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Abstract 

In-trawl stereo cameras can provide fine-scale spatial and temporal information on species along the trawl path and record small-sized 

and fragile organisms typically absent from catches. Reliable estimates of abundance and length frequency from in-trawl cameras 
will improve ecosystem understanding and lessen the need for physical catches on scientific surveys. However, determining these 
estimates from camera footage is challenging since the same individual can appear in multiple frames and swim repeatedly in and out 
of the camera’s field of view. The manual image analysis performed in this study provides important information on how the swimming 

behaviour of three abundant pelagic taxa in the Norwegian Sea, along with a camera’s field of view and frame rate, affect the number of 
repeated appearances. Moreover, these manual annotations serve as a valuable dataset for validating automatic image analyses. Our 
results show that, depending on the taxa, swimming orientation, length, density of individuals, and distance to the camera affect the 
extent of time an individual is observed. If the repeated appearance of individuals is not accounted for, taxa or length classes with fewer 
appearances are under-represented in relative abundance and lead to skewed length frequency distributions. Compared to herring and 

blue whiting, a large fraction of mesopelagic fishes remains undetected during automatic analysis (RetinaNet). Assessing the factors 
driving repeated appearances improves our understanding of in-trawl camera data and highlights the importance of integrating tracking 

with automatic image analysis. 

Keywords: Deep Vision; image analysis; machine learning; mesopelagic fish; pelagic fish; pelagic survey; RetinaNet; video-trawl survey 
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Introduction 

Aside from being a fundamental tool in commercial fishing,
trawls are a standard sampling gear on fisheries scientific sur- 
veys (Clark et al. 2016 ). In acoustic abundance estimation,
trawl samples are used to obtain population parameters such 

as species, size, age, and sex composition of the target or- 
ganisms recorded by the echosounder (Gunderson 1993 ). For 
swept-area surveys, trawl catches are used directly to monitor 
long-term fluctuations in abundance (Gunderson 1993 , Fréon 

and Misund 1999 ). However, trawls do not provide fine-scale 
spatial information since individuals entering the net at differ- 
ent time points and locations along the trawl path are accumu- 
lated and mixed in the codend (Kracker 1999 ). Furthermore,
trawl nets can introduce large selectivity and catchability bi- 
ases depending on the mesh size, sampling volume, species,
and size-dependent avoidance behaviour (Pope 1975 , Gunder- 
son 1993 ). 

To address some of these limitations, advance scientific 
trawl sampling, and improve catch information in commer- 
cial fisheries, several research institutions and companies have 
developed in-trawl cameras (Williams et al. 2010 , Rosen and 

Holst 2013 , Stokesbury et al. 2017 , Fernandes et al. 2021 ,
Krag et al. 2023 ). These systems can gather quantitative data 
on species composition, body lengths, and densities. Applying 
in-trawl cameras to fisheries scientific surveys could facilitate 
innovative sampling strategies, such as open codend trawl- 
ing, which allows for the release of fish at the depth of cap- 
ture and increases survival rates (Rosen et al. 2013 , DeCelles 
© The Author(s) 2025. Published by Oxford University Press on behalf of Interna
article distributed under the terms of the Creative Commons Attribution License 
reuse, distribution, and reproduction in any medium, provided the original work 
t al. 2017 , Trenkel et al. 2019 ). Moreover, in-trawl cameras
an provide catch data at a finer resolution than traditional
rawls while recording additional information on small and 

ragile species (e.g. gelatinous organisms) usually lost through 

he codend meshes (Wileman 1996 , Rosen and Holst 2013 ,
llken et al. 2021 ). Such sampling methods can provide valu-
ble information for ecosystem-based management (Under- 
ood et al. 2014 ). 
Accurate estimates of abundance and length frequencies are 

ssential for image data to replace measurements from phys- 
cal samples in fisheries scientific surveys. However, obtain- 
ng these estimates from in-trawl cameras is more challenging 
han from the catch, as the same individual can be imaged
ultiple times (hereafter: recurrence count), resulting in re- 
eated measurements. Among fish, endurance and maximum 

wimming speed differ between species and generally increase 
ith body length and temperature (Wardle 1980 , He 1993 ).
uring the capture process, fish encounter a range of stressors

uch as exhaustion, injury, crowding, hypoxia, and exposure 
o artificial light when using in-trawl cameras (Nguyen and 

inger 2019 , Breen et al. 2020 ). All these have the potential
o induce changes in swimming behaviour (He 1993 , Under-
ood et al. 2018 ), affecting the number of times an individual

s imaged by an in-trawl camera. 
Regardless of swimming capacity, recurrence count is also 

ffected by the physical principles on which cameras oper- 
te. A camera’s field of view (FOV) increases with distance.
herefore, an individual that is farther away will be imaged
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Figure 1. International Ecosystem Survey in the Nordic Seas (IESNS) in 2018: (a) map of the Norwegian Sea featuring acoustic transect lines (yellow), 
locations of pelagic hauls (black circles) used for behavioural observations inside the Deep Vision camera system, and positions of corresponding CTD 

casts (red circles). (b) 38 kHz echograms of the three pelagic trawl stations (357, 372, 379) used in this study with trawl path (yellow line) superimposed 
o v er acoustic bac kscat ter. Colour scale refers to volume bac kscat tering ( S v ), with blue-black representing the weakest and red the strongest echoes. 
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ore times than a closer individual passing at the same veloc-
ty. Moreover, high frame rates contribute to fewer individuals
eing missed and increase the likelihood of recording an im-
ge suitable for measurement or identification, but also lead
o a higher recurrence count. 

The volume of collected image data makes manual im-
ge analysis unfeasible (Rosen et al. 2013 , Underwood et al.
014 ). Previous studies on automating the extraction of
ounts have either applied linear regressions with the catch
Allken et al. 2021 ) or used tracking, which involves link-
ng objects from consecutive frames to a single individual
Chuang et al. 2015 , Avsar et al. 2023 ) to handle recurrence
ounts. Linear regression models rely on catch data, which is
ot available for species which are lost through codend meshes
nd may become inaccessible once open-codend trawling is
mplemented. Tracking can be challenging at low frame rates
Chuang et al. 2015 ) or in high-density scenarios where ob-
ects occlude each other (Blackman and Popoli, 1999 ). 

The aim of this study was, therefore, to investigate
he factors driving recurrence counts (environment, swim-
ing behaviour, FOV, and frame rate) and to evaluate
ow this recurrence count impacts the abundance and
ength frequency estimates derived from in-trawl cameras
or three taxa commonly captured in an ecosystem sur-
 s  
ey for pelagic fishes in the northeastern Atlantic Ocean.
his investigation enhances the overall understanding of in-

rawl camera data and may contribute to improving tracking
ethods. 

aterials and methods 

coustic-trawl survey 

coustic, catch, image and environmental data were col-
ected in the Norwegian Sea between the 5th and the 20th
f May 2018 as part of the International Ecosystem Survey
n the Nordic Seas (IESNS). Following a stratified transect
esign model (Jolly and Hampton 1990 ), the Norwegian re-
earch vessel “G.O. Sars” collected acoustic data along paral-
el, equal-distance transects ( Fig. 1 a). Pelagic trawls were de-
loyed upon acoustic registration of fish schools and/or sound
cattering layers (SSL: layers of fish and/or zooplankton as ob-
erved by the echosounder). At each trawling station, CTD
conductivity, temperature, depth meter) casts were taken to
easure oceanographic conditions at every meter from the

urface to 10 m above the bottom or until 1000 m depth. 
A pelagic trawl (Multpelt 832) was towed for ∼1.5 h

t a constant speed over ground of 1.6 to 1.8 m s −1 ,
ampling one or two depth layers (hereafter: trawl layers,
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Figure 2. Position of the Deep Vision in-trawl camera system inside the Multpelt 832 pelagic trawl. Inset: detail of the Deep Vision model deployed 
during the 2018 IESNS shown from the side that faces the codend: (a) battery, (b) imaging chamber, (c) two stroboscopic lights, and (d) stereo camera 
including a depth sensor. All catch is guided in and out of the imaging chamber by leading panels 3 m in front and behind the Deep Vision system 

(shaded grey in overview drawing). 
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Fig. 1 b). The Multpelt 832 has a vertical opening of 30–
35 m, with mesh size reducing from 16 m inside the trawl 
opening to 40 mm in the codend (ICES 2018 ). For catches 
considered to be large on this survey ( > 150 kg), total catch 

weight was estimated from the volume of catch in the co- 
dend before subsampling. For medium-sized catches (100–
150 kg), the total weight was measured accurately before sub- 
sampling, while for small catches ( < 100 kg), the entire catch 

was weighed and processed. Since the IESNS is an acoustic- 
trawl survey, the main information from the catch is rela- 
tive species abundance and length frequency, not total catch 

size. 

Image collection 

In-trawl images were collected using the Deep Vision camera 
system (Scantrol Deep Vision AS, Bergen, Norway) mounted 

between the extension and codend of the trawl ( Fig. 2 ). The 
box-shaped frame is 85 cm high × 120 cm wide × 150 cm 

long and holds digital colour cameras in a stereo arrangement,
synchronised LED strobes for illumination, and a depth sensor 
( Fig. 2 ). The FOV of each camera has a horizontal angle of ca.
94.4 

◦ underwater. The two LED strobes together have a flux of 
30 000 lm, with peak output at 445 and 555 nm wavelengths.
Images were collected at a rate of 5 frames per second and 

recorded to internal memory with depth and time stamp. All 
fish are guided through a trapezoidal imaging chamber within 

the vertical FOV of the cameras. The system is described in 

greater detail in Allken et al. (2021) . 
Three of 35 trawl stations were selected for further image 

analysis. These stations represented a range of latitudes and 

bathymetric structures (Iceland–Faroe Ridge, Vøring Plateau,
and Lofoten Basin) ( Fig. 1 a) and sampled several distinct 
acoustic features (fish schools and/or two or more sound scat- 
ering layers) ( Fig. 1 b). The limited number of stations resulted
rom the lengthy processing time needed for manual image 
nalysis. 

anual image analysis 

anual image analysis (hereafter: manual IA) was performed 

ith the Deep Vision Analysis Software (DVAS) version 

.3RC9 (Scantrol Deep Vision AS, Bergen, Norway). The 
VAS is a centreline annotation tool, primarily developed to 

dentify and length-measure objects using both images from 

he left and right cameras. The software reads a calibration file
nd rectifies each stereo image pair following the procedures 
escribed by Hartley and Zisserman (2003) and Garcia et al.
2020) . Since most individuals were recorded over several con-
ecutive images, the image most suitable for length measuring 
as chosen for manual annotation (fish fully within the image,
resented side-on to the camera) ( Fig. 3 ). 
Four types of information were recorded at each annota- 

ion: (i) identification to the lowest possible taxonomic unit 
Atlantic herring ( Clupea harengus , hereafter: herring), blue 
hiting ( Micromesistius poutassou ), or mesopelagic fishes as
 group containing Maurolicus muelleri , Benthosema glaciale ,
nd other species of the Myctophid family present in the Nor-
egian Sea), (ii) body length (fork length, FL, for herring and
lue whiting; standard length, SL, for the mesopelagic fishes),
iii) swimming orientation when first entering the imaging 
hamber (towards the codend or facing the opening of the
rawl), and (iv) recurrence count from right camera image ( Fig.
 ). 
In fishes with a straight body posture, length measurement 

sed two points: one at the snout and one on the tail fork, or
he caudal peduncle for mesopelagic fishes. For curved body 
ostures, additional measuring points along the fish’s centre- 
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Figure 3. Example sequence of consecutive rectified images of a single herring. Centreline annotation and information in black are from manual image 
analysis (manual IA): taxon; fork length; swimming orientation when the fish first entered the camera sy stem (tra wl opening/codend); number of times a 
fish was photographed. Boxes from the automatic image analysis (automatic IA) of detected objects are labelled and coloured according to taxon 
assigned (red: herring, green: mackerel). In the sixth image of the sequence, when the herring was photographed head-on, the automatic IA mistakenly 
classified it as mackerel. 
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ine were necessary. Sometimes an individual entered but did
ot fully pass through the imaging chamber before swimming
ut of the FOV, or an individual which had previously passed
ully through the imaging chamber swam into the FOV again.
n both cases, this individual was assumed to be the previous
sh of that taxon for the purpose of calculating recurrence
ounts. 

utomatic image analysis 

utomatic image analysis (hereafter: automatic IA) was con-
ucted with a deep learning algorithm developed by Allken
t al. (2021) based on the RetinaNet object detection network.
he trained algorithm works on an image-by-image basis, gen-
rating detections in the form of bounding boxes around every
bject in an image and classifying them as either blue whit-
ng, herring, Atlantic mackerel ( Scomber scombrus , hereafter:
ackerel), or mesopelagic fishes ( Fig. 3 ). Since the automatic

A does not integrate tracking and is not trained to differenti-
te between individuals, repeated detections of the same indi-
idual in consecutive images result in inflated counts (Allken
t al. 2021 ). The automatic IA was performed on both the left
nd the right camera. However, only the output from the left
ameras was used in this study. 
atasets 

ndividuals were identified to species level, and length was
easured from the trawl catch using standard sampling pro-

ocols for the survey. Images were reviewed by a trained oper-
tor, and all individuals were identified to the lowest possible
axonomic group, length measured, and annotated with swim-
ing orientation and recurrence count (Manual IA). The same

mages were also analysed using the RetinaNet deep learning
lgorithm developed by Allken et al. (2021) to detect and iden-
ify each object (Automatic IA). 

ffect of swimming behaviour on observation 

eriod 

esponse variable 
o investigate how fish behaviour affects the repeated appear-
nce of an individual, recurrence count was standardised with
espect to FOV and the frame rate. The trapezoid cross-section
f the Deep Vision imaging chamber already accounts for the
ertical increase in the camera’s sampling area with distance
 Fig. 2 ). Therefore, only the horizontal FOV needed to be con-
idered. First, the FOV (mm) of the right camera was deter-
ined for each individual based on the 94.4 

◦ angle ( θ ) and
he individual’s distance to the camera ( Z ) (Equation 1 ). The
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Table 1. Description of parameters used in the analysis of the observation period of herring, blue whiting, and mesopelagic fishes inside the Deep Vision 
in-trawl camera 

Parameter Categorical/continuous Unit Description 

Response variable 
Observation period Continuous s Time a fish is observed, standardized for the camera’s FOV 

Predictors 
Station Categorical Sampling station (357, 372, 379) 

Elapsed time Continuous s Elapsed trawling time for each sampled layer where depth and vessel speed 
over ground were constant. 

Distance Continuous mm Distance of a fish to the camera’s lens 

Orientation Categorical Direction in which the fish faced when first imaged (towards the codend or 
facing the opening of the trawl). 

Length Continuous mm Total length (TL) for herring and blue whiting, standard length (SL) for 
mesopelagic fishes. 

Density Continuous Average number of automatic detections across the frames in which an 
individual was observed. 
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method for calculating Z is detailed in the next section. Then,
a correction factor was determined by calculating the ratio 

of FOV to the total width of the imaging chamber (150 cm) 
(Equation 2 ). Finally, a standardised observation period (here- 
after: observation period) was calculated for every individual 
by dividing the recurrence count by the correction factor and 

the frame rate (5 images s −1 ) (Equation 3 ). 

F OV i ( mm ) = 2 × Z i × tan 

(
θ

2 

)
, (1) 

co rrectio n facto r i = 

F OV i 

widt h of t he imaging chamber (mm ) 
, (2) 

o bservatio n perio d i (s ) = 

recurrence count i 
co rrectio n facto r i 

× f r ame r ate , (3) 

where i is the target individual. This correction ensures that 
any remaining differences in observation period can be at- 
tributed to environmental factors or fish behaviour. 

Predictor variables 
Station, elapsed trawling time, distance to the camera, swim- 
ming orientation, body length, and fish density served as pre- 
dictor variables for observation period ( Table 1 ). 

Using rectified images, the distance of an object from the 
camera lens ( Z ) was calculated as 

Z = 

f × B 

x l − x r 
, (4) 

where f is the fixed focal length (set to 906 pixels), B (base- 
line, 60 mm) is the distance between the centres of the left and 

right camera lenses, and x l − x r is the disparity ( d) in the x 

coordinates of the first length measuring point (typically the 
snout of the fish) between the left and right image ( Fig. 4 ). 

Body length in herring and blue whiting (species with 

forked tails) was measured as FL because the DVAS relies on 

matching the same landmark on both the left and right im- 
ages. Before the analysis, FL was converted to total length (TL) 
to conform to catch measurements. The conversion factor 
for herring was retrieved from “FishBase” ( www.fishbase.org ) 
( T L = F L/ 0 . 917 ) (Ojaveer et al. 2003 ). For blue whiting, FL
and TL were measured from 100 individuals ranging 20.1–
32.0 cm (TL) collected during a different survey in the Nor- 
wegian Sea in 2021, and a regression was calculated from 

those ( T L = 0 . 0233 + F L × 1 . 03 ) ( Fig. S2 ). A comparison of
length frequency distributions estimated from the catch and 
mages showed that measurements using more than two cen- 
reline points resulted in an overestimation in length ( Fig. S5 ).
herefore, this analysis focused solely on annotations with 

wo points, where the length frequency showed no significant 
ifference from the catch. 
Fish density was estimated from the average number of au-

omatic detections per frame within the time interval the tar-
et individual spent in the system since the number of fish per
rame was not recorded during the manual IA ( Fig. 3 ). The
ime interval was calculated based on the recurrence count of
n individual, assuming that the manual annotation occurred 

idway as the fish passed through the imaging chamber. 

tatistical analysis 
sing R version 4.3.1 (R Core Team 2020 ), separate statisti-

al models were developed to identify the factors affecting the
bservation period of each taxon. Data exploration followed 

he protocol described by Zuur et al. (2010) . The analyses fo-
used on the data collected inside each trawling layer ( Fig. 1 b),
here constant speed could be assured (minimal spooling in 

r out of the trawl warps). A generalised linear model (GLM)
ollowing a gamma (link = “log”) distribution was chosen: 

o bservatio n pero d i ∼ Gamma (μi , ν ) , (5) 

E( o bservatio n perio d i ) = μi , (6) 

var ( o bservatio n perio d i ) = μ2 
i /ν, (7) 

where i represents the target individual, μ the mean obser- 
ation period, ν the shape parameter of the distribution, and 

the expected observation period (Zuur et al. 2009 ). 
Station, water temperature, trawling depth, vessel speed 

ver ground, elapsed time, distance to the camera, swimming
rientation, body length, and density were initially considered 

s predictors of the observation period ( Table 1 ). Both wa-
er temperature, trawling depth, and vessel speed over ground 

ere excluded due to limited contrast in those variables.
onetheless, the predictor variable station still captured any 
ifferences in temperature and vessel speed between the sta- 
ions. No mixed effects were included because of the low num-
er of stations ( n = 3). 
Data exploration revealed a strong correlation between sta- 

ion and density and between station and elapsed time for all
axa. For herring, there was also a correlation between sta-

http://www.fishbase.org
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf094#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf094#supplementary-data
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Figure 4. Stereo triangulation scheme on rectified images: ( B) baseline distance between the centre of the left and right camera lenses; ( f ) fixed focal 
length; ( Z ) perpendicular distance of an object to the baseline; ( Q) Cartesian coordinates of the fish in the imaging chamber; ( q) first length measuring 
point on the snout of the fish here used as the location of the fish in right and left image planes [modified from Adil et al. (2022) ]. 
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ion and length, and between with elapsed time and density.
lue whiting exhibited an additional correlation between sta-

ion and length. To avoid multicollinearity in the full model,
wo or three separate models were formulated for each taxon
 Table 3 , M1a, M1b, M1c, M2a, M2b, M3a, M3b). For all full
odels that included an interaction between orientation and

ength, its significance was tested using the “drop1()” func-
ion from the package “stats” (R Core Team 2020 ). The full
odel with the lowest Akaike information criterion (AIC) was

hen chosen for model selection ( Table 3 , M1a, M2a, M3b).
ackward stepwise selection was performed using the “step()”

unction from the package “stats” (R Core Team 2020 ). Based
n this method, the term that led to the largest reduction in
IC was dropped at each step until no further reduction was
chieved. 

Model assumptions were verified by plotting residuals
gainst fitted values and against each covariate in the model
y means of functions in the package “car” v. 3.1–2 (Fox and
eisberg 2019 ) ( Fig. S3 ). Simultaneously, a lack-of-fit test for

ach continuous covariate was computed, where P < .05 indi-
ated nonlinear patterns in the Pearson residuals. Additional
iagnostics plots were produced using the “check_model()”
unction from the package “performance” v. 0.10.8 (Lüdecke
t al. 2021 ). This step of the model validation process involved
 posterior predictive check, testing for homogeneity of vari-
nce, normality of residuals and the detection of influential
bservations via Cook’s distance ( Fig. S4 ). 

ffect of field of view and frame rate on recurrence 

ount 

nderwater, the horizontal FOV of the Deep Vision was esti-
ated to increase by 2.16 cm for every centimetre of increased
istance from the camera (Equation 1 ). Therefore, at any given
elocity and frame rate, individuals passing further away are
maged more times. To test whether this change in sampling
rea affected all three taxa equally, we assessed the empiri-
al cumulative distribution functions (ECDFs) of individual
ounts along distance. 

Frame rate and recurrence counts are directly proportional
ntil a recurrence count of one is reached (individual imaged
ust once). Beyond this, a further decrease in frame rate ei-
her results in an individual being missed or being imaged
nce. Each individual was manually annotated in only one
f the frames it appeared in ( Fig. 3 ). Therefore, to assess the
mpact of frame rate, we created an “artificially populated”
ataset from the original one provided by the manual IA.
his involved populating all the frames based on the recur-
ence count, assuming the manual annotation of each individ-
al occurred midway through its passage through the FOV.
 simulated reduction in frame rate from 5 images per sec-
nd to 3 images per minute was then achieved by increasing
he time interval in 0.2-s intervals between images selected.
o assess whether the decrease in frame rate affected the de-
ection probability of all three taxa equally, we calculated the
roportion of individuals recorded at each frame rate rela-
ive to the number of individuals counted at 5 frames per
econd. 

ffect of recurrence count on abundance 

o compare count estimates from the manual IA with the
atch and automatic IA, the total number of individuals and
he total number of objects (sum of all recurrence counts) were
xtracted from the manual IA. Throughout the study, the out-
ut from the manual IA was assumed to reflect the true num-
er of individuals and objects. 

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf094#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf094#supplementary-data
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Figure 5. Example of bounding bo x es from manual annotations (dashed green, where p i represents the manual measuring points ( i = 0 , . . . , m ) of the 
target individual) and automatic detections (solid purple, where b j represents the automatic detection box j ). Solid green lines are centrelines of fish 
determined during manual labelling and define the vertices of the manual annotation bounding boxes. The shaded area represents the overlap between 
the two boxes (light purple). 
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Effect of recurrence count on length frequency 

In fisheries scientific surveys, a sample size of 100 individu- 
als per species is commonly considered sufficient for estimat- 
ing the length frequency distributions of the catch (Gerritsen 

and McGrath 2007 ). Therefore, we investigated whether re- 
ducing the frame rate could prevent multiple measurements 
of the same individual and yield accurate estimates of the 
length frequency. This analysis was conducted on the artifi- 
cially populated dataset previously created to test frame rate,
but was limited to frame rates and stations containing at 
least 100 length measurements per taxa to guarantee suffi- 
cient sample size. Consequently, the data was restricted to 

herring from station 357 with frame rates of ≥0.11 images 
per second, blue whiting from station 379 with rates of ≥0.3 

images per second, and mesopelagic fishes from stations 372 

and 379, with frame rates of ≥0.24 and ≥0.39 images per 
second, respectively. Measurements were confined to intervals 
when trawling at a constant depth and speed. The object- 
based length frequency distributions were visually compared 

to the individual-based length frequencies obtained from the 
manual IA. 

Recall of automatic image analysis 

Standard evaluation metrics for object detection models re- 
quire manual annotation of each object in an image to ex- 
tract true positives (TP), false positives (FP), and false nega- 
tives (FN), which are then used for calculating precision and 

recall (Allken et al. 2021 ). During manual IA, individuals were 
annotated only in one of the multiple frames they appeared 

in ( Fig. 3 ). Consequently, images could contain objects that 
were not annotated, limiting the analysis to TP, FN, and re- 
call values. Moreover, the centreline annotations used in this 
analysis were initially produced as length measurements dur- 
ing the manual IA and required the conversion to bounding 
boxes (defined as x p i min , y p i min , x p i max , y p i min ) ( Fig. 5 ). Since the 
generated manual bounding boxes were significantly smaller 
than the automatic detections (defined as x b j 0 , y b j 0 , x b j 1 , y b j 1 ),
n alternative method to the standard Intersection over Union 

IoU) was applied (Allken et al. 2021 ). 
A total of 3674 manual annotations were compared with 

he automatic detections. First, the automatic detection with 

he shortest distance to the manual bounding box was
atched to the manual annotation. Then we calculated the 
verlap between the two boxes. Only automatic detections 
verlapping at least 50% with the manual bounding box were
onsidered to have successfully “detected” an object ( Fig. 5 ).

anual annotations with a lesser degree of overlap were con-
idered “missed.” Detected objects where the manual and au- 
omatic IA assigned the same taxa were deemed “correct”,
nd ones where the classification differed were considered 

wrong.”
Recall measures the model’s effectiveness at finding posi- 

ive instances and is calculated as the ratio between TPs (“cor-
ect”) and the sum of TPs and FNs (“missed” plus “wrong”).
e calculated one recall value for each taxon ( n ): 

Recal l n = 

T P n 
T P n + F N n 

. (8) 

esults 

nvironmental parameters and catch composition of the three 
elagic trawl stations are presented in Table 2 . 

ffect of Swimming behaviour on observation 

eriod 

or all three taxa, the histogram of the observation period re-
embled that of a gamma distribution, with most individuals 
pending only a short amount of time in front of the cam-
ra ( Fig. 6 ). The parameters of the distribution, however, dif-
ered between the three taxa. Herring and blue whiting dis-
layed higher median observation periods (1.9 s, 1.6 s) than
esopelagic fishes (0.7 s) ( Fig. 6 ). Furthermore, herring exhib-

ted a larger spread of values (max: 35 s) than blue whiting
max: 14.1 s) or mesopelagic fishes (max: 2.8 s, Fig. 6 ). 
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Table 2. Ov ervie w of the three pelagic tra wl stations included in this study 

Station 
Day–month 

(2018) 
Start 
time 

End 
time 

Speed (m 

s −1 ) 
Depth 

(m) 
Temp 
( ◦C) 

Number of 
images Taxa 

Number of 
ind. 

Length range 
(cm) 

357 09–05 19:39 21:54 1.6 263 5.5 39 802 Herring 818 a 30.5–39.0 
372 16–05 20:03 22:14 1.6, 1.7 222, 338 5.3, 4.4 38 748 Herring 52 31.0–38.5 

Blue whiting 62 24.5–31.0 
Mesopelagic fishes 421 4.0–11.5 

379 20–05 08:34 11:00 1.8, 1.8 206, 363 5.7, 4.5 41 518 Blue whiting 271 20.5–30.5 

Speed: average vessel speed over ground at each depth layer; Depth: average depth of each sampled trawl layer (one layer in station 357, two in stations 372 
and 379); Temperature: average temperature at each trawl layer; Number of images: number of images recorded by the Deep Vision in-trawl camera system 

at each station; Taxa: taxa retained in the codend of the pelagic trawl; Number of ind.: number of individuals caught in the codend; Length range: minimum 

and maximum standard length of mesopelagic fishes and total length of herring and blue whiting in the catch. 
a Volumetric estimate. 

Figure 6. Stacked histogram of observation period for each examined taxon (herring, blue whiting, mesopelagic fishes). Filled bars represent individuals 
facing the trawl opening and empty bars represent those facing the codend. Data from all three stations were pooled together. The solid lines indicate 
the median observation periods (s) when facing the codend or the opening of the trawl. 
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erring 
he observation period of herring within the in-trawl cam-
ra system was influenced by the interaction between swim-
ing orientation and body length, as well as density ( Table
 , M1d). Herring were oriented predominantly towards the
rawl opening (75.3%) and displayed a higher median obser-
ation period when facing this direction (2.4 s) than when
acing the codend (0.6 s) ( Fig. 6 ). The effect of body length on
bservation period depended on their orientation ( P = .021)
 Fig. 7 a): Fish swimming towards the trawl opening showed
 1% increase in observation period for every additional cm
n body length, whereas individuals facing the codend showed
 14% decrease per cm. Density ranged between 0 and 4.33
median 1.2). With increasing densities, the observation pe-
iod decreased significantly ( P < .001) at a rate of 45% with
ach additional individual ( Table 4 , Fig. 7 d). Station, elapsed
rawling time, and distance to the camera were dropped dur-
ng model selection. 

lue whiting 
he most parsimonious model predicting the observation pe-
iod of blue whiting included swimming orientation and body
ength ( Table 3 , M2c). Like herring, the majority of individ-
als were oriented towards the trawl opening (71.1%) and
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Table 3. Description of full and final models predicting observation period inside the Deep Vision in-trawl camera system for each taxon separately 

Model Covariates AIC 

Clupea harengus (Atlantic herring) 
Full model M1a distance + length ∗orientation + density 1299.8 
Full model M1b distance + orientation + station 1325.6 
Full model M1c distance + length ∗orientation + elapsed time 1328.2 
Final model M1d length ∗orientation + density 1298.4 

Micromesistius poutassou (blue whiting) 
Full model M2a distance + length ∗orientation + elapsed time + density 554.8 
Full model M2b distance + orientation + station 554.5 
Final model M2c length + orientation 549.5 

Mesopelagic fishes 
Full model M3a distance + length ∗orientation + elapsed time + density 575.0 
Full model M3b distance + length ∗orientation + station 567.3 
Final model M3c distance + length + orientation + station 565.6 
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displayed significantly ( P < .001) longer median observation 

periods than when facing the codend (2.1 and 0.6 s, respec- 
tively) ( Table 4 , Fig. 6 ). Body length had no significant influ- 
ence on the residence time of blue whiting ( P > .05) ( Table 
4 ). Station, elapsed trawling time, and density were dropped 

during model selection. 

Mesopelagic fishes 
For mesopelagic fishes, the final model included swimming 
orientation, body length, distance to the camera, and sta- 
tion ( Table 3 , M3c). Contrary to herring and blue whiting,
most mesopelagic fishes were oriented towards the codend 

(61.2%). Mesopelagic fishes also showed significant differ- 
ences ( P < .001) in observation period depending on their 
orientation, with a median observation period of 0.8 s when 

facing the trawl opening and 0.6 s when facing the codend.
( Table 4 , Fig. 6 ). Observation period decreased significantly 
( P < .001) by 11% with every 10 cm of distance to the camera 
( Fig. 7 e). Neither body length nor sampling station had a sig- 
nificant effect on the observation period of mesopelagic fishes 
( Table 4 ). Elapsed trawling time and density were dropped 

during model selection. 
During the validation processes, the final models for all 

three taxa indicated homoscedasticity, a lack of influential 
observations, and no collinearity. Posterior predictive checks 
pointed out discrepancies between real and simulated obser- 
vation periods for herring and mesopelagic fishes but fit well 
for blue whiting ( Fig. S4 ). 

Effect of field of view and frame rate on recurrence 

count 

All three taxa tended to occupy the wider section of the 
imaging chamber, with 50% of herring, blue whiting, and 

mesopelagic fishes passing at a distance greater than 62, 60,
and 55 cm, respectively ( Fig. 8 a). Data exploration revealed 

no correlation between distance and length, nor between dis- 
tance and density. 

A simulated reduction in the frame rate from 5 to 1 im- 
age per second led to a loss of 12%, 17%, and 39% of the 
individuals for herring, blue whiting, and mesopelagic fishes,
respectively ( Fig. 8 b). At a frame rate of 3 images per minute,
only 9.5%, 9.3%, and 2% of individuals from the same three 
taxa were retained. 
ffect of recurrence count on abundance 

he total number of individuals reported in the catch was
18, 535, and 271 in station 357, 372, and 379, respec-
ively. For stations 372 and 379, the manual IA recorded ap-
roximately the same number of herring and blue whiting 
s in the catches ( Table 5 ). In station 357, where, due to a
arge catch ( > 150 kg), weight was estimated from the vol-
me of the codend, herring counts from the manual IA ex-
eeded the codend catch by 49.5% ( Table 5 ). This discrep-
ncy reflects the survey’s focus on relative species abundance 
nd length frequency rather than total catch size. Further- 
ore, all stations showed a greater presence of mesopelagic 
shes in the images than what was retained in the catch ( Table
 , Fig. 9 a). The discrepancy between detections from the au-
omatic IA and individuals from the manual IA was high-
st for herring (8–13 times higher), followed by blue whiting
6–7 times higher) and mesopelagic fishes (2–9 times higher) 
 Table 5 ). The number of objects detected by the automatic IA
as slightly lower than the total objects from the manual IA

 Fig. 9 a). 
The catch, manual IA, and automatic IA also differed in

heir relative species compositions ( Fig. 9 b), with a higher pro-
ortion of herring and blue whiting in the catch, manual ob-

ect counts, and automatic IA detections compared to the man-
al individual counts. 
No mackerel were registered in the catch or the manual IA,

owever, the automatic IA misidentified a number of objects 
s mackerel ( Table 5 , Fig. 9 ). 

ffect of recurrence count on length frequency 

cross the three stations, the lengths of herring, blue whit-
ng, and mesopelagic fishes estimated from the manual IA 

anged between 27–42 cm, 19–31 cm, and 1.8–8.2 cm, respec-
ively. This range remained well-represented in object-based 

ength frequency distributions, as long as at least 100 mea-
urements were taken (greyscale curves in Fig. 10 ). However,
epending on the taxon, the frequency with which each length
as represented could vary. The greatest difference between 

ndividual-based and object-based length frequency distribu- 
ions was observed for herring ( Fig. 10 a), where repeated mea-
urements of the same individual led to an overestimation of
he mid-range sizes and an underestimation of the extremes 
 ≤33 cm or ≥37 cm). This error persisted regardless of the
rame rate. For blue whiting and mesopelagic fishes, repeated 

easurements did not greatly alter the length frequency dis- 
ribution ( Fig. 10 b–c). The individual-based distribution fell 

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf094#supplementary-data
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(a)

(b)

(c)

(d)

(e)

Figure 7. Fit of the Gamma GLMs for fish oriented towards the opening of the trawl (dashed black lines) and facing the codend (solid black lines): (a) 
effect of body length on the residence time of herring (M1d, density of 1.44) (b) effect of body length on the residence time of blue whiting (M2c), (c) 
effect of body length on the residence time of mesopelagic fishes (M3c, distance of 53.8 cm, station 372), (d) effect of density on the residence time of 
herring (M1d, length of 35.0 cm), (e) effect of distance to the camera on the residence time of mesopelagic fishes (M3c, length of 4.5 cm, station 372). 
Real data projected in the background (filled triangles: facing codend, empty circles: facing trawl opening). NB: the “line pattern” in panel (e) is due to 
the resolution of the y variable (observation period, 0.2 s increments); this is only apparent when the observation period is plotted against distance, as 
the latter was used to calculate the correction factor (Equations 1 –3 ). 
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ithin the object-based distributions irrespective of the frame
ate. 

ecall of automatic image analysis 

ecall values were higher for herring (88%) and blue whiting
87%) than for mesopelagic fishes (46%, Table 6 ). For all taxa,
he greatest source of error was caused by fish being missed
y the automatic IA, not by misidentification. The lowest de-
ection rate was observed for mesopelagic fishes, which were
issed 54% of the time. 
iscussion 

n-trawl cameras combined with automatic IA allow for new
nd improved ways to collect data from marine ecosystems.
owever, estimating abundance and length frequency is chal-

enging since the same individuals can appear in multiple
rames and swim repeatedly in and out of the camera’s FOV
Williams et al. 2016 , Allken et al. 2021 , Avsar et al. 2023 ). As
uch, it is important to understand the factors driving recur-
ence count. The manual IA undertaken in this study provides
aluable information on the behaviour of fish near in-trawl
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Table 4. Summary of the three most parsimonious GLMs predicting ob- 
servation period inside the Deep Vision in-trawl camera system for each 
taxon separately (herring, blue whiting, and mesopelagic fishes): sample 
size ( n ), estimated regression parameters (bet a), st andard errors, z -values, 
and P -values 

Model terms Beta Std. error z -value P -value 

Clupea harengus (Atlantic herring) n = 316 
(Intercept) 4 .877 1 .761 2 .769 .006 
Orientation-trawl opening − 3 .503 2 .148 − 1 .631 .104 
Length − 0 .013 0 .005 − 2 .492 .013 
Density − 0 .372 0 .075 − 4 .945 < .001 
Orientation-trawl opening:length 0 .014 0 .006 2 .319 .021 

Micromesistius poutassou (blue whiting) n = 152 
(Intercept) − 1 .237 0 .854 − 1 .449 .149 
Orientation-trawl opening 1 .079 0 .169 6 .389 < .001 
Length 0 .005 0 .003 1 .533 .127 

Mesopelagic fishes n = 827 
(Intercept) 0 .133 0 .130 1 .024 .306 
Distance − 0 .001 0 .000 − 5 .140 < .001 
Orientation-trawl opening 0 .209 0 .036 5 .881 < .001 
Length − 0 .003 0 .002 − 1 .823 .069 
Station372 0 .043 0 .089 0 .486 .627 
Station379 0 .147 0 .092 1 .607 .109 
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cameras and a useful dataset for validating automatic image 
analyses. The results show that taxa behave differently in the 
trawl and that mesopelagic fishes, because of their lower re- 
currence count and small size, are under-represented in rela- 
tive abundance estimates and often remain undetected by the 
automatic IA. 

Effect of swimming behaviour on observation 

period 

Our observation that most herring and blue whiting were ori- 
ented towards the trawl opening (against the water flow) is 
consistent with previous findings based on videos from the 
aft section of a pelagic trawl (Suuronen and Millar 1992 , Su- 
uronen et al. 1997 , Skúvadal et al. 2011 ). Positive rheotaxis,
or the reaction of fish to face an oncoming current, is me- 
diated either directly by the flow of water over the body or 
indirectly through visual, tactile and inertial stimuli (Arnold 

1974 ). Swimming towards the opening of a midwater trawl is 
also facilitated by a reduction in current velocities. Kroeger 
(1984) and Skúvadal et al. (2011) measured water veloci- 
ties of up to two-thirds lower than the trawling speed in- 
side the aft section of pelagic trawls. Mesopelagic fishes, in 

contrast, tended to face the codend when passing by the in- 
trawl camera. Due to their limited swimming abilities inside 
the gear, mesopelagic fishes are not able to maintain position 

and are therefore displaced opposite to the towing direction 

(Grimaldo et al. 2022 ). This is also reflected by their median 

observation period, which was ca. 60% shorter than that of 
herring and blue whiting. All three taxa exhibited significantly 
longer observation periods when facing the opening of the 
trawl, as swimming in the direction of trawling slowed their 
passage through the camera system ( Fig. 6 ). 

Maximum swimming speed and endurance in fish are gen- 
erally considered a function of body length (He 1993 ). The 
presence of body length in the most parsimonious models of 
all three taxa highlights its importance in explaining the obser- 
ation period of fishes. For herring, the effect of body length
n observation period was significant ( P < .05) and depended
n orientation. Larger herring facing the codend moved faster 
ith the current and tended to spend less time in the system

han smaller individuals. Conversely, larger herring facing the 
rawl opening demonstrated greater endurance when swim- 
ing against the water flow, leading to extended observation 

eriods. For blue whiting, the data showed no significant in-
uence of body length nor an interaction between length and
rientation. Skúvadal et al. (2011) observed that blue whiting 
isplayed less stamina than herring and often passively drifted 

owards the codend upon reaching the lower aft section of
 pelagic trawl. The nonsignificant effect of body length on
he observation period of mesopelagic fishes supports the hy- 
othesis that, by the time these smaller-sized organisms (1.8–
.2 cm) reached the aft section of the trawl, they were mostly
assively transported and not actively swimming. 
Herring were observed for significantly shorter periods as 

ensities increased. Underwood et al. (2018) , employing a
amera with steady white light in the trawl section 5.2 m
head of the Deep Vision, did not observe any alterations in
he passage rates of herring regardless of density. However,
tudies have shown that strobe light can elicit strong avoid-
nce behaviour and cause visual pigment bleaching in fish 

Amaral et al. 2001 , Patrick and Poulton et al. 2001 , No-
ales Flamarique et al. 2006 ). The light emitted by the system
ould therefore disrupt swimming behaviour within the imag- 
ng chamber, while increased densities may amplify the disori- 
ntation caused by impaired vision. Furthermore, the confined 

olume of the imaging chamber might result in density lev-
ls higher than those observed ahead of the camera. Density
as collinear with station and increased with elapsed trawling

ime. Therefore, environmental effects such as ambient light,
emperature, and current velocities, as well as temporal effects,
annot be excluded from interpreting this result. A larger set of
tations and a more targeted sampling design would be needed
o quantify these factors. 

Distance to the camera (corrected for FOV) was solely re-
ained in the final model for mesopelagic fishes, which ex-
ibited significantly shorter observation periods farther from 

he camera. Assuming these individuals were passively drift- 
ng, this could indicate uneven water flow within the imaging
hamber due to boundary layer effects. Consequently, flow ve- 
ocities inside the imaging chamber may be reduced nearest 
he camera where the three sides of the trapezoid converge
 Fig. 2 ). Mesopelagic fishes were also more evenly distributed
ithin the imaging chamber, while herring and blue whiting 

ended to occupy the wider section. This might be further ev-
dence of herring and blue whiting avoiding the light source
nd mesopelagic fishes being passively transported. 

During model validation, both herring and mesopelagic 
shes showed some discrepancies between the observed and 

odelled observation periods ( Fig. S4 a). The modelled obser-
ation period appeared to be less peaked than the real data,
ndicating that the model was not able to account for the in-
ividuals with extreme observation periods ( Fig. 6 ). Fish that

eft and re-entered the FOV may also have resulted in incor-
ect observation periods, although there seems to be no reason
hy this should be biased towards either long or short obser-

ation periods. 

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf094#supplementary-data
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Figure 8. (a) Empirical Cumulative Distribution Functions (ECDF) of individual counts along distance from the camera. (b) The proportion of individuals 
recorded at each frame rate relative to the number of individuals counted at 5 frames per second. Colours refer to the three taxa herring (red), blue 
whiting (blue), and mesopelagic fishes (y ello w). For clarity, only a selected number of frame rates (images s −1 ) are e x emplified here (5, 2.5, 1, 0.5, 0.05). 

Table 5. Ov ervie w of the absolute number of individuals counted in the 
manual IA and the trawl catch, as well as total object counts from manual 
IA (each individual counted as many times as it was imaged) and number 
of detections from the automatic IA 

Station 
Individuals 
manual IA 

Individuals 
catch 

Objects 
manual IA 

Detections 
automatic IA 

Clupea harengus (Atlantic herring) 
357 1223 818 a 12 591 9624 
372 67 52 1122 866 
379 2 0 4 209 

Micromesistius poutassou (blue whiting) 
357 0 0 a 0 432 
372 74 62 526 500 
379 297 271 2422 1706 

Mesopelagic fishes 
357 81 0 a 264 760 
372 1187 421 3503 2785 
379 722 0 2802 1520 

Scomber scombrus (Atlantic mackerel) 
357 0 0 a 0 495 
372 0 0 0 142 
379 0 0 0 103 

Atlantic mackerel ( Scomber scombrus ) is included since it was mistakenly 
detected by the automatic IA. 
a Volumetric estimate. 
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ffect of field of view and frame rate on recurrence 

ount 

OV increases with the distance from the camera. The im-
act of this change in sampling area is partially reduced by
he design of the Deep Vision imaging chamber, which pre-
ents fish from occupying vertical spaces outside the cam-
ra’ s FO V. However, the horizontal effect persists, causing in-
ividuals that are further away to be imaged more often than
loser individuals passing at the same velocity . Consequently ,
esopelagic fishes, which tended to pass closer to the camera

han herring and blue whiting, had lower recurrence counts
 Fig. 8 a). 

A high frame rate increases the recurrence count but pre-
ents the loss of rapidly passing individuals. Frame rate and
ecurrence counts are directly proportional until an individ-
al is imaged just once. Beyond this, further decreasing the
rame rate can only result in an individual being imaged once
r missed completely. The estimated numbers of herring and
lue whiting individuals from the in-trawl camera and the
atch showed only minor discrepancies (except for herring at
tation 357 due to volumetric estimation). This indicates that
hese taxa tend to remain in the camera’s FOV for > 0.2 s, and
 frame rate of 5 images per second is adequate to capture
ost individuals. Nonetheless, 4%, 5%, and 11% of herring,
lue whiting, and mesopelagic fishes, respectively, had a recur-
ence count of only one. This would suggest that at a frame
ate of 5 images per second, the likelihood of missing individ-
als persists and is greatest for mesopelagic fishes. Thus, it is
dvisable to increase the frame rate until all the individuals
re imaged at least twice. 

FOV and frame rate can also cause variations in recurrence
ounts between length classes. For example, if length and dis-
ance to the camera are positively correlated, the increase in
OV with distance would cause larger fish to have a higher
ecurrence count than smaller ones. The statistical data ex-
loration conducted in this study, however, revealed no corre-
ation between length and distance for any of the three taxa.
erring of ≤33 cm or ≥37 cm length showed overall lower

ecurrence counts, and would therefore be increasingly missed
f the frame rate is reduced. 

ffects of recurrence count on abundance and 

ength frequency 

he continuous footage from in-trawl cameras provides de-
ailed records of the time and depth at which organisms were
aptured. However, the added information comes at the cost
f the same individual being imaged multiple times. If not
roperly addressed, taxa with lower recurrence counts (e.g.
esopelagic fishes) become underestimated in relative abun-
ance estimates ( Fig. 9 ). For taxa where the observation pe-
iod significantly varies with length (e.g. herring, Table 4 ), cer-
ain sizes become misrepresented in the length frequency dis-
ributions ( Fig. 10 a). 

Lowering the frame rate to avoid the repeated appearance
f individuals did not affect all taxa and length classes equally.
esopelagic fishes were increasingly under-represented due

o their lower recurrence count relative to the other species
 Fig. 8 b). For herring, the over-representation of certain length
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Figure 9. Absolute (a) and relative (b) composition of taxa in trawl stations 357, 372, and 379 calculated from three different methods: manual IA, trawl 
catches, and detections generated by RetinaNet during the automatic IA. For the manual IA, both the number of individuals and objects (each individual 
counted as many times as it was imaged) are provided for the comparison. 
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classes in object-based length frequency distributions persisted 

irrespective of the frame rate ( Fig. 10 a). Conversely, the object- 
based length frequencies of blue whiting and mesopelagic 
fishes exhibited minimal sensitivity to lowering the frame rate,
likely because their observation period did not significantly 
vary with body length. This suggests that for these taxa, but 
not for herring, length frequencies can be manually extracted 

from a subset of images or automatically extracted from all 
the imaged objects. 

Given that lowering the frame rate introduces new biases 
and manual analysis of entire trawl stations is not feasible,
automatic IA becomes essential for extracting data from in- 
trawl cameras. This study emphasises that for accurate abun- 
dance and length frequency estimates from images, automatic 
analysis must implement additional measures for recurrence 
counts. 

Previous studies on automating counts from in-trawl cam- 
eras have employed two different methods: Allken et al.
(2021) addressed recurrence count by comparing the num- 
ber of automatic detections with the catch and fitting differ- 
ent linear regression models for three pelagic fish species: At- 
lantic herring, blue whiting and Atlantic mackerel. Alterna- 
tively, tracking, which involves linking objects from consecu- 
tive frames by minimising positional offset, has shown promis- 
ing results for counting crustaceans (Avsar et al. 2023 ) and fish 

(Chuang et al. 2015 ) in trawls. 
Tracking has the advantage of being independent of the 
atch, which is unavailable for small and fragile organisms or
n open-codend trawling procedures. Moreover, unlike the lin- 
ar regressions used by Alken et al. (2021) and in this study,
racking does not depend on fixed model coefficients and is
ikely to deal better with the high variability we detected in
bservation periods. 
Tracking opens the possibility of obtaining real-time esti- 
ates of abundance and length, given that the required com-
utational power can be met (Avsar et al. 2023 , 2024 ). In
sheries scientific surveys, acoustic scrutinisation is ongoing 
uring the cruise and does not require real-time data. How-
ver, real-time information is crucial in decision-making pro- 
esses when considering open-closed codend sampling, where 
he goal may be to capture specific species or sizes for mea-
urement of age, sex, and DNA. 

To implement tracking for highly mobile species, auto- 
atic IA needs to account for individuals swimming in and
ut of the FOV multiple times (Chuang et al. 2015 ). For
ast-swimming species and smaller fish, like herring and 

esopelagic fishes, a high frame rate is necessary to minimise
ositional offset between consecutive frames. However, rais- 
ng the frame rate does not address the issue of occlusion in
igh-density scenarios. 
Objects occluding each other in a 2D image may be sepa-

ated by distance from the camera ( Z ). Thus, integrating 3D
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(a) (b)

(c) (d)

Figure 10. Length frequency distributions for each taxon and sampling station with at least 100 length measurements. Within each panel, the thick 
coloured curve represents the distribution when each individual is measured only once (red: Atlantic herring, blue: blue whiting, y ello w: mesopelagic 
fishes). Gre y scale curv es illustrate the distributions of all imaged objects. T he gre y scale corresponds to the frame rate, with the thic k blac k curve 
representing the highest frame rate (5 images s −1 ). For clarity, only a subset of frame rates is e x emplified here (herring: ≥0.5, 0.33, 0.25, 0.17, 0.11; blue 
whiting: ≥0.5, 0.41; mesopelagic fishes: ≥1, 0.56, 0.38, 0.26, 0.13). 

Table 6. Confusion matrix of manual annotations (rows) and automatic detections (columns) with a score threshold of 0.47 

Taxa Herring Blue whiting Mesopelagic fishes Mackerel Missed Total (manual) 

Herring 1134 ( 0.88 ) 33 (0.03) 0 (0) 22 (0.02) 101 (0.08) 1290 
Blue whiting 17 (0.05) 323 ( 0.87 ) 5 (0.01) 1 ( < 0.01) 25 (0.07) 371 
Mesopelagic fishes 4 ( < 0.01) 3 ( < 0.01) 917 ( 0.46 ) 0 (0) 1089 (0.54) 2013 
Total (automatic) 1158 358 1096 22 1040 3674 

The matrix only includes true positives (“correct”) and false negatives (“wrong” or “missed”). The automatic IA mistakenly classified some of the herring 
and blue whiting as mackerel, even though no mackerel was present in the images. The values between parentheses represent the proportion of automatic 
detections with respect to the row total. The recall value of each taxon is shown in bold. 
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ata from a stereo camera could improve tracking in high-
ensity scenarios. Chuang et al. (2015) , however, found no
erformance gains from including distance, as their algorithm
llowed for overlap in multiple frames. Another option would
e to reduce packing density by moving the camera to a trawl
ection that has a greater diameter. 

Moving the camera has other implications. First, as the
amera is positioned further ahead in the trawl, the data col-
ected from the images diverges more from what is collected
n the codend, due to greater opportunities for organisms to
scape between the camera and the codend. Second, the cam-
ra’ s FO V no longer covers the entire volume of the trawl
ection. As a result, the estimates derived from these images
ould assume that fish swimming outside the camera’s FOV

xhibit the same swimming behaviour and species, and size
istribution as those within it. Our findings show that certain
axa are positioned nearer to the camera than others, suggest-
ng this assumption may not hold true. Therefore, more re-
earch into the distribution and swimming behaviour is es-
ential. Finally, the increase in volume allows objects to pass
t a greater distance from the camera, which can complicate
dentification. 
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Sampling mesopelagic fishes with in-trawl cameras 

The comparison of catch and manual IA showed that while 
herring and blue whiting were similarly represented in both 

methods, the smaller-sized mesopelagic fishes were often 

only present in the images ( Fig. 9 ). Trawls targeting small 
mesopelagic organisms integrate small-mesh liners inside the 
trawl body and the codend to limit mesh selectivity (Grimaldo 

et al. 2022 ). The pelagic trawl (Multpelt 832) deployed in this 
study was not modified to retain small-sized fishes. Given that 
the mesh size of the codend was 40 mm and the length of 
mesopelagic fishes ranged between 1.8 and 8.2 cm, most of the 
smaller individuals were likely not retained. The patchy dis- 
tribution of micronekton (including mesopelagic fishes) makes 
depth-specific records from in-trawl cameras highly valuable,
as they can potentially expand our knowledge about their ver- 
tical distribution (Pearcy 1983 ) without increasing handling 
time on existing surveys. Understanding the catchability of 
mesopelagic species ahead of the in-trawl cameras would fa- 
cilitate a better interpretation of the image-based data. 

Only 46% of the manually annotated mesopelagic fishes 
were detected and correctly classified ( Table 6 ). This starkly 
contrasts with herring and blue whiting, which showed recall 
values of 88% and 87%, respectively. Allken et al. (2021) re- 
ported similar percentages for herring (72%) and blue whiting 
(82%) but a much higher value for mesopelagic fishes (89%).
As a mixed-species category, mesopelagic fishes are likely to 

differ in relative species composition between this study and 

the one conducted by Alken et al. (2021) . Mesopelagic fishes 
are generally smaller than herring and blue whiting and can 

therefore be more challenging for object detection algorithms.
Despite RetinaNet’s implementation of multi-resolution clas- 
sification (Lin et al., 2017 ), Zhou et al. (2021) showed that 
RetinaNet does not perform as effectively on small objects.
According to the results of this study, the current object 
detection algorithm, as described in Allken et al. (2021) ,
would require additional fine-tuning to improve the recall of 
mesopelagic fishes. 

Conclusion 

Our analyses showed that depending on the taxa of interest,
swimming orientation, distance to the camera, body length,
and density inside the imaging chamber can influence obser- 
vation periods. As a result, recurrence counts varied within 

and between taxa and across length classes. This variation 

means that recurrence counts cannot be addressed by sim- 
ply reducing the frame rate. Tracking, therefore, seems nec- 
essary for providing reliable abundance and length frequency 
estimates from in-trawl images. If accurate estimates are pro- 
vided, in-trawl cameras can lessen the catch and handling time 
on fisheries scientific surveys. Refining the automatic detection 

to sample small and fragile organisms would allow for a wider 
range of species to be continuously monitored, ultimately en- 
hancing our understanding of the ecosystem. 
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