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Spatial behavioural types (SBTs) arise from between-individual differences in behavioural traits that foster spatial behavioural patterns that
are consistent over time and ecological contexts. Fish stocks are regularly assessed using catch per unit effort (CPUE) as input data that may
non-linearly co-vary with the underlying abundance (N) of the exploited stock when SBT affect catchability. We hypothesized that SBT pro-
mote characteristic changes in catchability within harvesting seasons that affect catch rates and in turn catch-based fish stock assessments.
To test this hypothesis, we developed a spatially explicit agent-based simulation where we measured encounters between fish and fishers and
estimated the shape of the CPUE–N relationship. We ran the simulation in a prototypical fish–fisher encounter-leads-to-catch-type fishery
and systematically studied outcomes in the presence or absence of SBTs. It was revealed that the existence of SBTs leads to CPUE inevitably
declining faster than N (a process known as hyperdepletion) when compared with a simulation lacking SBTs. This finding was consistent in a
wide range of fishing effort scenarios. The emergent hyperdepletion of catch rates was caused by fast and behavioural-selective exploitation of
vulnerable SBT that encompassed the mobile component of the fish stock. The theoretical predictions received support from field data from
a coastal recreational fishery. Our work suggests that the consideration of SBT when interpreting trends in CPUE data may notably improve
stock assessments by providing a more reliable CPUE–N relationship.

Keywords: CPUE, hook-and-line fisheries, hyperdepletion, hyperstability, spatial behavioural types, stock assessment.

Introduction
Individual fish often behave in a way that distinguishes them

from other members of their species of the same sex and age (Sih

et al., 2004; Réale et al., 2007). When behavioural differences are

consistent over time in traits, such as boldness, aggressiveness, ex-

ploration, sociability, or activity, they are referred to as fish per-

sonalities (Conrad et al., 2011). Fish personalities can lead to

systematic variation in spatial movement dynamics of individual

fish (e.g. more active fish explore a larger space per unit time),

which affects a range of ecological processes such as dispersal or

interaction strength among individuals and among predators and

prey (Harrison et al., 2014; Spiegel et al., 2017). Consistent and

systematic variation in space use can also affect encounters

among fish and fishers and promote changes in catchability (Alós

et al., 2012). Empirical evidence demonstrating the existence of

consistent variation in spatial behavioural traits in the wild has

increased in recent years facilitated by the development of fine-

scale acoustic telemetry (e.g. Olsen and Moland, 2011; Nakayama
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et al., 2016; Alós et al., 2016b; Villegas-Rı́os et al., 2017; Monk

and Arlinghaus, 2018), demonstrating that the pattern seems to

be widespread across fish taxa including those exploited by fisher-

ies (Arlinghaus et al., 2016, 2017; Spiegel et al., 2017). For simpli-

fying the interpretation of such consistent variation in spatial

behavioural traits, we focus here on two contrasting spatial

behavioural types (SBT): mobile-SBT and resident-SBT. There is

ample evidence that fish populations are composed of these ex-

treme forms of mobility (Radinger and Wolter, 2014).

SBTs affect a range of ecological processes (Spiegel et al.,

2017). For instance, bio-geographical processes such as dispersal

and range expansion or population connectivity patterns crucially

depend on decisions made by mobile-SBT (Cote et al., 2010;

Radinger and Wolter, 2014; Canestrelli et al., 2016). Mobile-SBTs

are also more likely to disperse after introduction, thus enhancing

invasion success (Rehage and Sih, 2004). Additionally, the ecolog-

ical context defines the patterns of personality-dependent dis-

persal (or other personality-dependent space-use patterns) and

the selection patterns selecting for optimal strategies, which

implies that SBTs vary in fitness depending on ecological con-

texts. For example, dispersal may be associated with asocial per-

sonalities at high densities but this personality-dependent

dispersal is negated with predation risk (Cote et al., 2010, 2013).

As another example, mobile-SBTs have been shown to have a

lower fitness than resident-SBTs in exploited environments

(Olsen and Moland, 2011; Wiig et al., 2013; Alós et al., 2016b),

while offering similar fitness in unexploited conditions (Kobler

et al., 2009). Such patterns are however context and spatial-scale

dependent (Parsons et al., 2011). In this context, fisheries consti-

tute an external factor determining the fitness of different SBTs

through behavioural-related selectivity (Uusi-Heikkilä et al.,

2008; Árnason et al., 2009; Wiig et al., 2013). Vulnerability to

fishing has been conceptualized as an internal state where behav-

iour and personality play an important role (Lennox et al., 2017).

Because fisheries are widespread across the globe, harvesting may

systematically remove a particular SBT causing an evolutionary

trend in the behavioural component of the populations. For in-

stance, when removing consistently the more mobile components

of fish populations, fisheries would be causing a “timidity syn-

drome”, which implies forcing fish to evolve or develop behav-

iours that reduce their exposure to fishing gears (Arlinghaus

et al., 2016 2017; Andersen et al., 2017; Claireaux et al., 2018).

Such reduction in the exposure to fishing gear might reduce the

index value of stock assessments that depend on catch-per-unit-

effort (CPUE) data and reduce angler and fisher yield and satis-

faction over time, but little research on this topic exists so far in

relation to SBTs (Alós et al., 2015b; Arlinghaus et al., 2017).

Catchability represents the efficiency of harvesting, constitut-

ing a key link for fishers and managers to know about the status

of fish stocks (Arreguı́n-Sánchez, 1996; Hunt et al., 2011;

Villegas-Rı́os et al., 2014). Density independent catchability leads

to proportionality of fish abundance (N) and CPUE. However, if

catchability is density dependent (for which there is substantial

evidence in certain fisheries; Peterman and Steer, 1981; Harley

et al., 2001; Burgess et al., 2017), the CPUE–N relationship will be

non-linear. Two outcomes are then possible: (i) hyperstability or

(ii) hyperdepletion of catch rates (Hilborn and Walters, 1992).

While hyperstability of the CPUE reflects the idea of a faster de-

cline of N with respect to CPUE, leading to the illusion of plenty

(Erisman et al., 2011), the hyperdepletion of the fish stocks

reflects a faster decline of the CPUE than N, leading to the false

impression of increasingly empty oceans (Alós et al., 2015a). The

simplest representation of a model of CPUE and N is of the form

CPUE¼ qNb, where q is an estimate of the catchability coefficient,

N is the true fish abundance, and b is the shape parameter of the

CPUE–N relationship (Hilborn and Walters, 1992). Assuming q

as constant on average (for which there is some evidence, Pierce

and Tomcko, 2003), changing b switches the CPUE–N relation-

ship from hyperstability to hyperdepletion. When b¼ 1, CPUE

linearly tracks N, when b< 1, hyperstable catch rate develops;

and when b> 1, hyperdepletion happens (Figure 1). Meta-

analysis and empirical studies in selected fisheries (e.g. in recrea-

tional fisheries, Post et al., 2003; Ward et al., 2013; Maggs et al.,

2016) have suggested hyperstability to be more widespread than

hyperdepletion (Harley et al., 2001; Burgess et al., 2017).

Understanding the processes leading to either hyperdepletion

or hyperstability is important to improve models of fish stock as-

sessment and to interpret time series in CPUE (Post et al., 2002;

Erisman et al., 2011; Burgess et al., 2017). However, beyond a

range of phenomenological statistical models, there are few stud-

ies describing the detailed mechanisms and processes behind

non-linearity among CPUE and N (but see Ward et al., 2013).

The few that exist have shown that for example high predictability

of spawning aggregations in groupers, tunas, or carangids may

maintain CPUE stable over time, while N is actually decreasing,

generating hyperstable CPUE (e.g. Hamilton et al., 2016; Maggs

et al., 2016; Tidd et al., 2017). In addition, effort sorting due to

the less skilled fishers exiting the fishery earlier can explain

Figure 1. The relationship between CPUE and abundance has been
described as possibly non-linear by a power function with parameter
b. Hyperstability of the catch rates is generated when CPUEs remain
high over time although abundance is declining and produces a
non-linear relationship with b< 1. In contrast, hyperdepletion of the
fish stocks is generated when CPUE declines faster than the
abundance producing a non-linear relationship with b> 1. We
hypothesized that a quicker removal of mobile SBTs (vulnerable
individuals) and, consequently, a lower vulnerability of resident
individuals (non-vulnerable individuals), would lead to the
hyperdepletion of fish stock whenever behavioural diversity is
present in the exploited population.
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hyperstability in CPUE in some recreational fisheries (Ward

et al., 2013; van Poorten et al., 2016). However, although hyper-

depletion may be common in exploited systems with passive fish-

ing gears (Arlinghaus et al., 2017), much less work is available

regarding the processes behind it. The few empirical studies that

exist show that fish behaviour plays a key role in the process of

hyperdepletion (Alós et al., 2015a). In fact, the behaviour of fish

species should be strongly involved in both hyperstable and hype-

depleted CPUEs, but how within species behavioural differences

affects outcomes is largely unknown, particularly regarding the

existence of SBTs that affect encounters with fishers.

We hypothesize that SBTs mechanistically explain hyperdeple-

tion of catch rates when catchability is driven by encounters

among fish and fishers (Alós et al., 2012). Our argument is based

on the recent evidence suggesting that mobile-SBTs (larger forag-

ing areas and larger exploration rates) are more vulnerable to

many fishing gear types, particularly recreational gear using

hook-and-line and other passive gear (Alós et al., 2016b; Lennox

et al., 2017; Monk and Arlinghaus, 2018). Although encounters

between fish and fishers do not always predict harvest when artifi-

cial bait is used (where other behavioural traits than spatial traits

become more important in the capture process, e.g. Monk and

Arlinghaus, 2017; Monk and Arlinghaus, 2018), encounters are

among the most important components of the vulnerability of

most fishes (Lennox et al., 2017). Following our recent empirical

work in Alós et al. (2016b), we hypothesize that selective removal

of more vulnerable mobile-SBTs can lead to a faster decline of the

CPUE than N, mechanistically explaining hyperdepletion of fish

stocks. To test this hypothesis, we developed a spatially explicit

agent-based simulation where fish and fishers (agents) spatially

interact in a prototypical coastal fishery in a range of fishing effort

scenarios. Our theoretical predictions were contrasted with an

empirical experiment on fishing catches in a coastal site in the

Mediterranean Sea, collectively suggesting that behaviour-

selective harvesting foster hyperdepletion in the coastal fishery we

examined.

Material and methods
We developed a spatially explicit agent-based simulation of a fish

population and a fleet of mobile fishery boats that spatially inter-

act in a 2D landscape during a prototypical fishing season (Figure

2). We measured exploitation by means of encounters between

fish and fishers (Alós et al., 2012) and quantified the realized

CPUE and N in the presence or absence of SBT. Our simulation

was built to recreate a prototypical bottom fishery targeting non-

migratory fish species that perform a spatially confined behaviour

(i.e. home range behaviour, HR) whose centres of activity are

patchily distributed (due to for example fragmented habitat)

resulting in a behavioural-related ecological landscape. The fish-

ery is exploited by a fleet of mobile boats, which covers an area

larger than an individual HR area while fishing. Our simulation

was initially parameterized based on empirical data from a popu-

lar recreational fishery located in Mallorca Island (Spain) target-

ing pearly razorfish, Xyrichtys novacula. The pearly razorfish is a

small omnivorous labrid (common length around 20 cm) that do

not form schools, inhabit most of the soft habitats of temperate

areas and is highly exploited in the NW Mediterranean by recrea-

tional fisheries (see more details in Alós et al., 2016b). However,

we content that the simulation outcomes are generalizable to

other systems displaying the main properties described above: (i)

non-migratory fish exhibiting HR behaviours; (ii) patchy

distribution of the individual centres of activity or centres of HR;

and (iii) harvesting by a mobile fleet of boats covering an area

longer than an individual HR area.

The spatially explicit agent-based simulation was implemented

and run in R (R Core Team, 2018). First, two scenarios, with and

without the existence of SBTs in the fish stock were initially simu-

lated. Second, we ran the simulations for a total of 32 scenarios

characterized by different fishing efforts and different proportion

of both SBTs aiming to disentangle the relative weight of these

variables in the emerging patterns (we used this second set of

simulations also for sensitivity analyses, see “Sensitivity analysis”

section).

Movement of the fish and spatial behavioural types
Unlike standard dispersal models that generate standard diffusion

across space, many fish species use a confined area and form sta-

ble HR areas (Alós et al., 2016a; Campos-Candela et al., 2018).

The idea behind the HR movement is that an individual moves

within a harmonic potential field following random stimuli (ran-

dom walk) but with a general tendency to remain around a cen-

tral residence area (Börger et al., 2008). In such a case, an

additional behavioural rule may maintain the individual attracted

to a specific core site (Smouse et al., 2010; Benhamou, 2014),

which can be described by an Ornstein–Uhlenbeck (OU) process

(Alós et al., 2016a).

To simulate the fish movement, we considered the derivation

of the HR movement model described by an OU process devel-

oped in Alós et al. (2016a), which is based on two main parame-

ters: radius and exploration rate. Briefly, the radius parameter

describes the size of the circular area of the HR (in metres), which

can be interpreted as a surrogate of the total foraging area and ac-

tivity space of a given individual. The exploration rate parameter

corresponds to the harmonic force, k (in min�1) describing how

strongly a fish is attracted toward the centre of its HR, which

eventually determines the slope describing the cumulative space

used as a function of time (i.e. for a given radius of HR, how

much time is needed to cover the whole HR).

For simulations, in a virtual 2D scenario with open boundaries

(12.14 km2 of seawater where 6.4 km2 was sand, the preferred

habitat of pearly razorfish, Figure 2), we first randomly distrib-

uted the centres of activity of 2000 individual fish (initial N of the

population¼ 2000 individuals, initial density¼ 312 individuals

per km2). By distributing the centres of activity within the pre-

ferred habitat of the pearly razorfish, a realistic patchy distribu-

tion of individual fish and overall fish densities in line with the

species’ ecology as assessed previously with underwater video-

recording (Figure 2, unpublished data) was created. Each of the

centres of activity was attributed to one fish ID that was moni-

tored (for survival) every minute during the fishing season in sil-

ico. We assumed 15 full fishing days since the opening of the

fishery (i.e. after a previous seasonal closure). The agent-based

simulation was discretized on time (by 1 min), had 21 600 time-

steps (n), and a position (latitude and longitude) of each fish was

mechanistically generated according to the spatial behavioural

variation described above.

To test the hypothesis of the present work, we initially simulated

two scenarios: with and without the existence of SBT. Accordingly,

in the first scenario (with-SBT) we randomly assigned a value of

both behavioural parameters radius and exploration rate (as both

are independent, Alós et al., 2016b) to our virtual fish population
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drawn from distributions measured in reality in pearly razorfish

(range for radius: 67–470 m and k: 0.0005–0.025 min�1, Alós et al.,

2016a) using the function sample of the R package. In the agent-

based simulation, SBT properly emerged (Figure 3), and therefore

included the behavioural axis from mobile- to resident-SBT. In the

second scenario (no-SBT), we simulated the absence of between-

individual differences in spatial behavioural traits by assigning the

same average radius and exploration in all fish of the population

(radius: 204.6 m and k: 0.006 min�1, mean values of the real popu-

lation, Alós et al., 2016a). The emerging repeatability score (R) in

the first scenario, which measures the consistency of between-

individual differences in spatial behaviours (Nakagawa and

Schielzeth, 2010), was very high (�0.9, see Figure 3) relative to em-

pirical literature (Bell et al. 2009.). This was due to the model-

based approach (i.e. each fish had a consistent set of movement

parameters) with no environmental noise and no plasticity. To

overcome this limitation and explore how our assumption of the

repeatability R affected our findings, we performed a range of sim-

ulations considering different distribution of SBT (see “Sensitivity

analysis” section); ranging from R� 0.0 (no-SBT scenario), to

R� 0.5, following empirical findings of meta-analysis of R in the

wild as reported by Bell et al. (2009).

Once a set of radius and exploration values was assigned to

each fish, we generated a Markovian chain of states (active during

day time/resting during night time, typical for pearly razorfish,

Alós et al., 2016b) for the whole fishing season simulated accord-

ing to a sunrise (7:15 a.m.) and sunset (20:00 p.m.) cycle. The

fishery only operated during day time as pearly razorfish are bur-

ied in sand during the night and not catchable then. A position at

all time-steps in the active movement state was generated using

the movement model and assuming the pre-defined individual

parameters during the whole fishing season (Figure 2). During

the resting state (night time), the individual remained in the

same position and was assumed invulnerable to fishing.

Movement of the fleet of boats
A fleet of mobile fishing boats exploited the population of fish,

representing recreational boats fishing with natural bait as it is

typical for pearly razorfish. We considered a fishing pressure sce-

nario of 2 boats per day and km2, which is equivalent to a fleet of

25 fishing boats exploiting the fishery. The whole fleet exploited

the fishery every day during the whole fishing season (15 days).

Similarly to fish, a position of the fisher was generated every

time-step (1 min) according to a fisher two-state movement

model. Fishing behaviour is usually composed of different states:

searching and fishing (Vermard et al., 2010; Walker and Bez,

2010). Our fishers also performed this search pattern (Figure 2).

Figure 2. Properties of the spatially explicit agent-based simulation. (a) The 2D landscape simulated was composed by seawater and land where
the centre of activity (crosses) of 2000 individuals were distributed forming a patchy landscape. (b) Trajectory (positions every minute) of one
fish in four different days. Highlighted dots represent the first and the last positions of the active diurnal phase. (c) Trajectory (positions) of one
fisher in four different days according to the two-state movement pattern considered here. The number of encounters (distance between fish
and fisher lower than 5 m) was quantified to simulate encounter-based exploitation in a prototypical fishing season representing a pearly
razorfish fishery near Mallorca.
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During the fishing state, boats drifted following the surface cur-

rent (generated by hydrodynamics and local winds), while during

the searching state boats showed an active movement.

Each of the two states of the fisher movement was associated

with a distinct random walk movement model (Codling et al.,

2008), a biased random walk (BRW) for fishing state and a corre-

lated biased random walk (CBRW) for the searching state to

properly reproduce the spatial dynamics of the fleet (Figure 2).

For simplicity, we used the mathematical description of a conven-

tional BRW to describe the fishing state by biasing the angle of

the trajectory according to the surface current in the area plus

adding some noise (the mean velocity and SD of drift was 1 and

0.5 m min�1, respectively). To add realism, we used the real ob-

served angle of the surface current for each time-step n obtained

from an oceanographic buoy located in the study area by the

Balearic Islands Coastal Observing and Forecasting System

(www-socib.es, Tintoré et al., 2013).

The searching state was modelled by using a CBRW described

by Langrock et al. (2014) to model group dynamics of animal

movement. Briefly, a mixture of a BRW and a correlated random

walk (CRW) composed mathematically the CBRW. In the BRW

component of the searching state, the bias was imposed by a so-

cial information factor (see below) that generates a tendency to

move toward other boats were fishing (i.e. by watching other

boats—social information). Added to this, the CRW component

described the searching state by a turning angle drawn from a von

Mises distribution with mean¼ 0 and concentration¼ 5 rad (the

mean velocity and SD of searching was 150 and 130 m min�1, re-

spectively). The peculiarity of the BCRW developed by Langrock

et al. (2014) is the existence of a parameter (g), which specifies

the weight of the BRW component (movement toward the centre

of other fisher boats) with respect to the CRW (diffusion). We

considered g¼ 0.7, which generated behaviour of the fishers

mainly based toward a CRW but with a small tendency to remain

close to other fisher boats following our empirical observations of

fisher behaviour (Alós, unpublished data).

To describe the daily movement of the fisher, a bi-variate

times-series (time-steps separated by 1 min; to be synchronized

with the fish movement) for each fisher composed by step lengths

(in metres) and turning angles (in radians) were generated. These

temporal series were drawn by a state-dependent process at mo-

ment n (unobserved in a real situation; the hidden Markov chain)

using two distributions of the step lengths and turning angles de-

scribed above (one per each state; fishing vs. searching). The tran-

sition among the two states was generated by a 2� 2 transition

probability matrix C ¼ ðcijÞ, where cij was the probability of the

fisher switching from the current state (at time-step n) to the fu-

ture state (at time-step nþ 1). We considered that the fisher spent

most of the time fishing to obtain similar fisher spatial behaviour

than those observed in the real fishery (see a realized trajectory of

the fisher in Figure 2, Alós, unpublished data).

The full-day fisher trajectory was generated according to this

two-state fisher movement model, and one independent trajec-

tory was generated every day. The initial location in the fishery of

each fisher was randomly generated in the 2D scenario, the daily

arrival followed a distribution according to the real data (fishers

arrived at the fishery at different moments, always in day time

and focussed in the morning), and the first state of the day was

searching. For simplicity, no between-fishers variability in the

movement was considered.

Exploitation model and estimation of realized CPUE–N
relationship
The resulting trajectories of fish and fishers were coupled and

each of the individual simulated fish was monitored for survival,

by quantifying encounters between a fish and fishers, every min-

ute during 15 full fishing days in the two scenarios of our

Figure 3. Simulated spatial behavioural diversity of fish: (a) Histogram and density plots showing the distribution in the realized daily home
range (defined here as the minimum convex polygon of 100% of the fish positions in a given day) and daily travelled distance (defined here as
the accumulated Euclidean distance between all fish positions in a given day). (b) Daily home range (HR) and travelled distance (TD, each
group represents a fish ID of 20 simulate d individuals across 15 days of simulated exploitation. (c) Violin plots showing the within- and
among-individual variability in the daily home range and travelled distance (the mean individual value is shown by a dot). The consistent
among-individuals variability across time describes the existence of mobile SBTs (individuals with large home range and travelled distances
means) and resident SBTs. This spatial behavioural diversity was generated according to the empirical data revealed using acoustic tracking
found in Alós et al. (2016b) for pearly razorfish.
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simulations (Figure 2). We defined a successful encounter when

(i) the distance between the fish and a fisher was smaller than 5 m

(a reasonable distance of visual contact between the fish and the

gear) in a given time-step n, (ii) the fish was in a vulnerable state

(i.e. active), (iii) the fish was not encountered before by another

fisher (simulating harvest with depletion), and (iv) the fisher was

in fishing state. Whenever these four conditions were met, the

fish ID was considered captured and harvested, representing a

purely encounter-based harvesting process with depletion.

For every simulated day during the fishing season, we quanti-

fied the realized average CPUE (defined as the number of fish

caught per boat per day), the daily N (non-harvested fish from

the original population remaining that day) and characterized the

surviving individuals (non-harvested individuals of the exploited

population) in terms of their spatial behavioural parameters (ra-

dius and exploration). We considered the parameter related to the

catchability coefficient constant (q¼ 1, meaning all fish were

equally vulnerable at the beginning) and focussed our analysis on

the shape parameter of the power curve, b (Figure 1). The b was

estimated from the realized daily mean CPUE and N (scaled val-

ues) data generated in both simulated scenarios (SBT and no-

SBT) by using a Bayesian approach with the jags function from

the R2jags library of the R package (Plummer et al., 2006). Non-

informative priors were described by a uniform prior distribution

of the parameter b between 0 and 20. Three Markov chain Monte

Carlo (MCMC) models were run. We drew 1000 000 posterior

samples, discarded the first 10 000 iterations (burning period)

and only 1 out 90 of the remaining iterations were kept to prevent

autocorrelation (thinning strategy). The convergence of the

MCMC chains of the parameter b was assessed by visual inspec-

tion of the chains. The posterior distribution of the parameter b
was characterized by the mean and the 2.5% Bayesian credibility

interval (BCI). We assumed differences in b between the two sim-

ulated scenarios when the BCI of the posterior distribution did

not overlap at all.

We additionally estimated the distribution of the spatial

behavioural parameters (radius and exploration) in the exploited

population to estimate the selection gradient according to

Matsumura et al. (2012) as a measure of selection commonly

used in traditional quantitative genetics (Falconer and Mackay,

1996). Selection gradient values were mean standardized to gener-

ate a normalized measure of selection strength (Matsumura et al.,

2012), and we computed their 95% confidential intervals by boot-

strapping (1000 iterations) the results of the agent-based simula-

tions using the boot function of the R-package.

Sensitivity analysis
We performed a range of simulations with the purpose of provid-

ing a sensitivity analysis for our model. We focussed on the major

variables that were expected to significantly affect the CPUE–N

relationship: fish abundance, fishers’ pressure, and behavioural

variability within the population. We performed sets of simula-

tions by combining two opposite levels for abundance of fish

(low and high as n¼ 1000 and n¼ 2000 fish), number of fishers

(low and high pressure as n¼ 25 and n¼ 100 fishing boats) and

duration of the fishing season (short and long as n¼ 15 and

n¼ 30 days). Not only the existence of SBTs within an exploited

population but also its relative proportion may affect the CPUE–

N relationship. To explore how the proportion of SBTs in the

simulated scenarios (and therefore different values for R) may

affect our findings, within each set of simulations we explored the

performance of the model with different proportion of mobile

and resident-SBTs: (i) all individuals equal (no-SBT), (ii) 25%

resident-SBTs, (iii) 50% resident-SBTs, and (iv) 75% resident-

SBTs. Note that when all individuals are equal the R score is ap-

proximately 0.0, when the proportion is 50%, an R-score of� 0.5

is expected (i.e. 50% of the variance in behaviour can be

explained by between-individual differences). Therefore, these

four scenarios could represent four different levels of between-

individual variability, which translates into different repeatability

scores: (i) R� 0.0, (ii) R� 0.25, (iii) R� 0.5, and (iv) R� 0.75,

respectively. In total, 32 scenarios were simulated and the poste-

rior distribution of the parameter b was determined using the ap-

proach described above.

Contrasting model results with real data
We contrasted the predictions of our theoretical model with em-

pirical data from an experiment carried out in 2014 where daily

CPUE and N of the pearly razorfish were simultaneously mea-

sured in a fishery for several days after the opening of the fishing

season (see the details of the fishery in Alós et al., 2016b). We ran-

domly selected between 13 and 8 sampling sites within the fishery

and deployed an underwater baited camera (UBC) in each site

during different days after the opening of the fishery (0 or just be-

fore the opening, 3, 10, 17, and 23 days after the opening of the

fishery). The UBC were programmed to record a minimum of

28 min (see Alós et al., 2016b for details). Once the sampling sea-

son finished, videos were analysed individually to obtain the

MaxN, a quantitative measure of the abundance usually used in

UBC sampling, which is defined as the maximum number of

individuals observed in a single frame during the overall video

analysed (Dunlop et al., 2015). It is a reliable method specifically

when the abundance of individuals is low (MaxN scores lower

than 10 individuals) and allows controlling for the potentially re-

peated count of the same organisms entering and leaving the focal

field of the camera (Alós et al., 2016b). Although we are aware

that UBC may produce biased samples of N (Campos-Candela

et al., 2018), they are fishery independent and can generate proper

absolute abundance estimates of some shallow water fish

(Dunlop et al., 2015). To provide a measure of the CPUE, we per-

formed an on-site creel survey to measure the number of fish cap-

tured by the recreational boat anglers in the same area where the

cameras were deployed. In total, 39 surveys were performed dis-

tributed over five different days (opening day, 6, 13, 14, and

19 days after the opening of the fishery). The surveys were carried

out from a research vessel by intercepting recreational fishing

boats when they were leaving the fishery at the end of the trip.

We standardized the effort to number of fish caught per angler

per boat. Then, we coupled the daily values of CPUE and N and

estimated the parameter b using the same Bayesian approach de-

scribed above.

Results
Our agent-based simulation considering SBT properly repro-

duced the existence of spatial behavioural diversity defining a

behavioural axis from mobile- to resident-SBT (Figure 3). The

simulated exploitation of the fishery resulted in a decrease in the

CPUE over time in both simulated scenarios (SBT and no-SBT),

but the decrease in the mean CPUE was much stronger when

considering the presence of SBT (Figure 4a and b). The
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comparison of the scaled values of CPUE and N across the exploi-

tation time revealed a faster decrease of the CPUE than N in the

scenario where SBT where considered (Figure 4b). The estimation

of the parameter b of the CPUE–N relationship suggested hyper-

depletion of the simulated fish stock in both scenarios (no-SBT,

b¼ 2.3 [1.7–3], Table 1 and Figure 4), but the strength of hyper-

depletion was significantly stronger when SBT were considered

(SBT, b¼ 4.96 [3.7–6.7], Table 1 and Figure 4). The estimation of

the mean-standardized selection gradients revealed significant

and negative selection in both spatial behavioural traits (radius

and exploration rate, Figure 4f and g) as the exploited population

was drifting to individuals with increasingly smaller HRs and in-

creasingly lower exploration rates of the HR (i.e. selection favour-

ing resident-SBT, Table 1 and Figure 4f and g). Both, the

existence of SBT and the higher vulnerability of the mobile-SBT

mechanistically explained the stronger hyperdepletion of the fish

stock when behavioural diversity in the fish population was

simulated.

Our results were consistent in a range of simulation scenarios

as they showed a mismatch between CPUE and N (b> 1) for all

cases, and neither the abundance of fish nor days of exploitation

generated a difference in our main finding (Figure 5). However,

several interesting patterns appeared in Figure 5, which deserve

further attention. First, the proportion of SBT notably affected

the strength of the mismatch between CPUE and N. When taken

as reference the scenario with no-SBT (i.e. a zero proportion of

resident-SBT), b increased significantly as the proportion of

resident-SBT and therefore the non-vulnerable fraction of the

population increased (i.e. hyperdepletion became stronger with

an increase in the proportion of resident-SBT in the population)

(Figure 5). This pattern suggests that not only the existence of

SBT but also their proportion impact stock assessment. Second,

greater number of fishers reduced the mismatch between CPUE

and N as b decreased in scenarios with high fishers’ numbers.

Finally, the parameter b of the CPUE–N relationship in the real

fishery was estimated as 8.5 [4.02–18.2] suggesting an even stronger

hyperdepletion in the real fishery relative to the one predicted by

the model in the SBT-scenario (Figure 6). However, these differen-

ces were not significant because of the overlapping of the BCIs of

the data from the real fishery and the simulation with SBT.

Discussion
The existence of consistent between-individual differences in spa-

tial behavioural traits over ecological contexts and time (SBT)

have been repeatedly documented across wild fish populations

(Harrison et al., 2014; Spiegel et al., 2017). Our spatially explicit

agent-based simulations documented how SBTs can promote dy-

namics in catchability that lead to hyperdepleted catch rates in a

wide range of simulation scenarios, which additionally received

some empirical support from our field data. We show how SBT

shape the relationship (b) between CPUE and N and produce

stronger hyperdepletion than in a scenario were all individuals

are considered equal (no-SBT) in terms of their spatial behaviour.

Importantly, the relative proportion of SBT impacted strongly

the CPUE–N relationship: the more resident SBT compose a pop-

ulation, the stronger is the hyperdepletion effect caused by selec-

tive exploitation of mobile SBT.

The absence of either hyperdepletion or hyperstability (i.e.

b¼ 1) implies that CPUE is recovering the true N of a fish

Figure 4. Results of the agent-based simulation considering SBTs or
not (no-SBT). (a) Violin plots describing the daily variability in the
CPUE (as number of fish per fisher per day) across the exploitation
season. The means are shown as black dots. (b) Scaled values of the
CPUE and abundance (number of surviving fish) across the
exploitation season. A non-linear smoothing fit was applied to the
data showing the confidential interval in grey. (c) Relationship
between CPUE and abundance (scaled values) in both simulations
and (d) the projection of the estimated b using the non-linear
catchability model. (e) Mean-standardized selection gradients
resulting from the 1000 iterations of our simulation considering SBT
in the two spatial behaviours that we considered (the home range
size, as radius in metres, and the exploration rate, in min�1). The
plot shows the density, the values, and their distribution as a box
plot. The dashed line represents the scenario of no selection. (f and
g) Distribution of the home range and exploration traits within the
original and the exploited population (survivors of the exploited
season) resulted from our simulation considering SBT, respectively.
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population or, in another words, that it is recovering the station-

ary distribution of centres of HR (i.e. the true density of fish per-

forming HR behaviour). However, to recover the real density for

animals covering the space through a HR behaviour (which has

the property of being stationary in time and space at least for a

given time and spatial scale, Palmer et al., 2011; Campos-Candela

et al., 2018), CPUE data may have important biases difficult to

overcome in the field even without behavioural-related selection.

b approximates 1 only when the number of fishers is very large

and variability of SBTs does not exist (therefore no behavioural-

related selection occurs). This observation agrees with the main

results from Campos-Candela et al. (2018), if we consider fishers

as samplers, they will recover the true density of fish whenever

they sample enough area to recover the stationary distribution of

centres of HR. However, such pattern will not often occur in

reality given that spatial SBT seem to be widespread in fish.

Another interesting result from our simulations is that the real

density of fish in the fishery is not significantly affecting the b
value, while the number of fishers and the proportion of resident-

SBT in the population did. Interestingly, and within the objectives

of this study, we demonstrated that the existence of SBT affects

consistently the CPUE–N relationship. Such ecolotical context,

and the local distribution of resident-mobile phenotypes will ex-

ert a strong effect on which hyperdepeletion patterns to expect.

If the stock assessment of our simulated fishery were solely

based on raw CPUE data, this would have generated the wrong

impression of a nearly empty fishery through a hyperdepletion

process after few days of fishing. This situation could be happen-

ing in the sampled fishery of pearly razorfish, where b was even

higher that the values predicted in Figure 4. Different reasons

could explain this observation either the fishers’ sample size was

too small or the actual non-vulnerable resident-SBT proportion

of the wild population was higher than 75%. Independent of the

details, our results suggest that in situations where SBT exist and

encounters mainly drive exploitation (such as in pearly razorfish

fisheries), CPUE will decline faster than abundance and thus

CPUE time series may indicate less fish in the sea than there really

Table 1. Fish harvested (number of fish), exploitation rate, realized shape of the CPUE–N relationship (b) and their BCI, means and SD of the
original and exploited population (survivors) in the two agent-based simulating scenarios (with and without SBT).

Fish
harvested

Exploitation
rate (%) b

Radius
(m)

Radius (m)
survivals

Exploration
(min�1)

Exploration
(min�1) survivals

Selection
gradient radius

Selection gradient
exploration

SBT 744 37.2 4.96 [3.7–6.7] 222.7 6 93 194 6 85 0.006 6 0.005 0.004 6 0.005 �0.27 [�0.3 to �0.2] �0.13 [-0.17 to �0.09]
No SBT 824 41.2 2.3 [1.7–3] 204.6 204.6 0.006 0.006 – –

The table also shows the mean–standardized selection gradients and confidential interval in the scenario where SBT were simulated.

Figure 5. Posterior means (dot) of the parameter b and 2.5% BCI of
the relationship between CPUE and N resulted from the 32
simulations carried out to the explore the effects of fish abundance,
number of fishers exploiting the fishery, and the number of
exploitation days in four different scenarios of proportion of resident
SBTs; from 0%, which can be interpreted as a scenario without SBTs,
to 75% of resident (i.e. 25% of mobile SBTs). Note how the general
image of the four panels is similar and BCI generally overlap
suggesting low effects of fish abundance, number of fishers or days.
In contrast, note how increasing the proportion of resident-SBTs
(non-vulnerable individuals) consistently increase the estimation of
the parameter b suggesting an increase in the mismatch between
CPUE and N through hyperdepletion.

Figure 6. CPUE and abundance data (in scaled values) obtained in
the real fishery of the pearly razorfish. The plot shows the mean
abundance estimated using underwater video cameras and the
distribution CPUE estimated (violin plots) using a creel survey
measured several days after the opening of the fishing season. The
variability in the CPUE data is shown and a violin plot.
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exists. Consequently, hyperdepletion may decouple the intimate

feedback among fishers and fish, which may be widespread in cer-

tain passive (hook-and-line, traps) fisheries like the ones consid-

ered in our paper (e.g. recreational angling fisheries with natural

bait). Eventually, several management-related effects may arise

from this hyperdepletion phenomena. For instance, a decrease in

the utility of the fishery, dissatisfied anglers, and conflicts between

managers and users, may appear when the false perception of

overexploitation is established (van Poorten et al., 2011).

In contrast to our findings, recent meta-analysis suggests that

most fisheries worldwide exhibit evidence of hyperstable CPUEs

(Harley et al., 2001; Burgess et al., 2017). Only a small number of

studies have found evidence of hyperdepleted fish stocks, mostly

focussed on passive gear like hooks and lures where the odd of cap-

ture depends on the active decision of the fish like in our case. For

instance, Alós et al. (2015a) demonstrated a mismatch between

CPUE and N based on learning hook-avoidance and selection of

bold and aggressive individuals in recreationally exploited coastal

fish populations. Tsuboi et al. (2015) also provided evidence that

heavy historic fishing pressure on a freshwater salmonid has led to

a reduction on general vulnerability to capture inducing hyperde-

pleted mismatches between CPUE and N. Moland et al. (2013)

and Kleiven et al. (2012) both reported strong declines in CPUE

and consistent low capture probability for European lobster,

Homarus gammarus when using passive traps. Similar evidence

exists for the freshwater fish largemouth bass, Micropterus sal-

moides (Sutter et al., 2012). Further, hook avoidance learning in

catch-and-release fisheries can lead to a disjoint of N and CPUE

(Klefoth et al., 2013; van Poorten et al., 2016), eventually leading

to hyperdepletion as some fish may die due to hooking mortality

(Arlinghaus et al., 2007). Therefore, although hyperstable catch

rates have been reported to be far more widespread than hyperde-

pleted catch rates, the situation seems to be dependent on the type

of gear, whether it is passive or active and whether the bait is natu-

ral or artificial. In species that are not aggregating (aggregations

are one of the most important predictor of hyperstable catch rates,

Erisman et al., 2011) and when the encounters are dependent on

behavioural traits and imply high probability of capture and har-

vest at local scales, local hyperdepletion should be widespread

according to the results of our model and empirical findings.

We suggest that hyperdepletion in catch rates may be predomi-

nantly explained by between-individual differences in behaviour

or SBT. In our work, hyperdepletion emerged from simple rules

leading to encounters between fish and fishers, but because vari-

ability in the movement existed (i.e. SBT) a differential selection

pressures occurred on different SBT. Therefore, a fraction of the

biomass was vulnerable to be harvested while another fraction

remained largely invulnerable to the fishing gear partially ensur-

ing the survival of a fraction of the stock. In fact, decreasing the

proportion of vulnerable mobile-SBTs produced stronger and

more evident hyperdepletion of the fish stock. This effect could

be stronger if we consider other fish personality traits such as

boldness or aggressiveness that have been linked to a higher vul-

nerability to fishing (Biro and Post, 2008; Sutter et al., 2012;

Klefoth et al., 2013, 2017; Monk and Arlinghaus, 2017), which

may increase the strength of the observed patterns by enhancing

differences in the individual vulnerability to harvest once the en-

counter has happened. This fact has two implications for fisheries

management.

First, the fraction of biomass harder to catch could confer resil-

ience to the population, although this hypothesis requires further

attention in a population dynamic model. In fact, the existence of

mobile- and resident-SBT not only plays a role in ecosystem func-

tioning (Spiegel et al., 2017), but may also guarantee the conser-

vation of a reproducing biomass invulnerable to fishing over time

(the resident-SBT, Alós et al., 2015a, 2016b). The selective prop-

erties of harvesting on behavioural traits could also indirectly

contribute to a reduction of the productivity of the fishery

(Arlinghaus et al., 2017). Although this could not be the general

rule (e.g. Cardinale et al., 2017), traditionally assumed depleted

stocks may be affected from similar phenomena observed here

and, at least, deserves further attention. Additionally, one can

speculate that the alteration of the behavioural features of the sur-

viving portion of the adults could induce both top-down and

bottom-up ecological effects, whenever the exploited species plays

a significant role in the food web (Ward et al., 2016). Moreover,

behavioural traits, such as exploration, are usually positively cor-

related with productivity life-history traits such as growth rates at

individual level (Biro and Post, 2008). Therefore, the selective

properties of harvesting on behavioural traits should also indi-

rectly contribute to a reduction of the productivity of the fishery

(Alós et al., 2014).

Second, knowledge of the mechanism underpinning hyperde-

pletion in catch rates provides an opportunity to improve the

assessments of the stocks that are solely or mainly based on

CPUE data. By coupling the study of the spatial behavioural di-

versity (i.e. knowing the fraction of the vulnerable and non-

vulnerable individuals), we can provide more reliable estimates of

N to be incorporated in classical population dynamic models

based on CPUE data and the estimation of the shape of the rela-

tionship of N and CPUE (b). Therefore, our work provides con-

crete directions in how fish spatial behaviour can improve stock

fisheries assessments and management (Crossin et al., 2017).

We demonstrate the emergence of hyperdepletion from SBT

using a coupled theoretical and empirical approach. The number

of fishing experiments demonstrating either hyperstability or

hyperdepletion of CPUEs is limited, mainly due to the difficulties

of obtaining a reliable estimate of true abundance at the same

time and site where CPUE data are collected. Most works have

used fishery independent methods like entrapment, trawl surveys,

or systematic underwater visual census to approximate N (e.g.

Erisman et al., 2011; Robinson et al., 2015; Hamilton et al., 2016),

but certainly a perfect experiment with real N is so far not avail-

able. Our approach, however, took the advantages offered by the

recent advance of underwater video-recording systems and devel-

oped methods to estimate absolute densities, which supported

our hypothesis that the hyperdepletion was revealed in a fish

stock where SBT have been widely identified (Alós et al., 2016b).

However, our data set had limitations (e.g. there is no replication

of the fishing experiment, the sample size is limited) and the

results can thus not be easily generalized. In fact, the BCI of the

estimation of the b was quite large. In addition, the field method

we used to estimate N may imply some behavioural-related bias

as well, which can be overestimating the true density in the field

(fraction vulnerable and non-vulnerable together). Such a bias

could have been avoided by using un-baited underwater video-re-

cording methods to estimate behavioural independent N

(Campos-Candela et al., 2018). We recommend further empirical

experiments to provide a broader support to our theoretical and

empirical predictions and the use of underwater video-recording

while simultaneously measuring CPUE to provide more compre-

hensive data. This future work should also consider other
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fisheries, including these performed with active gear (e.g. purse

seining or trawling).

Notwithstanding these limitations, the actual local hyperdeple-

tion observed in the real fish stock was found to be even stronger

than the one found in silico, suggesting that other mechanisms

may play a role and affect catchability independent of encounters

with the gear. For instance, among the factors outlined above,

learning to avoid capture (hook avoidance, Klefoth et al., 2013;

Wegener et al., 2018) is an important contributor to altered

behaviours levels in fish and could partially explain the differen-

ces between the shape between the CPUE and N from our model

and the empirical data. The rapid acquisition of gear avoidance,

through individual or social learning, has been widely reported

across exploited fish species (Raat, 1985; Askey et al., 2006;

Klefoth et al., 2013; Alós et al., 2015b), and it may play an impor-

tant role in the fast decline of the CPUE as an additive effect to be

imposed by SBT. Additionally, the existence of cryptic habitat or

other environmental factors constraining the fishing gears to effi-

ciently operate could also produce a fraction of the stock unavail-

able to the gear and contribute to the fast decline of the CPUE as

suggested in the fishery of the squid, Loligo gahi (Roa-Ureta,

2012). However, the pearly razorfish inhabit large or relatively

large extensions of homogeneous sandy and soft habitats

(Katsanevakis, 2005), which limits this hypothesis for our case

study. An additional sampling using fishing gear in different types

of habitats to evaluate learning and gear recognition (i.e. by ex-

posing fishing gear to fish in a video-recording setup, Alós et al.,

2015a) while simultaneously measuring CPUE–N relationships

would help in disentangling the role of hook avoidance and habi-

tat effects in further empirical assessments.

Finally, one general prediction in the CPUE–N relationship in

recreational fisheries is fishing effort sorting due to the less skilled

fishers (in our case skipper-boat drivers) exiting the fishery ear-

lier, in turn leading to higher-skilled anglers maintaining high

hyperstable CPUE even at low fish densities (Ward et al., 2013;

van Poorten et al., 2016). In our agent-based simulation we did

not include either variability in the fishers’ movement character-

istics (which may include different optimal search patterns to im-

prove encounter with fish, Alós et al., 2012) or the variability in

fishing skills, factors that could collectively explain hyperstable

catch rates in fisheries (van Poorten et al., 2016). However, from

the empirical data, there was no evidence of effort sorting in the

pearly razorfish fishery, instead, all fishers start giving up when

the catch rates drop after a few days (Alós et al., 2016b). The

strong decrease in the fishing pressure after 2 or 3 weeks since the

opening of the fishing season is probably caused by a decrease in

the utility of this specific fishery (which is a consumptive fishery

and CPUE is the main driver of satisfaction). Actually, the pearly

razorfish fishery is a low-skilled fishery based on natural bait

which probably means that the angler-skill effect is smaller than

in other fisheries where specialization skills may produce larger

CPUEs (Ward et al., 2013; van Poorten et al., 2016). However, at

a broader scale or at the whole fishery system the results may

change because the patterns of hyperstability or hyperdepeletion

may be scale dependent. In fact, the rapid exit behaviour of most

pearly razorfish anglers to other fisheries may maintain relatively

high CPUEs in other stocks by exploiting the fraction of mobile-

SBT in several sites. These reflexions highlight the need of devel-

oping more complex social-ecological agent-based simulations

not only considering one particular fishery (e.g. including other

types of fisheries like those performed in spawning aggregations

or isolated or semi-isolated populations) but also considering a

landscape of angler-linked fisheries. In addition, our model is

based on an exploited population. Further work should evaluate

the emergent patterns in the relationship between N and CPUE

when pristine or non-exploited populations are considered. In

such populations, behavioural variability as well as naı̈veté of fish

(Alós et al., 2015b) should be enhanced and the mismatch be-

tween N and CPUE could be enhanced.
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