date No. of Time of CTD 
(dd/mm/yyyy) Samples collection casts

27/08/2008 1 N −
07/09/2008 2 D + N −
23/09/2008 2 D + N x
17/10/2008 3 D + N x
04/11/2008 2 D + N x
03/12/2008 2 D + N x
14/01/2009 1 D + N x
26/02/2009 3 D + N x
23/03/2009 1 N −
30/03/2009 1 D x
20/04/2009 1 D x
27/04/2009 1 D x
04/05/2009 1 D x

Table 1. Zooplankton samples and CTD casts collected
 during the study. A sample is a depth-stratified 0–180 m
net haul. Day samples (D) were collected between 11:00
and 17:00 h; night samples (N), between 23:00 and 04:00 h
local time (UTC + 1). Note that the lack of CTD data in
 August, September, and March (dashes in the rightmost
 column) were compensated by the data of the mooring
(see Supplement 1 at www. int-res. com/ articles/ suppl/ m555 

p049 _ supp. pdf)

http://www.int-res.com/articles/suppl/m555p049_supp.pdf
http://www.int-res.com/articles/suppl/m555p049_supp.pdf
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Prosome lengths (PL) of copepods were measured
to the nearest 0.1 mm using a stereomicroscope
(Leica Microsystems). We measured bell heights
(BH) of hydromedusae and total lengths (TL) of
other zooplankton. The copepodite stage 4 (CIV)
and older developmental stages of Calanus hyper-
boreus (which were the only stages captured in this
species) were identified by the presence of an acute
spine on their fifth thoracic segment (e.g. Parent et
al. 2011). The rest of the Calanus spp. were identi-
fied by a length frequency analysis following
Arnkværn et al. (2005) using the R (R Core Team
2013) package ‘mixdist’ v.0.5-4 (Macdonald & Du
2012). We used the PLs of 3908 CVs, 1409 adult
females, and 387 adult males of Calanus spp. pooled
over the study period for the analysis. PL boundaries
derived by the length frequency analysis were eval-
uated against those published in relevant literature
to distinguish species. We also used this method on
monthly pooled length measurements (BH or TL) of
other taxa to identify any size groups.

Zooplankton abundances (ind. m−3) were estimated
assuming 100% filtration efficiency of the WP-3 net.
Monthly mean abundances were used in data pres-
entation and analyses. This was estimated by averag-
ing the total abundance of a given taxon in a given
month over the number of samples (i.e. net hauls)
collected in that month (Table 1).

Seasonal vertical distributions of the dominant zoo-
plankton species (i.e. those that contributed >0.1% of
the total numerical abundance [corresponding to
5 ind. m−3], and were captured more or less through-
out the investigation) were presented as monthly
mean abundances in each depth stratum. Since the
relative abundance of dominant taxa in each depth
stratum in day and night replicate samples (Table 1)
varied <9%, the mean abundances of the replicates
were used in the presentation and analyses of sea-
sonal vertical distributions.

Seasonal vertical strategies

In order to describe zooplankton seasonal vertical
distributions as seasonal vertical strategies, we
described the water column in 2 regions: a shal-
lower region (0 to 100 m), and a deeper region (100
to 180 m). We considered the maximum sill depth of
the fjord (~70 m), maximum thermohaline stratifica-
tion depth (~80 m) recorded in the study, and the
vertical resolution of our sampling design (minimum
50 m) in making the above discrimination. We esti-
mated a vertical distribution index (V) for each spe-

cies by taking the difference between the popula-
tion proportions of the 2 vertical regions in each
month as:

(2)

where N0−100 and N100−180 represent the monthly
mean abundance of the shallow and deeper regions
of the water columns, respectively. V ranges between
−1 and 1, in which the upper limit represents the
entire population distributed in the shallower region
of the water column, and the lower limit represents
the opposite scenario. Here we assumed the in -
fluences of zooplankton advection in and out of this
community to be negligible (see Supplement 2 at
www. int-res. com/ articles/suppl/m555 p049_ supp. pdf),
and therefore, the dynamics of V over the time series
is primarily due to the vertical migration of zooplank-
ton across the 2 vertical regions.

We used correlation analyses to describe the
association between the monthly vertical distribu-
tion indices of the dominant taxa and physical (i.e.
mean temperature, salinity, and PAR) and biologi-
cal (availability of the main food source) environ-
mental variables, assuming a linear association
between the above. We tested the above variables
for normality (Shapiro-Wilk test; Shapiro & Wilk
1965), and homo scedasticity (2-sample Levene’s
test; Levene 1960), and found that most variables
violated the assumptions of parametric correlation
tests. Therefore, we used the nonparametric
Kendall’s rank correlation test with adjustment to
tied ranks (coefficient = τb) (Kendall 1938, 1945) in
the analyses.

RESULTS

Environmental variables

The inner basin of Billefjorden was covered with
land-fast sea ice from late December 2008 until the
end of the investigation in May 2009 (Fig. 2a). Maxi-
mum PAR and fluorescence values were recorded
between August and September, and decreased to
0.2 µmol m−2 s−1 and 0.10 units respectively after
November (Fig. 2a,b). Pronounced thermo-haline
stratifications observed in the early part of the study
broke down between November and January, and
resulted in a well-mixed, cold (<−1.0°C), and rela-
tively high saline (>34 PSU) water column (Fig. 2c,d).
This lack of stratification persisted until the end of
sampling.
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Zooplankton community composition 
and trophic relationships

A total of 8 herbivores, 8 omnivores, 4 detritivores,
and 17 carnivores comprised the 37 zooplankton
taxa captured in this study (Table 2). The PL bound-
aries derived from the length–frequency analysis
of Cala nus spp. (Table 3) were in accordance with
those published for C. finmarchicus and C. glacialis
(see Supplement 3 at www.int-res.com/ articles/
suppl/ m555 p049_supp.pdf). Numerically, C. glacialis
dominated the herbivore community (relative abun-
dance ~77.6%; Table 2) alongside C. finmarchicus
(~17%) and C. hyperboreus (~2%). Carnivores ac -
counted for ~2.5% of the total numerical abundance
(Table 2), and were dominated by the chaetognath
Parasagitta elegans (~1.2%), the cteno phores Mer -
tensia ovum (~0.5%) and Beroë cucumis (~0.4%),
and the hydro medusa Aglantha digitale (~0.2%).
Omnivorous and detritivorous zooplankton only
contributed to ~1% of the total numerical abun-
dance (Table 2).
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Fig. 2. Seasonal variability in (a) photosynthetically active
radiation (PAR), (b) fluorescence (normalized between 0 and
1 unit), (c) temperature, and (d) salinity during the study.
The blue bar in (a) indicates the period of land-fast sea ice
cover. The ordinates of (c) and (d) are cropped at 120 and
60 m respectively due to the prevailing homogeneity of
those parameters. Note that the abscissa extends from 27 

August 2008 to 04 May 2009

Taxon                                     Feeding mode                     Relative 
                                                                                         abundance 
                                                                                                (%)

Bougainvillia spp.                 Carnivore02, 42                           0.02
Halitholus spp.                      Carnivore18                               0.01
Sarsia spp.                             Carnivore42                            <0.01
Aglantha digitale                  Carnivore05, 27, 42                       0.21
Mertensia ovum                    Carnivore35, 39                           0.45
Beroë cucumis                       Carnivore22, 31                           0.36
Clione limacina                     Carnivore04, 23                           0.02
Limacina helicina                  Omnivore17, 21                           0.03
L. retroversa                          Herbivore40, omnivore17       <0.01
Gastropoda indet.                 −                                                0.01
Parasagitta elegans               Carnivore16, 24                           1.18
Eukrohnia hamata                Carnivore07, 20                           0.08
Anonyx nugax                       Scavenger14, 19                       <0.01
Themisto abyssorum            Carnivore16                            <0.01
T. libellula                              Carnivore32                            <0.01
Amphipoda indet.                 −                                              <0.01
Munnopsis spp.                     Herbivore/detritivore28         <0.01
Isopoda indet.                        −                                              <0.01
Mysidae indet.                      −                                                0.03
Meganyctiphanes norvegica  Carnivore03, 10                        <0.01
Thysanoessa inermis            Herbivore03, 19                           0.11
T. longicaudata                     Omnivore11, 36                        <0.01
T. raschii                                Omnivore09, 10                        <0.01
Eualus gaimardii                   Carnivores29, 37                       <0.01
Pandalus borealis                  Omnivore15                            <0.01
Necora puber                        Carnivore26, 41                        <0.01
Hyas spp.                               Carnivore/scavenger43          <0.01
Calanus sp.                            −                                                0.11
Calanus finmarchicus           Herbivore25, 38                         16.92
C. glacialis                             Herbivore25, 38                         77.56
C. hyperboreus                     Herbivore25, 38                           2.02
Microcalanus spp.                 Herbivore/detritivore13         <0.01
Pseudocalanus spp.              Herbivore34                            <0.01
Paraeuchaeta norvegica       Carnivore30, 33                        <0.01
Metridia longa                      Omnivore01                               0.86
Oikopleura spp.                    Particle feeder/omnivore06   <0.01
Leptoclinus spp. (larvae)      Carnivore12                            <0.01

References (in chronological order): 01Haq (1967); 02Fraser
(1969); 03Ackman et al. (1970); 04Conover & Lalli (1972); 05Smed-
stad (1972); 06Alldredge (1976); 07Sullivan (1980); 08Falk-
Petersen et al. (1981); 09Sargent & Falk-Petersen (1981); 10Falk-
Petersen et al. (1982); 11: Williams & Lindley (1982); 12Esch meyer
et al. (1983); 13Hopkins (1985); 14Sainte-Marie & Lamarche
(1985); 15Shumway et al. (1985); 16Falk-Petersen et al. (1987);
17Lalli & Gilmer (1989); 18Larson & Harbison (1989); 19Sainte-
Marie et al. (1989); 20Øresland (1990); 21Gilmer & Harbison
(1991); 22Purcell (1991); 23Hermans & Satterlie (1992); 24Alvarez-
Cadena (1993); 25Graeve et al. (1994); 26Freire & Gonzalez-Gur-
riaran (1995); 27Pagès et al. (1996); 28Brusca (1997); 29Graeve et
al. (1997); 30Olsen et al. (2000); 31Falk-Petersen et al. (2002);
32Auel & Werner (2003); 33Skarra & Kaartvedt (2003); 34Lischka
& Hagen (2005); 35Lundberg et al. (2006); 36Blachowiak-Samolyk
et al. (2007); 37Nygård et al. (2007); 38Falk-Petersen et al. (2009);
39Graeve et al. (2008); 40Bernard & Froneman (2009); 41Silva et
al. (2010); 42Prudkovsky (2013); 43Boxshall et al. (2015)

Table 2. Zooplankton taxa captured in this study, their relative abun-
dances, and feeding modes (references given as numbers in super-

script). Indet.: indeterminate

http://www.int-res.com/articles/suppl/m555p049_supp.pdf
http://www.int-res.com/articles/suppl/m555p049_supp.pdf
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Based on the literature, we considered fluores-
cence as an indicator of the primary food source for
herbivorous zooplankton, and identified Calanus
spp. as the main prey of the secondary consumers A.
digitale, M. ovum, and P. elegans, and M. ovum as
that of the tertiary consumer B. cucumis (see refer-
ences in Table 2).

Seasonal variability in abundance of the dominant
zooplankton

Herbivores

The highest mean abundances of C. finmarchicus
(~100 ind. m−3), C. glacialis (~430 ind. m−3), and C.
hyperboreus (~13 ind. m−3) were recorded between

August and November (Fig. 3a−c). During
this pe riod, CV was the dominant develop-
mental stage of C. finmarchicus and C.
glacialis (>95%: Fig. 3d,e). After November,
relative abundance of CV de creased, and
adult male and female copepodites in -
creased. In C. hyperboreus, CIV was the
dominant developmental stage throughout
the study (Fig. 3f).

Carnivores

The mean abundances of A. digitale and M. ovum
peaked at ~4 ind. m−3 in October (Fig. 4a,b). B. cucu -
mis was captured in relatively large numbers (mean
abundance: ~2.5 ind. m−3) in October and May
(Fig. 4c). We could not identify any size groups of the
3 above species from length–frequency analyses.
However, their abundance peaks were dominated by
relatively small individuals (mean ± SD body length:
6.6 ± 1.5 mm for A. digitale, 6.7 ± 5.3 mm for M. ovum,
and 2.9 ± 1.6 mm for B. cucumis; Fig. 4 e−g). The
mean body lengths of A. digitale and M. ovum in-
creased throughout the study period, while that of B.
cucumis decreased after reaching a maximum (9.31 ±
6.4 mm) in November. P. elegans was captured in
higher numbers in September (~5.5 ind. m−3), De -
cember (~4.5 ind. m−3), and between April and May

54

Developmental Prosome length (% composition) χ2 (df)
stage C. finmarchicus C. glacialis

CV 2.45−2.98 (38.96) ≥2.98 (59.74) 187.97** (11)
Adult females 2.38−2.92 (16.64) ≥2.92 (83.24) 54.47** (13)
Adult males ≤3.04 (7.20) >3.04 (92.08) 19.55* (10)

Table 3. Prosome length boundaries (mm) used to separate the 2
Calanus taxa, with their % composition within each developmental
stage in parentheses. The rightmost column presents chi-squared
 statistic of the fitted model with the degrees of freedom in parentheses.

*p < 0.05;**p < 0.01;***p < 0.001

Fig. 3. Seasonal variability in (a−c) mean abundance and (d−f) relative developmental stage composition of dominant
herbivores during the study. AM: adult males; AF: adult females; CV and CIV: copepodite stage 5 and 4, respectively
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(~1.5 ind. m−3) (Fig. 4d). We derived 3 size groups for
P. elegans from the length–frequency analysis (G0,
G1, and G2: see Supplement 4 at www. int-res. com/
articles/suppl/m555 p049_ supp. pdf). The first abun-
dance peak was composed of more or less equal pro-
portions of the 2 relatively large size groups (G1: mean
± SD TL: 23.4 ± 1.8 mm; G2: 34.2 ± 1.4 mm), with G1

dominating ~80% of the second abundance peak
(Fig. 4h). The relative abundance of G2 increased
from January to >80% in April and May, while the
smallest size group (G0: 14.7 ± 1.2 mm) remained less
prominent (<10%) throughout the investigation.

Seasonal variability in vertical distribution 
of the dominant zooplankton

Herbivores

Between August and November, the mean abun-
dance of C. finmarchicus (CV) and C. glacialis (CV
and adult females) in the lower 80 m of the water col-
umn gradually increased (Fig. 5a,b). Conversely, the
mean abundance of these 2 species in the upper
100 m decreased from August, and reached a mini-

mum in October, during which their vertical distribu-
tion indices were at the lowest (V ~ −0.9; Fig. 6a,b).
From November onwards, C. finmarchicus and C.
glacialis CVs had relocated to the upper 100 m along
with adult copepodites. By February, the vertical dis-
tribution indices of these 2 species reached the max-
imum (V ~ 0.6 for C. finmarchicus and V ~ 0.8 for C.
glacialis). Thereafter, the mean abundance of CV
and adult copepodites of the above species in the
upper 100 m decreased, and by the end of the inves-
tigation in May, their vertical distribution indices
remained around zero. The mean abundance of
CIV C. hyperboreus in the lower 80 m progressively
decreased from August, and was only distributed in
the upper 100 m between November and January
(Figs. 5c & 6c). From February onwards, a few C.
hyperboreus CIV, CV and adult female copepodites
(mean abundance <1 ind. m−3 mo−1) were relocated
in the lower 80 m.

Carnivores

The mean abundance of A. digitale, M. ovum,
and B. cucumis in the upper 100 m gradually
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Fig. 4. Seasonal variability in (a−d) mean abundance and (e−h) mean body length of dominant carnivores during the study.
Body lengths are presented as bell height for A. digitale and total length (TL) for other species. The TL dynamics of P. elegans
in (h) is presented as variation in relative abundance of the 3 size groups. Dashed lines in (e−g) denote standard deviation of 
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Fig. 5. Seasonal vertical distributions of dominant herbivores during the study. Ordinates represent depth (0−50, 50−100, 
and 100−180 m). AM: adult males, AF: adult females; CV and CIV: copepodite stage 5 and 4, respectively

Fig. 6. Seasonal variability
in the vertical distribution
indices (V) of the do -
minant zooplankton taxa
during the study. V ranges
from −1 to 1, in which the
former represents the en-
tire population distributed
in the deeper region, and
the latter represents the
opposite scenario. A. digi-
tale was not captured to
compute its V in May. 
See Supplement 5 for

more information

Corrected after publication
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decreased from August (Fig. 7a−c), and their
 vertical distribution indices gradually decreased
to ~−0.9 in October (Fig. 6d−f). From November
onwards, the mean abundance of M. ovum and
B. cucumis in the upper 100 m, and their vertical
distribution indices gradually increased, and the
latter remained ~1 from February until the end
of sampling in May (Fig. 6e, f). Although A.
 digitale had relocated to the upper 100 m be -
tween November and January, it was captured
in the lower 80 m after February (Fig. 7a).
Throughout this study, P. elegans was captured
in all 3 depth strata (Fig. 7d). The vertical dis -
tribution index of the G2 size group of P. ele-
gans remained <−0.5 for most of the time series
(Fig. 6i), indicating that >75% of its population
was distributed in the lower 80 m throughout
the study. Conversely, the G0 and G1 size groups
were distributed across the entire depth range
(Fig. 6g,h).

Seasonal vertical distributions and environmental
variables

The vertical distribution index (V) of Calanus spp.
(all species and developmental stages combined; see
Table S5 in Supplement 5 at www.int-res.com/
articles/suppl/ m555 p049_supp.pdf) showed a strong
negative association with mean fluorescence (τb =
−0.72, p < 0.01, n = 10), and a weak negative associa-
tion with mean temp erature (τb = −0.49, p = 0.05, n =
10) (Table 4, Fig. 8a). While the vertical distribution
index of M. ovum showed a moderate positive associ-
ation with that of Calanus spp. (τb = 0.51, p = 0.04, n =
10), we found a strong positive association between
the vertical distribution indices of B. cucumis and M.
ovum (τb = 0.71, p < 0.01, n = 10) (Table 4, Fig. 8b,c).
The vertical distribution index of A. digitale showed
a moderate negative association with mean tempera-
ture (τb = −0.57, p = 0.04, n = 9). Vertical distribution
indices of P. elegans were not significantly associ-

57

Fig. 7. Seasonal vertical distributions of dominant carnivores during the study. Ordinates represent depth (0−50, 50−100, 
and 100−180 m). Note that Aglantha digitale was not captured in May 2009
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ated with any physical or biological environmental
parameters that were used in our analyses (Table 4).

DISCUSSION

Seasonal patterns in vertical distributions and their
relation to environmental variability

A gradual decrease in the vertical distribution
index from August to October, and an increase from
November to May were common to most of the inves-
tigated herbivorous (Calanus spp.) and carnivorous
(Aglantha digitale, Mertensia ovum and Beroë cucu -
mis) zooplankton taxa (Fig. 6a−f). Descent to the
deeper region (>100 m) of the water column in early
autumn, and ascent to the shallower region (<100 m)
from late autumn to early spring was hence the over-
all seasonal pattern in this high Arctic zooplankton
community. During their descent in the autumn,
large numbers of zooplankton appeared to migrate
from the warmer, sunlit, and productive shallow
waters of this fjord (Fig. 2). Zooplankton abundances
sharply declined during the winter (Figs. 3 & 4), and
during the spring, most of the remaining individuals
had ascended to a colder, darker, and unproductive

water mass. As an exception, Parasagitta elegans did
not show seasonal migrations (Fig. 6g−i).

Seasonal vertical distributions of most zooplankton
taxa showed statistical associations with the avail-
ability of their main food source (Table 4, Fig. 8). The
inverse association between the vertical distribution
index of Calanus spp. and mean fluorescence indi-
cates that they descended from the shallower region
while it was relatively productive, and ascended be -
fore the primary production had started to increase
(Figs. 2b & 6a−c). Therefore, it seems that the sea-
sonal vertical strategies of the dominant herbivorous
zooplankton in this study were not regulated by food
(phytoplankton) availability. As vertical distribution
indices of the secondary consumer M. ovum and
Calanus spp., and the tertiary consumer B. cucumis
and M. ovum were positively associated, we argue
that these predatory zooplankton seasonally fol-
lowed their prey (e.g. Fraser & David 1959, Torres et
al. 1994, Hagen 1999). The seasonal vertical strate-
gies of the above carnivores were likely regulated by
seasonality in food availability (i.e. seasonal vertical
strategies of their main prey), and further indicates
that seasonal vertical strategies of zooplankton in
lower trophic levels influence those in higher levels
through trophic interactions. Still, we observed con-
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Species Temperature Salinity PAR Availability of the main food source n
Fluorescence VCalanus spp. VM. ovum

Calanus spp. −0.49* 0.31 −0.30 −0.72** − − 10
Aglantha digitale −0.57* −0.21 0.06 − −0.53 − 9
Mertensia ovum −0.30 0.12 0.14 − 0.51* − 10
Beroë cucumis −0.44 0.21 0.05 − − 0.71** 10
Parasagitta elegans (G0) −0.13 0.09 −0.26 − 0.24 − 10
P. elegans (G1) −0.02 −0.11 0.14 − 0.04 − 10
P. elegans (G2) −0.13 0.27 −0.44 − 0.16 − 10

Table 4. Associations between the vertical distribution indices (V ) of dominant taxa and environmental variables presented as
Kendall’s rank correlation coefficients (τb). See Fig. 8 for additional information. PAR: photosynthetically active radiation; 

G0, G1, G2: size groups based on length–frequency analysis; *p < 0.05; **p < 0.01

Fig. 8. Representation of
statistically significant re-
lationships between the
vertical distribution in-
dices (V) of dominant taxa
and the availability of
their main food source
(cf. Table 4). Trend lines
(dashed) were estimated
by linear regression, and
are solely for visualization 

of patterns in the data
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siderable variability, and a lack of seasonal migra-
tions in P. elegans. Consequently, numerous other
factors, such as the timing and trade-offs between
feeding and other life cycle events (Heath 1999,
Varpe 2012), differences in prey selection (Greene
1986), feeding on alternative food sources (Hirche &
Kwasniewski 1997, Søreide et al. 2006, Casanova et
al. 2012), and predation risk (Kaartvedt 1996, Dale et
al. 1999, Varpe & Fiksen 2010) may also have con-
tributed to the regulation of the observed seasonal
vertical strategies.

Seasonal vertical strategies of the dominant
 zooplankton

Herbivores

The CVs of Calanus finmarchicus, CVs and adult
females of C. glacialis, and CIVs of C. hyperboreus
likely resided in the deeper region until November
(e.g. Conover 1988, Falk-Petersen et al. 2009, our
Fig. 5). The gradually decreasing vertical distribution
indices of C. finmarchicus and C. glacialis until Octo-
ber (Fig. 6a,b), and simultaneous increase in their
mean abundances in the deeper region (Fig. 5a,b)
indicate that a considerable fraction of the CVs of
these 2 species descended and recruited to their
deep water populations in the autumn. Conversely,
the vertical distribution data of C. hyperboreus indi-
cate neither a descent (which may have occurred
prior to the commencement of sampling), nor recruit-
ment to its deep water population (Figs. 5c & 6c). In
order to build up energy reserves, a fraction of the C.
finmarchicus and C. glacialis CVs may have grazed
in the shallower region relatively late into the pro-
ductive season prior to their descent (Fig. 2b). These
CVs may have been the Calanus spp. reported by
Berge et al. (2014) that contributed to the acoustic
backscattering detected near a chlorophyll maxi-
mum in this fjord in late September. Østvedt (1955),
Pedersen et al. (1995) and Hirche (1996) also ob erved
a part of the summer−autumn C. finmarchicus popu-
lation feeding in surface waters, while the rest re -
sided in deep waters.

The gradually increasing vertical distribution in -
dices indicate an ascent of Calanus spp. between
November and February (Fig. 6a−c). By February, a
maximum of ~80% of the Calanus community had
ascended to the shallower region (Fig. 5). Similar to
our findings, Daase et al. (2014) and Blachowiak-
Samolyk et al. (2015) reported shallow vertical distri-
butions (<100 m) of Calanus spp. in January from

~81° N in Rijpfjorden, Svalbard. However, the timing
of the ascent we report here is earlier than the March
to June period reported in most high-latitude investi-
gations (e.g. Heath 1999, Gislason & Astthorsson
2000, Hirche & Kosobokova 2011, Melle et al. 2014).

As the vertical strategy of Calanus spp. was in -
versely related to fluorescence, it is unlikely that food
availability served as a primary cue for their descent
and ascent. However, a definitive conclusion on this
matter cannot be made since vertical fluorescence
profiles were not used in our study. We suggest that
these herbivores, dominated by C. glacialis, ascen -
ded early as a part of a capital breeding strategy or to
feed on ice algae, which were not detected by our
fluorescence measurements (e.g. Varpe et al. 2009,
Søreide et al. 2010). Calanus spp. use ice algae as an
alternative food source to spawn prior to the phyto-
plankton bloom (Runge & Ingram 1991, Hirche &
Kwasniewski 1997, Søreide et al. 2010). A summer−
autumn descent while there is still food available
near the surface, and ascent to shallow waters during
the dark, unproductive winter (Fig. 2a,b) suggest a
migration driven by processes other than the avail-
ability of food. The negative association between the
Calanus vertical distribution index and mean tem-
perature (Table 4) reflects the tendency of the sea-
sonal descent and subsequent induction of diapause
in C. glacialis to occur in relation to the summer−
autumn warming of the surface waters (Niehoff &
Hirche 2005, Pertsova & Kosobokova 2010). The
overwintering depth and timing of the seasonal
migration of Calanus spp. can also be influenced by
planktivorous fish (Kaartvedt 1996, Dale et al. 1999,
Kaartvedt 2000, Varpe & Fiksen 2010). Although we
did not sample fish populations in this investigation,
trawl samples collected in Billefjorden in August
2008 showed that ~60% of the stomach contents of
polar cod Boreogadus saida consisted of Calanus spp.
(Renaud et al. 2012). Therefore, the potential in -
fluence of visual predation on the seasonal vertical
strategies of Calanus spp. in this fjord should not be
ruled out.

Carnivores

Vertical distribution data of A. digitale, M. ovum,
and B. cucumis indicate that these carnivores des -
cended to the deeper region between August and
October (Fig. 6d−f). From November onwards, M.
ovum and B. cucumis gradually ascended and re -
mained in the shallower region from February to the
end of this investigation in May. Unlike the 2 cteno -
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phore species, the ascent of A. digitale is not clearly
evident (Fig. 6d). It should be noted that the vertical
distribution data of this species after November may
not be accurate due to its low numerical abundance
(Fig. 4a). Descent to deeper waters in autumn, and
ascent to shallower waters between spring and sum-
mer has been reported for A. digitale, M. ovum, and
B. cucumis from ~59° N in the Northeast Atlantic
(Williams & Conway 1981), ~62.5° N in Frobisher Bay
(Percy 1989), ~67° N in White Sea (Pertsova et al.
2006), and ~74° N in Resolute Passage (Siferd &
Conover 1992). In addition, shallow spring−summer
vertical distributions of M. ovum and B. cucumis
have been reported from ~55.5° N in the Bornholm
basin of the Baltic Sea (Lehtiniemi et al. 2013),
between 68 and 80° N in the Barents Sea and Fram
Strait, (Swanberg & Båmstedt 1991a), and between
72 and 75° N in the western Arctic Ocean (Purcell et
al. 2010).

Based on the positive association between the ver-
tical distribution indices (Table 4, Fig. 8b), we argue
that M. ovum seasonally followed Calanus spp. M.
ovum is a secondary consumer that feeds on Calanus
spp., and specifically on their older developmental
stages (Greene 1986, Purcell 1991, Swanberg & Båm-
stedt 1991b). In the winter, M. ovum feeds on over-
wintering Calanus populations (Larson & Harbison
1989, Siferd & Conover 1992) and accumulates lipids
(Percy 1989, Lundberg et al. 2006). Therefore, the
older developmental stages (CIV, CV, and adult
copepodites) of Calanus spp. sampled in this study
may have served as a main prey source for M. ovum,
and this predator−prey relationship is reflected by
their similar vertical strategies. However, it should be
noted that younger developmental stages of Calanus
spp. which occupy shallower waters between March
and May in this fjord (e.g. Arnkværn et al. 2005, Bai-
ley 2010) may also have been a potential source of
prey for M. ovum. Although A. digitale is a secondary
consumer that primarily feed on copepods (see refer-
ences in Table 2), its vertical distribution was not sig-
nificantly associated with that of Calanus spp.
(Table 4). Despite the similarities in the vertical
strategies of A. digitale and M. ovum until October
(Fig. 6d,e), the low numerical abundances of the for-
mer may have inaccurately represented its vertical
distribution thereafter, and probably affected the
results of the correlation analyses.

The positively associated vertical distribution in -
dices suggest that the predatory ctenophore B. cucu -
mis seasonally followed M. ovum (Table 4, Fig. 8c). B.
cucumis is a tertiary consumer that specifically feeds
on M. ovum (see references in Table 2). Therefore, it

is likely that the strong predator−prey relationship
between these 2 ctenophores were reflected in their
markedly similar vertical strategies (Fig. 6e,f). Simi-
lar spatial associations between these 2 species have
been reported from ~74° N in Resolute Passage
(Siferd & Conover 1992), and between 75 and 79° N
in the Barents Sea (Swanberg & Båmstedt 1991a,
Søreide et al. 2003). Although the mean TL of M.
ovum became substantially larger than that of B.
cucumis after November (Fig. 4f,g), it may not have
affected their predator−prey relationship as Beroë
can feed on prey larger than itself (Tamm & Tamm
1991), or on body parts of the prey (Swanberg 1974).

The accuracy of interpreting statistical associations
between predator and prey zooplankton, as their
trophic relationships can be hampered by the coarse
vertical resolution of our samples (e.g. Pearre 1979).
It is possible for predator and prey zooplankton to
coexist in a depth stratum of 50 m (the vertical sam-
pling resolution of this study) without encountering
each other. As this bias tends to be pronounced in
periods with low predator and/or prey abundances
(e.g. Greene 1986), we did not interpret the vertical
strategies of A. digitale (after November), or the G0

size group of P. elegans in detail (Fig. 4a,d,h). There-
fore, further analyses (e.g. gut content analyses
and dietary lipid analyses) would be required in
order to verify whe ther the associations between
the vertical strategies of predators and prey zoo-
plankton observed in this study truly reflect their
trophic interactions.

The 3 size groups of P. elegans did not show pro-
nounced seasonal migrations (Fig. 6g−i) irrespective
of the seasonal oscillations of the environmental
parameters observed in this study (Table 4). How-
ever, the largest size group (G2) occupied the deeper
region for most of the study, while the smaller G0 and
G1 size groups were distributed throughout the water
column. Deep water residence of larger individuals
of P. elegans has been documented from 50° N at
‘Ocean Station P’ (Sullivan 1980, Terazaki & Miller
1986), ~75° N in Baffin Bay (Samemoto 1987), and
~78° N from our study location in Billefjorden (Grigor
et al. 2014). The vertical strategy of the smallest size
group (G0) may not be accurate because our samples
did not capture sufficient numbers of those sizes
Grigor et al. (2014) reported from this fjord (sampled
by nets with finer mesh size and documented as
cohort−0 of their study: cf. length data in Table S4 in
Supplement 4).

As larger chaetognaths prefer larger prey, such as
the older development stages of Calanus (Greene
1986, Falkenhaug 1991, Saito & Kiørboe 2001), it is
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likely that the G2 size group of P. elegans fed on
Calanus copepodites occupying the deeper regions
of the water column. Despite the ascent of Calanus
spp. between November and February, a fraction of
the C. finmarchicus and C. glacialis population was
observed in the deeper region throughout this study
(Fig. 5a,b), and may have served as a year-round
prey source for the largest P. elegans size group. In
support of this view, gut content and lipid analyses of
P. elegans collected from Billefjorden and other ad -
jacent fjords by Grigor et al. (2015) suggests that P.
elegans primarily feed on Calanus spp. It remains
unclear why the relatively small size fraction of P.
elegans population remained in the shallower region
throughout this investigation (Fig. 7d). One possibil-
ity is that they may have preyed on smaller develop-
mental stages of Calanus spp. and smaller copepod
species, such as Oithona similis, Microcalanus spp.,
Pseudocalanus spp., and Metridia longa (Falkenhaug
1991, Walkusz et al. 2003, Grigor et al. 2015), prey
categories which were undersampled by the large
mesh width of the WP-3 net used in our investigation.

CONCLUSIONS

This study is one of few that have investigated sea-
sonal vertical distributions of multiple members of a
zooplankton community in the Arctic over a near-
annual, high-resolution time series. Our findings
suggest that seasonal vertical migrations are a wide-
spread trait in the community, and that seasonality in
food availability relates to seasonal vertical strategies
of zooplankton in different trophic levels. This rela-
tionship was positive and strongest for the associa-
tions between herbivores and secondary consumers,
and between secondary consumers and tertiary con-
sumers. Further year-round field investigations that
can combine high-resolution sampling methods with
high spatial resolution (e.g. Norrbin et al. 2009),
information on individual variability in size and
energy reserves (e.g. Vogedes et al. 2010), accurate
species determination (e.g. Parent et al. 2011,
Gabrielsen et al. 2012), and year-round, mooring-
based monitoring of the environment would be nec-
essary to test the generality of our findings.
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