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INTRODUCTION

Appendicularians generate a complex, extracellular,
gelatinous, filter feeding house composed of muco-
polysaccharides (Spada et al. 2001, Thompson et al.
2001). This filter feeding structure enables appendicu-
larians to feed on algae, as well as particulate organic
carbon (POC) down to 0.2 µm (Flood et al. 1992, Fer-
nández et al. 2004). This makes them an important
component in marine ecosystems, where they provide
a shortcut in the food web by directly transferring
energy from very small particles (e.g. submicron col-
loids, prochlorophytes, cyanobacteria, bacterioplank-
ton, nanoflagellates) to much larger predators such as
larval and adult fish (Deibel 1998).

Among appendicularians, Oikopleura dioica is found
in all major oceans (Fenaux et al. 1998). The genera-
tion time, which is extremely short for a complex meta-
zoan (7 d at 15°C), combined with high fecundity,
yields a relationship between animal size and maximal
intrinsic rate of natural increase (rmax) that consider-
ably exceeds values recorded for other poikilothermic
metazoans (Troedsson et al. 2002). Appendicularians
are, thus, able to exploit favorable environments
quickly, resulting in patchy distributions and densities
attaining 53 000 ind. m–3 (Uye & Ichino 1995). An
increased understanding of the general life history
parameters of O. dioica has been gained in recent
years, where filter feeding, development and growth
rates have been the main focus. However, data on the
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composition and nutritional value of appendicularians
are very limited. Deibel et al. (1992) studied the major
lipid classes of O. vanhoffeni at different ontogenetic
stages under both pre- and post-bloom conditions, and
demonstrated a change in the total fatty acid composi-
tion before and after the spring bloom. They suggested
that there is little evidence of energy storage in O. van-
hoffeni, with the predominant strategy seeming to be
an allocation towards rapid somatic and reproductive
growth. O. dioica has a very short generation time,
with unusually high population increases (Troedsson
et al. 2002). Energy will be allocated into reproductive
tissues in an opportunistic way and storage for long-
term survival is limited. However, a strategy of fixed
somatic growth with no apparent storage could lead to
high death rates, even over short durations of food
depletion. Storage, particularly in the form of fat
droplets, would therefore enhance survival as well as
reducing the risk of food depletion as reproductive
allocation begins.

In view of their appropriate size range for ingestion
by fish larvae, and capacity for rapid blooms, appen-
dicularians are also likely to be an important factor for
successful recruitment in some fish populations, and
this has been documented in several fish species (Shel-
bourne 1962, Gadomski & Boelert 1984, Mousseau et
al. 1998, Ticina et al. 2000, Watanabe et al. 2002,
Hasegawa et al. 2003). Studies of marine fishes have
shown that fish larvae are sensitive to low levels of
some n-3 polyunsaturated fatty acids (PUFAs), parti-
cularly eicosapentaenoic acid (EPA; 20:5n3) and doco-
sahexaenoic acid (DHA; 22:6n3) (Støttrup & Attra-
madal 1992, Koven et al. 1993, Kraul et al. 1993,
Lochmann & Gatlin 1993, Watanabe 1993, Whyte et al.
1994). In some fish, the level of DHA has a significant
effect on survival as well as on growth rates (Watanabe
1993). Marine animals have limited abilities to synthe-
size long-chain PUFA from short-chain PUFA (Dunstan
et al. 1996). This means that they must obtain these
fatty acids from the diet (essential fatty acids). As
appendicularians are thought to be an important food
source for a number of fish species, a significant ques-
tion is how the fatty acid composition of appendicular-
ians changes with different composition and quantity
of food. To investigate how Oikopleura dioica assimi-
lates and modifies fatty acids when experiencing diets
differing qualitatively in fatty acid content, animals
were fed either a strict diet of Isochrysis sp., which is
high in DHA and low in EPA content, or Chaetoceros
calcitrans, which, in contrast, is high in EPA and low in
DHA (Napolitano et al. 1990). Subsequently, we exam-
ined the storage and assimilation of fatty acids under
abundant and limited food regimes, which were iden-
tical in fatty acid composition but differed in total fatty
acid content (Troedsson et al. 2002).

MATERIALS AND METHODS

Culture of algae. Fresh inoculates were made from
static cultures of Isochrysis sp. (Prymnesiophyta,
CCAP 927/14; diameter = 4.5 µm, carbon = 10.6 ±
0.3 pg cell–1, fatty acid = 1.3 ± 0.4 pg cell–1) and
Chaetoceros calcitrans (Bacillariophyta, CCAP 1010/
11; diameter = 3 µm, length = 4.5 µm, carbon = 4.6 ±
0.3 pg cell–1, fatty acid = 1.0 ± 0.4 pg cell–1). Nutrients
and silica (for C. calcitrans) were added, and they were
grown in 2 l plastic bags with constant light and air
bubbles for agitation. The same strain was used
throughout the experiments. To avoid fluctuations in
fatty acid composition of the algae, qualitative fatty
acid analysis was carried out at regular intervals after
inoculation. Experiments were then conducted using
algae in the exponential growth phase (2 to 6 × 106

cells ml–1 for Isochrysis sp.; 4 to 8 × 106 cells ml–1 for
C. calcitrans) during which they had stable lipid com-
position. These algae were selected for experimenta-
tion because they have been well characterised in the
culture of Oikopleura dioica (Gorsky 1980, Troedsson
et al. 2002), were similar in total fatty acid content,
but differed significantly in fatty acid composition
(Tables A & B of Appendix 1, see www.int-res.com/
journals/suppl/troedsson_appendix.pdf), and they are
representative of the progression from diatom to fla-
gellate blooms in natural ecosystems.

Collection and culture of animals. Oikopleura
dioica was collected in the coastal area of Bergen, Nor-
way, using a plankton net with a large volume cod-
end, and cultured in wet laboratory facilities. Animals
were cultured in 6 l plastic beakers (Cambro) using a
plastic paddle (25 cm deep × 7 cm wide) rotating at
15 rpm to keep the animals and algae suspended in the
water column. Seawater from a depth of 4 to 8 m was
filtered through 3 Hytrex II Cartridge Filters (20, 10
and 1 µm, respectively). The filtered seawater was
then passed through a Merck charcoal filter with a 0.25
to 1 mm gradient and exposed to an Aqua-Care UV-
light (254 nm, 10 W) to sterilize the seawater. Cultures
were run at 15°C, illuminated by 36W/20 cool white
fluorescent light tubes. To establish a generation of
animals, 40 to 45 mature females and 30 to 35 mature
males were placed in 4 l of seawater. The animals were
monitored and forced to release their gametes into the
water by gentle aspiration in a Pasteur pipette at full
maturity. This was done to synchronize the population.
After fertilization, embryos were transferred, using 1 l
beakers, into 2 fresh 6 l beakers with the designated
food regimes. After 24 h, the content of each beaker
was diluted into 3 new 6 l beakers, and after an addi-
tional 24 h, the contents of each of these beakers was in
turn diluted into two 6 l beakers, attaining a total of 12
beakers. These serial dilutions allowed addition of

166

http://www.int-res.com/journals/suppl/troedsson_appendix.pdf
http://www.int-res.com/journals/suppl/troedsson_appendix.pdf


Troedsson et al.: Fatty acid composition of Oikopleura dioica

fresh seawater at 24 h intervals and promoted consis-
tently better survival than 1, more extensive, initial
dilution. After each dilution, the assigned food regime
was added. Each successive 24 h after this, the animals
were transferred with a 10 ml Sterilin pipette with a cut
tip, the diameter of which exceeded the maximum
width of the house, to a fresh 6 l beaker under the same
experimental conditions.

Culture of animals for fatty acid analysis. Four
experimental conditions were set up to investigate the
fatty acid composition in Oikopleura dioica, given
qualitatively and quantitatively different food regimes.

Different quality of algae: A generation of animals
was split in 2 after hatching and 1 population was
given a standard food regime of only Isochrysis sp.,
while the other received a standard food regime of
only Chaetoceros calcitrans (Table 1). Animals from
both food regimes were sampled (10 replicates) each
24 h after fertilization, and the fatty acid contents were
analyzed. Fecal pellets from both food regimes were
sampled (5 replicates) each 24 h starting 4 d after
fertilization, and the fatty acid content analyzed. The
number of animals and fecal pellets in each replicate
varied with age (Table 2).

Different quantity of algae: A generation of animals
was split in 2 after hatching and 1 population was
given a standard food regime of both algae, while the
other was given a limited food regime of both algae
(Table 1). Animals and fecal pellets from both food
regimes were sampled as in the above experiment.

Fatty acid analyses. Sampled animals were prodded
to escape their house and left in fresh sterile-filtered
sea water (0.2 µm) for 15 min. The animals were then
inspected with a stereo microscope to confirm
absence of fecal pellets in the stomach. Animals were
transferred with a micropipette to a 1 ml thick-walled
glass vial with a conical bottom and a Teflon-lined
screw cap. The number of animals for each replicate
varied with the age of the animals (Table 2). A 1-step
extraction-methylation procedure was used (Ulberth
& Henninger 1995). Residual water was evaporated
under a stream of nitrogen gas. An internal standard

(0.12 µg, 19:0, NuChek Prep.) dissolved in chloroform
was added to each sample and the solvent was evapo-
rated under nitrogen. To methanolyze the fatty acids,
50 µl of 2 M dry methanolic-HCl was added, and the
vial was capped and incubated at 90°C for 2 h. The
methanolic-HCl was evaporated with nitrogen gas
and the remaining methyl esters were dissolved in
40 µl HPLC-grade hexane. Polar components were
extracted with 20 µl of H2O. The samples were vor-
texed and placed at –20°C until the polar portion was
frozen. The non-polar hexane layer was transferred
with a Hamilton pipette into a conical bottom crimp-
top GC microvial. Nitrogen gas was quickly purged
over the samples to eliminate any oxygen in order to
avoid oxidation of fatty acids, and the vial was
capped. The methyl esters were then analyzed by gas
chromatography (Hewlett Packard HP 5890 II with a
HP 7673 A automatic injection system) as previously
described (Grahl-Nielsen et al. 2003). Full results con-
taining all fatty acids at all time points are given in
Tables A to F of Appendix 1. Tables 3 to 7 reported in
the text present average values for phases 2, 3 and 4
of the life cycle (Troedsson et al. 2002) of a subset of
fatty acids. Phase 2 was defined from the expansion of
the first house to when the reproductive organ started
to grow. Phase 3 was defined from the start of repro-
ductive organ growth until the beginning of spawn-
ing. Phase 4 was defined as mature animals with
gametes nearing the time of release. Table 8 shows a

subset of fatty acids in fecal pellets at 3
time points.

Net lipid accumulation efficiency.
Net lipid accumulation efficiency was
calculated using the quantity of fatty
acids cleared from the given experi-
mental environment and allocated to
body mass. The total fatty acid quantity
per cell of Isochrysis sp. or Chaetoceros
calcitrans was analyzed using 19:0
(NuChek Prep.) as an internal stan-
dard. The number of cells cleared from
the water column per time unit was cor-
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Table 1. Food regimes for quantitative and qualitative protocols

Protocol Food regime Algaea 0–96 h 96 h–maturity
(cells ml–1) (cells ml–1)

Qualitative Isochrysis Isochrysis 4000 8000
Chaetoceros Chaetoceros 4000 8000

Quantitative Standard Isochrysis 2000 4000
Chaetoceros 2000 4000

Limited Isochrysis 333 666
Chaetoceros 333 666

aThe algal strains used were Isochrysis sp. and Chaetoceros calcitrans

Table 2. Number of animals and fecal pellets per replicate 
fatty acid analysis

Age (d) Animals aFecal pellets

1 50 –
2 40 –
3 35 –
4 8 100
5 2 80
6 (mature) 1 30

aFecal pellets were not sampled at early stages because of
their small size
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related to the food concentration according to Selander
& Tiselius (2003). We used the same somatic size of ani-
mals as Selander & Tiselius to avoid size effects (Broms
& Tiselius 2003). The instantaneous net lipid accumu-
lation efficiency (NLAEi) was calculated as the per-
centage of lipids assimilated and used for fatty acid
increase:

NLAEi = [Ganimals/(IRFA – PFA)] × 100 (1)

where Ganimals (ng FA ind.–1 h–1) is the fatty acid
increase in animals over 1 h, IRFA (ng FA ind.–1 h–1) is
the amount of fatty acids cleared from the water col-
umn in 1 h, and PFA (ng FA ind–1 h–1) is the amount of
fatty acid that is excreted in fecal pellets in 1 h. PFA is
dependent on the number of pellets excreted per hour
and we, therefore, used the gut passage time (GPT)
estimated by López-Urrutia & Acuña (1999):

GPT = 51.67(FC–0.245) × e–0.0376T (2)

where FC represents the concentration of available
food (µg C l–1) and T represents temperature (°C).

Statistical analysis. Chromatographic data were
treated by multivariate statistics, using principal compo-
nent analysis in the SIRIUS 6.5 package (Kvalheim &
Karstang 1987). Data were normalized by expressing the
methyl esters as a percentage of the total amount in the
sample. The percentages as well as the total quantity of
fatty acids in the tables are given to 2 insignificant digits.
The data were logarithmically transformed to avoid
dominance of highly abundant methyl esters. The
samples were placed in an n-dimensional space (n = the
number of methyl esters in the sample). Two new coordi-
nates (principal components or PCs) were generated
through the center of gravity, explaining the largest and
the second largest variation in the samples. Two-
dimensional plots (PCs) were made from this analysis
as a representation of the separation between samples.

Quantification of total fatty acids was calculated
using 19:0 as an internal standard. Linear regression
analysis of the population was performed with Statis-
tix8. The data were log-transformed and a normality
test (Shapiro-Wilks) and test of co-linearity were run to
ensure requirements were fulfilled to perform a linear
regression analysis. To investigate differences in a par-
ticular fatty acid quantity between 2 groups at a fixed
time point, a t-test was performed after verification of
homogeneity in the variance.

RESULTS AND DISCUSSION

The major fatty acids in Oikopleura dioica were
myristic acid (14:0), palmitic acid (16:0), palmitoleic
acid (16:1n7), stearic acid (18:0), stearidonic acid
(18:4n3), eicosapentaenoic acid (20:5n3 [EPA]) and

docosahexaenoic acid (22:6n3 [DHA]), with 18:4n3,
EPA and DHA seeming to be increasingly important as
the reproductive organs started to grow (Phase 3;
Troedsson et al. 2002) (Tables 3 to 6). Indeed, these
fatty acids accumulated in mature animals (Table 7).
Selective assimilation of some important fatty acids in
O. dioica is apparent by looking at fecal pellet compo-
sition. The major fatty acids remaining in the fecal pel-
let were 14:0, 16:0, 16:1n7 and 18:0, while 18:4n3, EPA
and DHA were preferentially absorbed by the animals
(Table 8). Synthesis of 18:4n3 via α-linolenic acid, cat-
alyzed by δ-6-desaturase, is a starting point for further
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Table 3. Isochrysis sp. and Oikopleura dioica. Fatty acid com-
positions of Isochrysis sp. and O. dioica fed a diet containing
only Isochrysis sp. Mean fatty acid compositions in the 3
growth phases of O. dioica. The full data set with samples
every 24 h is given in Table A of Appendix 1 (www.int-res.
com/journals/suppl/troedsson_appendix.pdf). The major fatty
acids are given as the percentage of total composition with
standard deviation. Groups: percent proportion of 5 major 

groups of fatty acids

Fatty Isochry- Oikopleura dioica
acid sis sp. Phase 2 Phase 3 Phase 4

14:0 12.8 ± 5.1 5.6 ± 0.9 10.1 ± 1.6 9.1 ± 0.7
14:1n5 0.3 ± 0.1b 0.7 ± 0.4 0.6 ± 0.2 0.4 ± 0.2
16:0 8.2 ± 1.5 17.5 ± 3.0 15.6 ± 1.9 17.3 ± 3.4
16:1n7a 2.1 ± 1.0b 5.8 ± 1.7 10.5 ± 1.5 13.7 ± 1.0
16:2n6a 0.4 ± 0.2b 1.6 ± 0.4 0.6 ± 0.3 0.3 ± 0.1
17:0 0.1 ± 0.0b 0.6 ± 0.2 0.6 ± 0.1 0.7 ± 0.1
18:0 1.0 ± 0.3b 7.9 ± 1.8 2.4 ± 1.0 2.8 ± 1.2
18:1n9a 5.9 ± 1.7b 2.0 ± 0.9 0.9 ± 0.8 0.3 ± 0.1
18:1n7a 0.9 ± 0.1b 5.2 ± 2.1 2.2 ± 0.7 2.4 ± 0.5
18:2n6a 4.3 ± 2.6b 1.4 ± 0.6 1.8 ± 0.3 1.8 ± 0.3
18:2n4a 0.2 ± 0.2b 2.0 ± 0.7 0.7 ± 0.5 0.4 ± 0.2
18:3n3a 3.3 ± 1.8b 1.6 ± 0.8 3.0 ± 0.6 2.7 ± 0.7
18:4n3a 9.3 ± 4.9b 1.6 ± 0.6 10.4 ± 2.3 9.1 ± 3.4
18:5n1 0.6 ± 0.2b 2.8 ± 1.0 1.1 ± 0.9 0.5 ± 0.4
20:1n9 0.4 ± 0.2b 2.0 ± 0.6 0.6 ± 0.2 0.4 ± 0.2
20:2n6 0.2 ± 0.2b 0.1 ± 0.1 0.1 ± 0.0 0.2 ± 0.1
20:4n6 0.2 ± 0.1 0.2 ± 0.1 0.6 ± 0.2 0.7 ± 0.2
20:3n3 0.2 ± 0.2b 0.4 ± 0.2 0.3 ± 0.2 0.2 ± 0.1
20:5n3a 2.5 ± 1.0b 5.4 ± 1.4 8.6 ± 0.9 8.2 ± 2.1
22:0 0.2 ± 0.0b 0.6 ± 0.2 0.2 ± 0.1 0.3 ± 0.2
21:5n3a 0.1 ± 0.1b 1.2 ± 0.4 0.5 ± 0.3 0.4 ± 0.2
22:5n6a 1.2 ± 0.3b 0.3 ± 0.3 1.5 ± 0.4 1.0 ± 0.4
22:5n3a 3.5 ± 1.6 1.8 ± 0.7 0.6 ± 0.4 0.3 ± 0.2
24:0a 0.2 ± 0.0 0.6 ± 0.2 0.3 ± 0.1 0.2 ± 0.1
22:6n3a 6.9 ± 4.3b 1.7 ± 0.8 7.7 ± 1.7 6.7 ± 2.7

Groups
SFA 22.9 ± 5.4 35.4 ± 5.4 30.5 ± 2.8 31.6 ± 3.7
MUFA 11.0 ± 2.0 17.1 ± 3.4 15.5 ± 1.8 17.5 ± 1.2
PUFA 32.9 ± 7.4 22.2 ± 4.4 37.4 ± 4.7 32.4 ± 4.9
n-3 26.0 ± 7.0 13.7 ± 3.4 31.1 ± 4.7 27.6 ± 4.9
n-6 6.3 ± 2.6 3.6 ± 0.8 4.6 ± 0.6 4.0 ± 0.4
aFatty acids showing a significant difference (regression
analysis: p < 0.05) between animals fed Isochrysis sp. com-
pared to Chaetoceros calcitrans throughout the life cycle

bFatty acids that differ significantly (t-test: p < 0.05) from the
respective values for Chaetoceros calcitrans (Table 4)
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modification to key fatty acids in the endocrine regula-
tory system. One such key fatty acid, EPA, is an impor-
tant constituent of phospholipids in all animal tissues,
especially the brain, and is the precursor of the PG3

series of prostaglandins (Braden & Carroll 1986, Har-
wood 1994). Another fatty acid in this pathway, DHA is
enriched in brain synapses and heart tissue, and is
thought to have important roles during neural devel-
opment of larvae (Gunstone & Herslof 2000, Valen-
zuela et al. 2004).

The fatty acid compositions of Isochrysis sp. and
Chaetoceros calcitrans were significantly different from
each other (Fig. 1), in general agreement with previous

studies (Napolitano et al. 1990). There were a number of
differences between the 2 algae at the level of individual
fatty acids, but the most striking differences were in
16:1n7, EPA, DHA and 18C fatty acids. Many of the 18C
fatty acids, as well as 16:1n7, are common in a variety of
organisms, and it is intriguing to see the higher percent-
age of 18:2n6 and 18:3n3 in Isochrysis sp. (t-test; 18:2n6
and 18:3n3, p < 0.001) (Tables 3 & 4). These fatty acids
are rapidly metabolized in animals as they are metabo-
lites of the n-3 and n-6 family of essential fatty acids
(Harwood 1994). The higher content of DHA in Isochry-
sis sp. and EPA in C. calcitrans is of interest as these fatty
acids are known to be crucial for the development and
survival of many marine animals (Støttrup & Attramadal
1992, Koven et al. 1993, Kraul et al. 1993, Lochmann &
Gatlin 1993, Watanabe 1993, Whyte et al. 1994). The 2
algal species, thus, represent a characteristic nutritional
difference between flagellates and diatoms, which might

169

Table 4. Chaetoceros calcitrans and Oikopleura dioica. Fatty
acid compositions of C. calcitrans and O. dioica fed a diet con-
taining only C. calcitrans. Mean fatty acid compositions in the
3 growth phases of O. dioica. The full data set with samples
every 24 h is given in Table B of Appendix 1. The major fatty
acids are given as the percentage of total composition with
standard deviation. Groups: percent proportion of 5 major

groups of fatty acids

Fatty Chaetoceros Oikopleura dioica
acid calcitrans Phase 2 Phase 3 Phase 4

14:0 9.2 ± 6.7 4.8 ± 1.5 9.2 ± 2.9 6.8 ± 1.5
14:1n5 0.2 ± 0.1b 0.6 ± 0.3 0.7 ± 0.1 0.6 ± 0.2
16:0 6.5 ± 4.9b 16.9 ± 3.7 15.4 ± 2.7 15.5 ± 2.2
16:1n7a 8.5 ± 5.5b 5.3 ± 1.6 14.5 ± 4.1 15.2 ± 3.2
16:2n6a 1.7 ± 1.4b 1.7 ± 0.8 0.5 ± 0.5 0.4 ± 0.3
17:0 0.3 ± 0.3b 0.6 ± 0.2 0.5 ± 0.1 0.7 ± 0.2
18:0 1.9 ± 1.4b 8.4 ± 1.7 2.6 ± 1.5 2.6 ± 0.9
18:1n9a 0.3 ± 0.4b 2.5 ± 1.7 1.3 ± 1.7 1.1 ± 0.9
18:1n7a 0.3 ± 0.1b 5.2 ± 2.4 1.6 ± 1.0 1.6 ± 0.5
18:2n6a 0.3 ± 0.2b 1.3 ± 0.4 1.0 ± 0.2 1.2 ± 0.2
18:2n4a 0.4 ± 0.1b 2.3 ± 1.3 0.6 ± 0.7 1.0 ± 1.0
18:3n3a 0.1 ± 0.1b 1.6 ± 0.8 0.7 ± 0.2 1.1 ± 0.2
18:4n3a 0.2 ± 0.1b 1.3 ± 0.7 2.5 ± 0.8 4.6 ± 1.2
18:5n1 1.3 ± 0.5b 3.2 ± 2.0 0.9 ± 0.9 1.3 ± 1.2
20:1n9 0.1 ± 0.0b 2.2 ± 1.0 0.5 ± 0.2 0.4 ± 0.1
20:2n6 0.5 ± 0.3b 0.1 ± 0.1 0.2 ± 0.1 0.2 ± 0.1
20:4n6 0.3 ± 0.2 0.2 ± 0.1 0.9 ± 0.3 0.5 ± 0.1
20:3n3 0.5 ± 0.3b 0.4 ± 0.2 0.2 ± 0.1 0.2 ± 0.1
20:5n3a 6.5 ± 3.1b 5.9 ± 1.2 18.3 ± 5.3 9.9 ± 2.3
22:0 1.1 ± 0.5b 0.6 ± 0.3 0.3 ± 0.1 0.3 ± 0.1
21:5n3a –b 1.1 ± 0.6 0.5 ± 0.4 0.7 ± 0.7
22:5n6a 0.2 ± 0.2b 0.1 ± 0.2 0.2 ± 0.1 0.1 ± 0.1
22:5n3a 6.6 ± 4.8 1.6 ± 0.9 0.6 ± 0.5 0.5 ± 0.4
24:0a 0.5 ± 0.3 0.6 ± 0.3 0.2 ± 0.1 0.2 ± 0.1
22:6n3a 0.3 ± 0.1b 1.6 ± 0.9 4.0 ± 0.9 4.5 ± 1.5

Groups
SFA 20.2 ± 8.4 35.4 ± 5.4 30.5 ± 2.8 27.5 ± 2.8
MUFA 11.8 ± 5.8 17.3 ± 3.3 19.3 ± 2.0 19.1 ± 2.3
PUFA 19.0 ± 6.0 22.4 ± 4.4 31.2 ± 3.9 26.2 ± 3.5
n-3 14.2 ± 5.8 13.6 ± 3.0 26.9 ± 5.0 21.5 ± 3.1
n-6 3.0 ± 1.5 3.3 ± 0.8 2.8 ± 0.6 2.3 ± 0.4
aFatty acids showing a significant difference (regression
analysis: p < 0.05) between animals fed Isochrysis sp. com-
pared to Chaetoceros calcitrans throughout the life cycle

bFatty acids that differ significantly (t-test: p < 0.05) from the
respective values for Isochrysis sp. (Table 3)

Table 5. Oikopleura dioica. Fatty acid composition of O. dio-
ica fed a standard food regime. Mean fatty acid compositions
in the 3 growth phases of O. dioica. The full data set with sam-
ples every 24 h is given in Table C of Appendix 1. The major
fatty acids are given as a percentage of total composition with
standard deviation. Groups: percent proportion of 5 major 

groups of fatty acids

Fatty Oikopleura dioica: standard food regime
acid Phase 2 Phase 3 Phase 4

14:0a 5.3 ± 1.1 9.0 ± 2.1 7.9 ± 3.0
14:1n5a 0.3 ± 0.1 0.1 ± 0.1 0.1 ± 0.1
15:0a 1.5 ± 0.3 1.3 ± 0.3 1.3 ± 0.4
16:0a 14.0 ± 2.6 16.1 ± 2.3 15.7 ± 3.5
16:1n7a 14.2 ± 2.6 16.3 ± 2.4 15.9 ± 3.6
16:2n6a 1.5 ± 0.8 0.8 ± 0.4 0.6 ± 0.3
17:0a 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.2
18:0 4.3 ± 1.2 3.7 ± 1.4 2.3 ± 0.9
18:1n7 1.3 ± 1.8 2.4 ± 1.3 1.9 ± 0.5
18:2n6a 1.3 ± 0.3 1.4 ± 0.3 2.0 ± 0.4
18:2n4a 1.8 ± 1.0 0.8 ± 0.6 0.6 ± 0.4
18:3n3a 2.3 ± 0.8 2.2 ± 0.7 2.6 ± 0.8
18:4n3a 2.8 ± 1.0 6.1 ± 2.0 6.8 ± 2.0
18:5n1 2.3 ± 1.1 1.3 ± 0.9 1.0 ± 0.6
20:0a 0.4 ± 0.1 0.4 ± 0.1 0.5 ± 0.2
20:1n9a 0.9 ± 0.3 0.6 ± 0.2 0.3 ± 0.1
20:4n6a 0.4 ± 0.1 0.4 ± 0.1 0.7 ± 0.1
20:5n3a 7.7 ± 1.2 7.2 ± 1.9 10.4 ± 2.5
21:5n3a 0.6 ± 0.2 1.1 ± 0.4 1.2 ± 0.4
22:5n6a 1.6 ± 1.1 0.9 ± 0.8 0.8 ± 0.6
24:0a 0.4 ± 0.2 0.4 ± 0.1 0.3 ± 0.1
22:6n3a 5.7 ± 1.8 6.9 ± 2.8 8.0 ± 2.6

Groups
SFA 26.8 ± 4.5 31.1 ± 5.5 28.0 ± 4.7
MUFA 21.6 ± 3.9 22.7 ± 5.6 20.8 ± 3.7
PUFA 33.0 ± 4.0 31.7 ± 6.9 37.0 ± 4.4
n-3 19.7 ± 4.0 23.4 ± 7.3 29.3 ± 4.2
n-6 4.8 ± 1.5 3.5 ± 0.9 4.3 ± 0.8
aFatty acids showing a significant difference (regression
analysis: p < 0.05) between animals fed a standard com-
pared to a limited food regime throughout the life cycle
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affect animals experiencing higher levels of each of
these types of algae at different times of the year. Indeed,
there are scattered studies of appendicularian abun-
dance (Uye & Ichino 1995, Uye et al. 2000, Vargas et al.
2002, López-Urrutia et al. 2003, Tomita et al. 2003) that
show peaks of Oikopleura density correlating with in-
creased primary production, often beginning with a
spring diatom bloom. However, although O. dioica
clearly responds in its reproductive output to increased
primary production (Troedsson et al. 2002), the regula-
tion of Oikopleura population dynamics is more complex
and also includes, for example, predation pressure, in
addition to the quantity and quality of nutrition available.

The difference in fatty acid compositions of Isochry-
sis sp. and Chaetoceros calcitrans did indeed transfer
into different compositions in Oikopleura dioica when
fed a diet of only one or the other of these algae.
Regression analysis on animals fed a diet of only

Isochrysis sp. or C. calcitrans did not show a significant
difference (p[slope] = 0.3; p[elevation] = 0.9) in total
quantity of fatty acids throughout development
(Fig. 2A). As seen in the PC plot (Fig. 2B), however,
animals aged 3 d and older (Phase 3) showed a clear
difference in fatty acid composition. Approximately
47% of all fatty acids (Tables 3 & 4, Tables A & B in
Appendix 1) showed a significant difference (p < 0.05)
in a regression analysis. The 2 fatty acids characteristic
of flagellates (DHA and 18:4n3) showed an increased
level in O. dioica given only Isochrysis sp., while ani-
mals given only C. calcitrans had increased levels of
EPA and 16:1n7, characteristic of diatom composition
(Napolitano et al. 1990, Graeve et al. 1994, 1997, Falk-
Petersen et al. 1998, Scott et al. 1999). The 2 metabo-
lites of the n-3 (18:3n3) and the n-6 (18:2n6) synthetic
cascade showed a significant accumulation in animals
fed Isochrysis sp. (18:3n3: p[slope] < 0.001, p[elevation]
< 0.001; 18:2n6: p[slope] = 0.31, p[elevation] < 0.001)
(Tables 3 & 4). In Isochrysis sp., 18:2n6 and 18:3n3 rep-
resented 4.3 and 3.3%, respectively, of the fatty acid
pool. In contrast, C. calcitrans showed corresponding
values of 0.3 and 0.1%. These results agree with those
found for herbivorous copepods (Graeve et al. 1997),
the major component of marine zooplankton, where
the fatty acid composition reflects that in the diet. The
quality of microalgal fatty acid composition has been
suggested to be more important for optimal growth
and development than protein or carbohydrate compo-
sitions (Holland 1978, Webb & Chu 1983).
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Table 6. Fatty acid composition of Oikopleura dioica fed a
limited food regime. Mean fatty acid compositions in the 3
growth phases of O. dioica. The full data set with samples
every 24 h is given in Table D of Appendix 1. The major fatty
acids are given as a percentage of total composition with stan-
dard deviation. Groups: percent proportion of 5 major groups 

of fatty acids

Fatty Oikopleura dioica: limited food regime
acid Phase 2 Phase 3 Phase 4

14:0a 4.6 ± 1.1 4.3 ± 0.9 4.1 ± 0.9
14:1n5a 0.3 ± 0.2 0.2 ± 0.1 0.2 ± 0.1
15:0a 1.5 ± 0.3 1.3 ± 0.5 1.3 ± 0.3
16:0a 15.4 ± 2.9 15.8 ± 3.8 16.5 ± 2.7
16:1n7a 15.6 ± 3.0 16.0 ± 3.9 16.8 ± 2.7
16:2n6a 1.3 ± 0.7 1.2 ± 0.7 0.8 ± 0.5
17:0a 0.6 ± 0.1 0.6 ± 0.2 0.6 ± 0.2
18:0 5.2 ± 1.5 5.1 ± 2.2 5.2 ± 2.4
18:1n7 2.0 ± 1.8 2.1 ± 1.7 2.8 ± 0.8
18:2n6a 1.2 ± 0.3 1.1 ± 0.4 1.6 ± 0.6
18:2n4a 1.5 ± 0.9 1.6 ± 0.9 0.6 ± 0.7
18:3n3a 2.0 ± 1.0 1.2 ± 0.5 1.7 ± 0.9
18:4n3a 2.0 ± 0.6 3.8 ± 1.8 5.5 ± 3.0
18:5n1 2.0 ± 1.1 2.2 ± 1.0 1.5 ± 0.8
20:0a 0.5 ± 0.1 0.5 ± 0.1 0.8 ± 0.2
20:1n9a 1.2 ± 0.3 0.8 ± 0.3 1.2 ± 0.5
20:4n6a 0.4 ± 0.1 0.3 ± 0.1 0.6 ± 0.2
20:5n3a 7.5 ± 2.4 6.7 ± 2.2 7.7 ± 3.6
21:5n3a 0.5 ± 0.2 0.5 ± 0.3 0.7 ± 0.3
22:5n6a 0.7 ± 0.8 1.7 ± 1.0 1.0 ± 0.9
24:0a 0.5 ± 0.2 0.4 ± 0.2 0.3 ± 0.1
22:6 n3a 4.9 ± 2.0 3.8 ± 2.0 5.4 ± 2.6

Groups
SFA 28.7 ± 5.4 28.4 ± 6.9 29.1 ± 3.7
MUFA 25.2 ± 5.0 23.8 ± 3.6 24.3 ± 3.1
PUFA 28.4 ± 5.5 29.0 ± 7.6 32.3 ± 7.7
n-3 17.5 ± 5.3 16.7 ± 6.2 21.0 ± 5.4
n-6 3.6 ± 1.1 4.4 ± 1.4 4.1 ± 1.2
aFatty acids showing a significant difference (regression
analysis: p < 0.05) between animals fed a limited compared
to a standard food regime throughout the life cycle
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Table 7. Oikopleura dioica. Fatty acid compositions of O. dioica males and females under different dietary regimes. Composition
of a subset of fatty acids from mature O. dioica. Full compositions are given in Table E of Appendix 1. Groups: percent propor-

tion of 5 major groups of fatty acids

Fatty Isochrysis sp. Chaetoceros calcitrans Standard Limited
acid Male Female Male Female Male Female Male Female

14:0 9.2 ± 0.8 9.0 ± 0.7 6.4 ± 1.4 7.2 ± 1.8 8.1 ± 0.9 8.8 ± 0.9 7.6 ± 1.5 7.4 ± 0.3
16:0 20.5 ± 0.9a 14.2 ± 0.8 16.8 ± 2.2 14.3 ± 1.4 15.0 ± 1.7 13.7 ± 0.8 18.5 ± 1.8a 14.7 ± 0.7
16:1n7 14.1 ± 1.1 13.3 ± 0.7 15.0 ± 3.4 15.3 ± 3.3 13.6 ± 0.7a 15.0 ± 1.1 15.3 ± 1.7 16.4 ± 1.0
18:0 3.7 ± 1.0a 1.9 ± 0.6 3.0 ± 1.0 2.3 ± 0.7 2.6 ± 0.3a 1.7 ± 0.2 2.3 ± 0.4a 1.8 ± 0.3
18:1n7 2.8 ± 0.3a 2.0 ± 0.3 1.9 ± 0.4a 1.3 ± 0.4 1.9 ± 0.3a 1.4 ± 0.1 1.8 ± 0.3a 1.3 ± 0.3
18:2n6 1.5 ± 0.5a 2.1 ± 0.1 1.2 ± 0.2 1.2 ± 0.2 1.3 ± 0.2a 1.7 ± 0.1 1.4 ± 0.1a 1.6 ± 0.1
18:3n3 2.1 ± 0.5a 3.3 ± 0.2 1.0 ± 0.3 1.2 ± 0.1 2.1 ± 0.5a 2.9 ± 0.2 1.7 ± 0.2a 2.3 ± 0.3
18:4n3 6.1 ± 1.5a 12.1 ± 1.0 3.9 ± 1.3 5.2 ± 0.9 6.3 ± 1.4a 11.0 ± 0.9 6.2 ± 1.0a 9.1 ± 1.0
20:1n7 0.1 ± 0.1a 0.2 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0a 0.2 ± 0.0 0.1 ± 0.0a 0.2 ± 0.0
20:4n6 0.5 ± 0.1a 0.8 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 0.6 ± 0.1 0.7 ± 0.1 0.5 ± 0.0 0.6 ± 0.1
20:5n3 6.5 ± 1.5a 9.9 ± 0.5 8.4 ± 1.5a 11.4 ± 2.1 8.1 ± 1.3a 11.0 ± 1.3 10.1 ± 2.7 12.3 ± 1.1
22:0 0.1 ± 0.1a 0.5 ± 0.1 0.2 ± 0.0a 0.3 ± 0.1 0.2 ± 0.1a 0.4 ± 0.1 0.1 ± 0.1a 0.4 ± 0.1
22:5n6 0.7 ± 0.2a 1.4 ± 0.3 –a 0.1 ± 0.1 0.6 ± 0.1a 0.8 ± 0.1 0.2 ± 0.1a 0.4 ± 0.1
22:6n3 4.5 ± 1.3a 9.0 ± 1.4 3.5 ± 1.1a 5.5 ± 1.2 4.6 ± 1.1a 7.5 ± 0.9 5.6 ± 0.9a 7.6 ± 0.4

Groups
SFA 35.9 ± 1.6a 27.4 ± 1.2 28.7 ± 2.8 26.5 ± 2.4 27.9 ± 2.0 26.3 ± 1.2 30.5 ± 2.4a 26.3 ± 0.8
MUFA 18.3 ± 1.2a 16.6 ± 0.8 19.3 ± 3.6 18.8 ± 3.4 17.9 ± 1.1 17.9 ± 1.3 18.6 ± 1.7 19.4 ± 1.1
PUFA 25.1 ± 2.7a 40.2 ± 1.9 25 ± 3.2 28.8 ± 2.8 29.6 ± 2.6a 37.4 ± 1.9 29.0 ± 3.2 35.7 ± 1.6
n-3 20.2 ± 2.6a 34.9 ± 1.8 18.7 ± 2.5a 24.3 ± 2.6 22.8 ± 2.3a 32.9 ± 1.8 24.9 ± 3.1a 31.8 ± 1.6
n-6 3.4 ± 0.6a 4.6 ± 0.3 3.1 ± 0.4 3.5 ± 0.4 2.7 ± 0.3 2.9 ± 0.2 2.4 ± 0.2a 2.3 ± 0.2
aValues showing significant differences (t-test, p < 0.05) between males and females for a given food regime (shown beside
male value only)
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The qualitative differences in appendicularians gra-
zing on different food sources might influence growth
and survival rates in organisms that prey on appendic-
ularians. In marine species, the conversion of EPA to
DHA is very limited (Kanazawa 1985), and it has been
reported that DHA is superior to EPA as an essential
fatty acid for growth and survival in marine fish larvae
(Watanabe 1993). Indeed, the DHA level of appendic-

ularians is significantly reduced when given a DHA-
poor nutrient. Furthermore, there was a difference
between individual fatty acids in animals fed Isochry-
sis sp. versus Chaetoceros calcitrans that correlated
with the fatty acid differences in the algae (Tables 3 &
4), suggesting that Oikopleura, which transfers energy
from micro-algae to fish, can also mediate nutritional
value between trophic levels.

A regression analysis on animals fed a standard ver-
sus a limited food regime revealed significant differ-
ences (p[slope] = 0.18; p[elevation] < 0.05) in their
respective total quantities of fatty acids throughout
development (Fig. 3A). The 2 groups clearly separated
in the multivariate analysis (Fig. 3B, Tables 5 & 6),
where 66% of all fatty acids showed significant differ-
ences (p < 0.05). Separation between the 2 groups was
observed continuously throughout the life cycle, and
males separated from females at maturity (Fig. 4). The
total fatty acid difference between animals fed stan-
dard and limited diets reflects the total body mass dif-
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Table 8. Oikopleura dioica. Fatty acid composition of O. dioica fecal pellets under different dietary regimes. The major fatty acids
are given as a percentage of total composition with standard deviation of the fecal pellets at the specified times. Full fatty acid
compositions of fecal pellets are given in Table F of Appendix 1. Groups: percent proportion of 5 major groups of fatty acids

Fatty Qualitative diet Quantitative diet
acid Isochrysis sp. Chaetoceros calcitrans Standard Limited

96 h 144 h 96 h 144 h 112 h 136 h 160 h 112 h 136 h 160 h

14:0 5.7 ± 1.7 7.1 ± 0.8 4.2 ± 1.5 2.2 ± 0.6 4.4 ± 1.5 7.3 ± 2.6 4.4 ± 1.5 1.8 ± 0.6 2.7 ± 1.0 2.8 ± 0.8
14:1n5 0.7 ± 0.3 0.7 ± 0.4 1.2 ± 0.4 0.9 ± 0.6 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.2 0.4 ± 0.2
15:0 2.3 ± 0.3 1.8 ± 0.4 1.9 ± 0.6 1.6 ± 0.7 1.2 ± 0.6 1.6 ± 0.2 1.8 ± 0.7 0.8 ± 0.4 1.4 ± 0.4 1.7 ± 0.6
16:0 25.2 ± 3.2 19.0 ± 2.2 19.9 ± 7.7 13.3 ± 4.8 15.2 ± 4.4 22.2 ± 3.9 16.7 ± 4.5 11.1 ± 3.1 16.5 ± 3.5 18.6 ± 3.5
16:1n7 3.4 ± 1.1 2.4 ± 0.6 4.7 ± 3.0 2.0 ± 0.7 10 ± 11 4.2 ± 2.1 3.1 ± 1.6 1.7 ± 0.8 15.4 ± 4.5 2.3 ± 1.7
16:2n6 1.5 ± 0.6 1.1 ± 0.8 1.7 ± 0.9 0.9 ± 0.4 0.5 ± 0.5 0.3 ± 0.6 2.4 ± 0.5 – – –
17:0 0.6 ± 0.4 0.5 ± 0.2 0.7 ± 0.3 0.4 ± 0.3 0.8 ± 0.2 1.1 ± 0.3 1.1 ± 0.3 0.7 ± 0.3 0.9 ± 0.3 1.2 ± 0.3
18:0 13.5 ± 1.0 10.4 ± 1.3 8.6 ± 3.0 10.2 ± 3.3 9.1 ± 2.3 14.4 ± 5.6 8.8 ± 1.9 8.1 ± 1.9 10.5 ± 2.4 13.4 ± 2.8
18:1n9 2.3 ± 0.9 1.8 ± 0.6 4.2 ± 2.6 3.5 ± 2.8 3.7 ± 1.8 2.6 ± 1.4 4.7 ± 1.5 6.5 ± 1.2 6.8 ± 1.8 3.4 ± 1.3
18:1n7 5.3 ± 3.0 5.3 ± 1.5 3.4 ± 3.7 3.9 ± 3.6 4.5 ± 1.3 3.9 ± 0.8 5.2 ± 1.5 2.2 ± 1.5 2.9 ± 2.2 5.8 ± 1.8
18:2n6 0.8 ± 0.4 0.6 ± 0.3 0.6 ± 0.3 0.7 ± 0.6 0.8 ± 0.2 0.3 ± 0.3 0.5 ± 0.2 0.2 ± 0.2 0.2 ± 0.2 0.3 ± 0.1
18:2n4 2.2 ± 0.6 2.1 ± 0.5 3.3 ± 1.6 1.4 ± 0.9 1.3 ± 1.6 0.4 ± 0.8 – 3.6 ± 0.7 2.8 ± 0.8 1.0 ± 1.4
18:3n3 0.5 ± 0.1 0.5 ± 0.2 0.3 ± 0.1 0.3 ± 0.1 0.6 ± 0.3 0.3 ± 0.1 0.3 ± 0.1 0.2 ± 0.1 0.2 ± 0.2 0.2 ± 0.2
18:4n3 0.2 ± 0.3 1.3 ± 0.5 – 0.9 ± 0.3 1.5 ± 0.4 0.2 ± 0.2 – 0.1 ± 0.1 0.1 ± 0.2 0.2 ± 0.3
18:5n1 2.8 ± 0.6 3.9 ± 1.0 3.8 ± 2.0 4.9 ± 1.8 2.8 ± 2.0 2.1 ± 0.8 4.6 ± 0.8 4.7 ± 1.2 3.6 ± 1.3 3.3 ± 1.1
20:0 0.7 ± 0.4 0.7 ± 0.7 0.6 ± 0.2 0.7 ± 0.9 0.5 ± 0.2 0.8 ± 0.2 1.0 ± 0.3 0.4 ± 0.1 0.6 ± 0.2 0.9 ± 0.2
20:1n9 2.1 ± 1.2 2.2 ± 1.0 2.0 ± 0.9 4.5 ± 3.4 1.5 ± 0.6 1.9 ± 1.0 0.9 ± 1.1 1.7 ± 0.5 1.9 ± 0.5 2.3 ± 0.5
20:4n6 0.2 ± 0.2 0.1 ± 0.1 0.1 ± 0.1 – 0.1 ± 0.3 0.2 ± 0.2 0.2 ± 0.2 – – 0.3 ± 0.4
20:3n3 0.6 ± 0.8 0.6 ± 0.3 0.3 ± 0.4 0.5 ± 0.3 0.7 ± 0.4 0.5 ± 0.7 – 0.8 ± 0.2 1.1 ± 0.2 0.4 ± 0.4
20:5n3 2.7 ± 0.8 3.1 ± 1.8 3.2 ± 1.8 4.9 ± 1.3 1.9 ± 1.9 1.1 ± 1.5 0.3 ± 0.4 4.4 ± 1.4 3.4 ± 1.0 2.2 ± 2.1
22:0 – 0.4 ± 0.4 0.1 ± 0.2 0.4 ± 0.2 0.3 ± 0.2 0.3 ± 0.4 0.1 ± 0.2 0.3 ± 1.0 0.5 ± 0.2 0.3 ± 0.3
21:5n3 – 1.1 ± 1.0 0.4 ± 0.9 0.7 ± 1.0 0.3 ± 0.2 0.5 ± 0.2 0.2 ± 0.4 0.2 ± 0.1 0.3 ± 0.2 0.4 ± 0.3
22:5n6 – 0.1 ± 0.1 0.1 ± 0.2 0.2 ± 0.2 1.4 ± 1.6 0.8 ± 1.0 0.1 ± 0.1 3.5 ± 1.3 2.6 ± 1.4 1.3 ± 1.4
24:0 – 0.7 ± 0.9 0.1 ± 0.3 0.2 ± 0.3 0.5 ± 0.4 0.4 ± 0.5 – 0.5 ± 0.3 0.8 ± 0.5 0.5 ± 0.5
22:6n3 1.1 ± 0.4 0.3 ± 0.3 0.6 ± 0.5 0.2 ± 0.2 0.9 ± 0.4 0.8 ± 0.6 3.3 ± 0.8 – – 1.1 ± 1.5

Groups
SFA 48.1 ± 3.8 40.4 ± 3.0 36 ± 8.4 29 ± 6.0 32.1 ± 5.2 48 ± 7.3 33.9 ± 5.2 23.6 ± 3.9 33.9 ± 4.4 39.5 ± 4.6
MUFA 15.3 ± 3.8 14.4 ± 2.5 17 ± 5.7 16 ± 5.9 27 ± 11 20 ± 3.2 15.4 ± 2.9 14.1 ± 2.2 18.2 ± 5.6 18.6 ± 3.2
PUFA 14.4 ± 1.7 17.0 ± 2.9 17 ± 3.6 18.4 ± 3.3 17 ± 4.5 10.1 ± 2.8 18.1 ± 2.3 26.2 ± 2.7 20.3 ± 2.9 16 ± 4.1
n-3 5.1 ± 1.2 8.2 ± 2.5 5.2 ± 2.3 8.7 ± 2.5 6.0 ± 2.1 3.4 ± 1.8 4.2 ± 1.0 5.9 ± 1.4 5.2 ± 1.1 4.4 ± 2.7
n-6 2.5 ± 0.7 1.9 ± 0.9 2.6 ± 1.0 1.8 ± 0.7 2.8 ± 1.7 1.6 ± 1.2 5.2 ± 1.6 3.7 ± 1.3 2.8 ± 1.4 2.4 ± 1.8

Table 9. Instantaneous net lipid accumulation efficiency
(NLAEi) under standard and limited food conditions. IRFA:
fatty acids cleared from the water in 1 h; ΔGanimals: net growth
of soma and gonad fatty acid during 1 h; PFA: fatty acids
excreted as fecal pellets in 1 h. Further details are given in 

‘Materials and methods’

Food IRFA ΔGanimals PFA NLAE
regime (ng FA h–1) (ng FA h–1) (ng FA h–1) (%)

Standard 12.6 1.0 2.8 10.0  
Limited 3.9 0.6 2.0 32.0
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ferences resulting from the 2 regimes. The body mass
difference in animals given a standard versus limited
food regime was previously shown to reflect differ-
ences in reproductive output, as somatic growth
appeared non-responsive to increased nutrition avail-
able (Troedsson et al. 2002). However, there was a dif-
ference (t-test, p < 0.05) in the total fatty acid quantities
as early as 48 h post-fertilization, well before the repro-
ductive organ showed significant growth. A possible
explanation for increased fatty acid content during
somatic growth is that Oikopleura dioica stores fatty
acids as high-energy droplets. Indeed, Cima et al.
(2002) showed that lipid storage occurs in the form of
droplets, mainly in the right gastric lobe and vertical
intestine. These droplets would have a minimal impact
on overall trunk size, but would enhance survival and
reproductive output.

The fatty acid composition in Oikopleura dioica was
also sex-dependent. In a principal component analysis,
the males and females were clearly separated from
each other when either the quality or quantity of the
food regimes was modified (Fig. 4). In females, there
was a significant increase in some essential fatty acids
required for larval growth and development (Table 7).

Together with EPA and DHA, 18:3n3 and 18:2n6 were
significantly up-regulated in females compared to
males. Considering that at maturity the gonad ac-
counts for ~50% of the total body size of the organism,
this indicates storage of these essential fatty acids in
oocytes, providing nutrition for larvae throughout
organogenesis up to metamorphosis when the animal
starts to actively feed. In females, the up-regulation of
EPA and DHA was noteworthy (Table 7) because both
are important in subsequent larval development.

Although animals experiencing the limited regime
were restricted to a diet only 17% of the standard food
regime, the total fatty acid content of individual fecal
pellets did not show any significant difference
(p[slope] = 0.19; p[elevation] = 0.57) (Fig. 5A). This
agrees with the observation of López-Urrutia & Acuña
(1999) that pellets are packed in the foregut, which
empties as soon as pellets are formed. Pellets are then
further transported through the digestive tract, and
will therefore each contain the same quantity of food.
On the other hand, they showed that gut passage time
(GPT) varied with food concentration. This implies that
the amount of fatty acids in excreted fecal pellets is
independent of the quantity of food available for inges-
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tion. It is instead the slower gut passage time that
results in lower total excretion of fatty acids when food
is scarce (Fig. 5B).

There was an apparent 3-fold difference in the net
lipid accumulation efficiency (NLAE) of Oikopleura
dioica in the standard versus limited food regime
(Table 9). Possible explanations include (1) changes in
animal behavior, some of which are linked to clearance

rate (CR) (e.g. tail beat frequency and tail beat arrest),
(2) increased clogging of filters with increasing food
concentration, (3) plasticity of filter structure in re-
sponse to altered food concentrations. Several studies
have shown a nearly fixed CR for O. dioica, with only
slight changes over very large ranges of food concen-
trations (Paffenhöfer 1975, King 1982, Bochdansky &
Deibel 1999, Acuña & Kiefer 2000). Bochdansky &
Deibel (1999) found that feeding effort was reduced in
high food concentrations, although this factor was
small and did not explain the slight decrease in CR.
They argued that the discrepancy was due to clogging
of filters by the algae. Selander & Tiselius (2003)
showed that changes in tail beat frequency had some
influence on CR with increasing food concentration,
but the greatest effect in their model was unexplained
residual error. They were, therefore, unable to rule out
the clogging hypothesis.

If filter clogging was solely responsible for masking
an equivalent NLAE between the standard and limited
food regimes, rather than the result obtained in Table 9,
this would imply that the number of particles trapped in
the filters would account for approximately 50% of the
standard food regime. With a house renewal rate of
0.25 h–1 at 15°C (C. Troedsson, J.L. Acuña, R. Skinees &
E.M. Thompson unpubl. data), a discarded house
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would then trap almost 20 000 algal cells. Examination
of discarded houses indicates that this figure would be
a significant overestimation. Although increased clog-
ging of filters can be an important factor in partly
explaining the apparent difference in NLAE, plastic
response in the differential regulation of filter struc-
tures may also play a role (C. Troedsson, J.L. Acuña, R.
Skinnes & E.M. Thompson unpubl. data). Feeding ex-
periments on the fresh water filter feeding zooplankton
Daphnia sp. showed discrepancies in the total energy
budget between long-term and short-term experiments
(Lampert 1977, Gliwicz 1990), where assimilation in
short-term experiments was considerably higher. This
was solved upon the discovery that Daphnia sp. re-
sponded to varying food concentrations by modifying
their filtering screens (Lampert 1994). The difference in
the NLAE between Oikopleura dioica given a standard
versus a limited food regime might also be explained in
a similar manner, through modification of filter struc-
ture to varying food concentrations available.

In conclusion, we have demonstrated that the fatty
acid composition of Oikopleura dioica reflects dietary
composition, in agreement with data on other zoo-
planktonic filter feeders. This suggests that the nutri-
tional quality of primary production would be trans-
ferred to predators of O. dioica, and could have effects
on their early ontogenetic stages (Støttrup & Attra-
madal 1992, Koven et al. 1993, Kraul et al. 1993,
Lochmann & Gatlin 1993, Watanabe 1993, Whyte et al.
1994). It is also intriguing that some key fatty acids in
endocrine signaling pathways are up-regulated as
gametogenesis commences. There is a strong transi-
tion in allocation of resources to reproductive output
versus somatic growth in O. dioica. Arrest of endocy-
cling in the oikoplastic epithelium responsible for
house production is concomitant with acceleration in
growth of oocytes (Ganot & Thompson 2002). Exerting
stress on animals prior to this point results in auto-
phagy of the epithelium with a premature acceleration
in oocyte differentiation (P. Ganot & E.M. Thompson
unpubl. data). This suggests operation of a rapid in-
ductive signal, switching between epithelial growth
and house production on one hand, and oocyte matu-
ration on the other. It will be of interest to determine
whether some of the potential endocrine signaling
pathways suggested by shifts in fatty acid profiles in
this study play roles in such rapid switches in O. dioica.
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