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abstract: We present an individual-based model that uses artificial
evolution to predict fit behavior and life-history traits on the basis
of environmental data and organism physiology. Our main purpose
is to investigate whether artificial evolution is a suitable tool for
studying life history and behavior of real biological organisms. The
evolutionary adaptation is founded on a genetic algorithm that
searches for improved solutions to the traits under scrutiny. From
the genetic algorithm’s “genetic code,” behavior is determined using
an artificial neural network. The marine planktivorous fish Müller’s
pearlside (Maurolicus muelleri) is used as the model organism because
of the broad knowledge of its behavior and life history, by which the
model’s performance is evaluated. The model adapts three traits:
habitat choice, energy allocation, and spawning strategy. We present
one simulation with, and one without, stochastic juvenile survival.
Spawning pattern, longevity, and energy allocation are the life-history
traits most affected by stochastic juvenile survival. Predicted behavior
is in good agreement with field observations and with previous mod-
eling results, validating the usefulness of the presented model in
particular and artificial evolution in ecological modeling in general.
The advantages, possibilities, and limitations of this modeling ap-
proach are further discussed.

Keywords: individual-based model, artificial neural network, ge-
netic algorithm, stochastic environment, habitat selection, energy
allocation.

Modeling has become an important approach in behav-
ioral ecology (Stephens and Krebs 1986; DeAngelis and
Gross 1992; Krebs and Davies 1997) because of the com-
plexity of the living world. The advent of individual-based
models (IBMs; Huston et al. 1988) has provided ecologists
with a flexible tool that allows populations to be simulated
from their individual members. This approach has several
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advantages, most notably the inclusion of individual var-
iability, spatial detail, and easy comparisons with obser-
vational data performed on individuals (Huston et al.
1988). Another advantage of IBMs is that the approach
has the same apparent unit as evolution—namely, indi-
viduals. This allows evolutionary motivation for behavior
to be implemented in IBMs using adaptive models based
on the genetic algorithm (GA; Holland 1975). The GA
applies the principle of evolution by natural selection to
search for increasingly better solutions to a given problem.
Solutions are presented in the form of a numerical “genetic
code” (Holland 1975) that expresses the trait(s) under
scrutiny. As with the gene pool of a real population, the
pool of codes evolves over time as a result of mutations,
recombinations, and selection within the constraints im-
posed by the outer environment and the physiology of the
organisms. The code may further be translated into be-
havior using an artificial neural network (ANN), a highly
simplified model of the decision process in a nervous sys-
tem (Rummelhart et al. 1986). The GA code is used in
the ANN for differential weighting of the information of
importance for behavioral decisions. This modeling ap-
proach is termed an individual-based neural network ge-
netic algorithm (ING) model (Huse and Giske 1998), and
we have shown that this modeling approach yields be-
havioral solutions similar to those of conventional optim-
ization models (Huse et al. 1999).

Normally the solutions in a GA are evaluated and sorted
according to an a priori defined fitness criterion, and only
the individuals possessing phenotype(s) with the highest
fitness are allowed to reproduce (Goldberg 1989). It can
sometimes be valuable to avoid the use of fitness mea-
sures, which severely restrict the inclusion of stochasticity,
density dependence, and games in behavioral models.
Individual-based models allow the use of a different def-
inition of fitness. Instead of rate maximization, one can
simulate the entire life history of a population of organ-
isms, including spatial movements, foraging, growth, pred-
ator avoidance, and reproduction. A simulated individual
will then contribute to the “gene pool” based on its ca-
pability of reproducing its genetic code through offspring.
This capability will reflect its behavioral strategies: good
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strategies are those that best promote offspring production
in a given environment.

Artificial evolution as described above is commonly ap-
plied in the field of artificial life (A-life; Langton 1989).
To the best of our knowledge, ING models applying emer-
gent fitness (or “endogenous fitness”; Mitchell and Forrest
1995) have previously been applied only to simple artificial
scenarios (Ackley and Littman 1991; Menczer and Belew
1996) based on imaginary “agents” and never to a complex
biological model. Our main purpose is therefore to in-
vestigate whether artificial evolution is a suitable tool for
studying life history and behavior of real biological or-
ganisms. This is addressed by studying the role of en-
vironmental stochasticity on behavior and life-history
strategies of the mesopelagic fish Müller’s pearlside
(Maurolicus muelleri) using an ING model. Furthermore,
we discuss the pros and cons of artificial evolution com-
pared to the traditional fitness-based approaches in be-
havioral ecology and life-history theory in the context of
the results of the simulation model.

Model Description

Model Organism Description

Maurolicus muelleri (Stormiiformes, Sternoptychidae) is
an abundant midwater fish found worldwide on conti-
nental slopes (Gjøsæter 1984; Kawaguchi and Mauchline
1987). It performs extensive diel vertical migrations
(DVMs; Giske et al. 1990; Baliño and Aksnes 1993; Ras-
mussen and Giske 1994; Goodson et al. 1995) and feeds
visually on copepods and other zooplankton (Gjøsæter
1981). It is a multiple-batch spawner (Melo and Armstrong
1991), with a spawning season that stretches from March
to September in Norwegian waters. This species attains
reproductive maturity after 1 yr, and the fish seldom reach
an age exceeding 3 yr (Gjøsæter 1981). The local popu-
lations are subject to substantial interannual variation in
recruitment (Kristoffersen and Salvanes 1998). During
winter, M. muelleri is located in two distinct vertical layers
that can be detected by acoustic methods (Giske et al. 1990;
Baliño and Aksnes 1993). Juveniles constitute the upper
sound-scattering layer (SSL), and adults constitute the
lower SSL. The main predators of M. muelleri in Nor-
wegian waters are blue whiting Micromesistius poutassou
(Risso), saithe Pollachius virens L., and Atlantic salmon
Salmo salar L. (Rasmussen and Giske 1994).

The reason for using M. muelleri as a model organism
is the relatively broad knowledge of its life history and
vertical migration behavior. This knowledge is attributed
to both field observations (see, e.g., Gjøsæter 1981; Melo
and Armstrong 1991; Rasmussen and Giske 1994; Good-
son et al. 1995; Salvanes and Stockley 1996) and modeling

studies (Giske and Aksnes 1992; Rosland and Giske 1994,
1997). This allows us to compare the ING predictions with
both observations and prior modeling predictions. Ros-
land and Giske (1994) modeled vertical distribution of M.
muelleri on a single day in a western Norwegian fjord,
while Rosland and Giske (1997) modeled DVM behavior
through the entire life cycle. We have kept the environment
and physiological properties as similar as possible to the
stochastic dynamic programming models of Rosland and
Giske (1994, 1997) in order to permit comparison.

The ING Concept

Genetic algorithms have been widely used in A-life theory
and research to evolve behavioral rules in agent-based
models (see review by Mitchell and Forrest 1995). The
“agent” in agent-based models is directly analogous to an
“individual” in IBMs (Uchmanski and Grimm 1996; Par-
rott and Kok 2000). Each type of behavior (or trait) is
represented in the GA in the form of a numerical “genetic
code.” An individual’s genetic code must not be confused
with real biological genetic material (DNA), and therefore
terminology from Goldberg (1989) will be used. The GA
analogue of a biological chromosome is a “string,” the
analogue of a gene is a “character,” and each alternative
of a character (an allele) is a “character value.” It should
be noted that the genetic strings applied here are haploid.
Individuals in the populations may differ with respect to
the character values on their string. During a simulation,
the GA searches for increasingly better behavior over many
generations, in response to the variables affecting the fit-
ness of an individual, by adapting the numerical values in
the genetic code. The adaptation in a GA model is similar
to biological adaptation: organisms that survive until re-
production send their character values off to the next gen-
eration in proportion to their clutch sizes.

An ANN comprises the link between genetics and be-
havior. The ANN is a method that applies neurobiological
principles of synaptic brain activity to calculate output
behavior by differential weighting of input variables (Ro-
senblatt 1958; Rummelhart et al. 1986; Montana and Davis
1989). Each character value specifies the weighting of one
synapse in the modeled fish brain.

The ANN applied here is a feedforward network with
an input layer, a hidden layer, and an output layer. Each
of the layers consists of a number of nodes that receive
input data (fig. 1A). Both biotic and abiotic environmental
variables together with physiological state variables may
be used as information input. The input data are multi-
plied by allele-specific weights that connect nodes between
layers. At the nodes in the hidden layer, all incoming stim-
uli from the input layer nodes are summed before the
signal is sent toward the output node. When a GA is used



626 The American Naturalist

Figure 1: The relationship between the genetic algorithm’s genetic code (B), artificial neural network structure (A), and behavior. An individual
uses two different strings for depth positioning, depending on its maturity status. Depth position is determined by character values and input
variables experienced by the individual. The strings for energy allocation and spawning behavior are inherited Boolean operators that decide whether
or not to spawn and when to allocate excess energy to fat or structural growth.

Figure 2: Exemplified structure of a genetic string. Each individual has
unique strings consisting of characters that are partially inherited by
offspring during sexual reproduction. Recombinations and mutations
occur with a given probability at random locations on the string.

to adapt the weights of the ANN, the ANN weights are
represented in the GA as the genetic code (van Rooij et
al. 1996; fig. 1B). The ANN is a proximate stimulus trans-
former, able to generalize complex patterns of stimuli to
individual responses. Described in biological terms, with
analogous ANN terms in parentheses, the stimulus-
response process works as follows: by receiving informa-
tion (input values) at the sensory organs (input nodes),
and sending these signals through the web of neurons
(weights) in the central nervous system (ANN), one or
several actions are made by the muscles (output node[s]).
The GA genetic codes may also be used directly to deter-
mine behavior without being incorporated into an ANN.
This is the case for energy allocation and spawning strategy
in the present model (fig. 1C).

If an individual grows sufficiently large and reaches ma-
turity, it can produce offspring by a process analogous to
sexual reproduction. Part of its genetic string is then passed
on to its offspring (fig. 2). Individuals that produce more
offspring than others will spread their character values at
a higher rate, and hence their responses to biotic and
abiotic stimuli will become more common in the popu-
lation. Thus, the ING model is a combined ultimate and

proximate approach, where behavior determines survi-
vorship and reproduction, which in turn impels the
“course” of evolution. If desirable, the ING model may
also use conventional fitness measures, by implementing
a given fitness criterion and sorting individuals in relation
to achieved fitness. See Huse and Giske (1998), Huse et
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Figure 3: The structure and event flow of the presented model

al. (1999), or the ING homepage (http://www.ifm.uib.no/
staff/huse/ing.html) for more details on ING models. Re-
combinations and mutations occur with a given proba-
bility during sexual reproduction, slightly altering the off-
spring’s genetic string and giving rise to new variation
therein (fig. 2). A flowchart of the ING model is found
in figure 3.

State and Adapted Traits

Each simulated individual has its present state described
by the attribute vector (Chambers 1993). The attribute
vector of an individual M. muelleri in this model is defined
as

a p (age, structural weight, current weight,

fat reserve, last meal, stomach (1)

fullness, current depth, time),

where age is days since birth and structural weight is a
measure of the skeletal size and hence not reversible (Ros-
land and Giske 1997). Current weight is proportional to
the individual’s energy density, and hence reversible. The
current weight cannot exceed structural weight. Current
weight divided by structural weight serves as a measure
of condition. Fat reserve is excess energy stored and does
not influence either structural or current weight. Last meal
is the amount of food eaten during the last time step, and
stomach fullness is the amount of food left in the stomach.
Current depth is measured in meters below the surface,
and time is measured in years, months, and minutes. All
other internal state variables, except age, are measured in
grams. Body length (BL) of M. muelleri is not included in
the attribute vector and is calculated based on structural
weight using weight versus length data from Masfjorden,
western Norway (Rasmussen and Giske 1994):

0.3304BL p 46.472 # W , (2)s

where BL is body length in millimeters and Ws is structural
weight in grams. See table 1 for parameters and variables.

The strategy vector (Huse 2001) of M. muelleri contains
the strategy variables of the individuals:

s p (vertical position, energy allocation,

spawning behavior). (3)

Each strategy variable is implemented on separate strings
in the GA.

Vertical Position. A dynamic depth positioning strategy is
of great importance to M. muelleri. The fish needs to trade

off the fitness reward of foraging against the risk of pre-
dation. This trade-off is influenced by light intensity, food
availability, and energy reserves (Aksnes and Utne 1997;
Rosland and Giske 1997). It has also been suggested that
adults and juveniles may apply different depth positioning
strategies (Giske and Aksnes 1992), as growth affects fitness
more for juveniles than for adults. To enable juveniles and
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Table 1: Parameters and variables used in the model

Symbol Description Value Unit

As Annual stochasticity .5–1.5 Dimensionless
BL Body length of Maurolicus muelleri … mm
Do Total oocyte mass … g
Dz Vertical migration distance … m
Epred Probability of a M. muelleri to

encounter a predator
… Dimensionless

o Individual oocyte mass 1.4 # 10�4 g
Pp Predator density parameter … Dimensionless
r Visual range of M. muelleri … mm
rp Visual range of predator … mm
Ss Seasonal stochasticity .0–2.0 Dimensionless
St Condition threshold for spawning .93 Dimensionless
v Reaction field half angle 30 Degrees
VMcost Vertical migration cost … g
Wc Current weight of M. muelleri … g
Ws Structural weight of M. muelleri … g
z Current depth 1–200 m

Note: Ellipses indicate no fixed value.

adults to evolve different strategies, we constructed two
genetic strings (fig. 1B) for depth positioning. An indi-
vidual inherits both sets from its parents. One set will be
used during the juvenile stage and the other after reaching
maturity. Depth position (m) is decided each time step
using an ANN. The ANN has 5 input nodes, 20 hidden
nodes, 1 output node, and 20 hidden node biases. The
bias values are added to the sum of incoming weights at
each hidden node to improve ANN performance (Rum-
melhart et al. 1986). Each GA string for depth position
therefore consists of 140 (p ) char-5 # 20 � 20 # 1 � 20
acters, all evolved by the GA. The ANN input variables
used to decide depth position are visual range (mm), zo-
oplankton density (individuals m�3), stomach fullness (%),
temperature (�C), and fat reserves (g). It is assumed that
M. muelleri is capable of gathering this information. The
output from the ANN is standardized between 0 and 200
using a sigmoid transfer function (van Rooij et al. 1996).

Energy Allocation and Spawning. Energy allocation and
spawning behavior are assumed to be inherited life-history
strategies, making a translation of the genetic code through
an ANN obsolete. The character values, however, are
evolved by the GA. The energy allocation string consists
of 12 characters, one character for each month of the year,
with character value 1 or 0 (fig. 1B). Character value 1
codes for excess energy to be allocated into fat, while char-
acter value 0 codes for allocation into structural growth.
If, for example, character 5 has a value of 0, excess energy
gained in May will be used to increase structural weight,
while a value of 1 will allocate into fat reserves. The fat
reserves may subsequently be used for spawning or as

additional energy in periods with negative energy intake
(i.e., to increase current weight). It is assumed that only
adults allocate excess energy into fat, as juveniles prioritize
to increase their structural weight to reach maturity. We
assume that maturation requires a structural weight of 0.6
g (Rosland and Giske 1994).

The spawning behavior string consists of seven char-
acters, one character for each month in the spawning sea-
son (March through September) where a character value
of 1 codes for spawning and 0 for no spawning.

Environment

The model has three vertical environmental gradients: zo-
oplankton density, temperature, and light intensity. The
monthly vertical profiles of zooplankton density (fig. 4)
are generated by fitting a biomass production model
(Giske et al. 1991) to field data of vertical zooplankton
density profiles from Masfjorden on the west coast of Nor-
way (E. Strand, G. Huse, and J. Giske, unpublished data).
We do not posses detailed data on zooplankton vertical
migration in the fjord over a year, and Aksnes and Giske
(1993) showed that light variation, and not zooplankton
distribution, is the principal factor in M. muelleri DVM.
Zooplankton vertical profiles are therefore assumed con-
stant during a month and throughout a day. There is cur-
rently no feedback between the foraging of M. muelleri on
zooplankton and the zooplankton density. This assump-
tion is justified for two reasons. First, the used zooplankton
biomass numbers are based on observations and therefore
have seasonal variation in zooplankton biomass incor-
porated. Second, Aksnes et al. (1989) showed that advec-
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Figure 4: Vertical gradients of zooplankton density and temperature used in the simulations. Only data from January, June, and October are shown,
but similar profiles exist for each month of the year. See text for material source.

tion of zooplankton into the fjord was greater than the
local secondary production and hence an important factor
underlying the carrying capacity of mesopelagic fish in
fjords. As zooplankton biomass is renewed primarily by
advection, the predation by fjordic M. muelleri populations
has limited effect on local zooplankton biomass. Temper-
ature data are from the nearby Herdlefjorden (fig. 4).

The visual range (r) of M. muelleri depends on light
conditions at the current depth (Aksnes and Giske 1993;
Aksnes and Utne 1997). The prey encounter rate of M.
muelleri is determined by a Holling type 2 functional re-
sponse (Holling 1966; Giske and Aksnes 1992; Rosland
and Giske 1994). Maurolicus muelleri have small stomachs
and seem to cease eating when the stomach contents reach
3% of the structural weight (Giske and Aksnes 1992).

In adaptation models, individual behavior is almost
haphazard during the first generations with random char-
acter values in the string. There is therefore a need to ease
the difficulty of survival during the simulation until be-
havior is better adapted. We have chosen to adjust the
predation pressure rather than some other selection factor
(e.g., food density). The GA automatically increases the
predation pressure (Pp) forced upon M. muelleri during
the simulation whenever the population size exceeds 1,500
individuals. However, if the population is on the brink of
extinction (!400 individuals after last spawning month),
the GA lowers the predation pressure. The predation by
visually feeding predators on M. muelleri is assumed pro-
portional to the probability of encountering a predator
(see eq. [4]). An individual dies as a result of predation
if a random number drawn by Monte Carlo simulation
(Judson 1994) is larger than Epred:

2E p p(r sin v) # P # BL, (4)pred p p

where Epred is the probability that a predator encounters
an M. muelleri of length BL. The variable rp is the visual
range of the predator, and v is the predator’s reactive half
angle (Luecke and O’Brien 1981; Dunbrack and Dill 1984).
The predator’s encounter rate with M. muelleri is assumed
to be independent of the M. muelleri density.

Bioenergetics

Rosland and Giske (1994) found that if vertical migration
requires no energy, it would be profitable for an adult fish
in winter to stay near the surface at night when predation
risk is low, and where the water is cold and hence metabolic
costs are low. Observations on adult M. muelleri show that
they do not choose this strategy (Giske et al. 1990; Baliño
and Aksnes 1993), indicating an energetic cost of pressure
adjustment by the swim bladder (Alexander 1972;
Schmidt-Nielsen 1983). We account for vertical migration
costs (VMcost) by assuming a linear relationship between
vertical migration distance (Dz) and individual structural
weight (Ws). The VMcost is adjusted such that individuals
will experience a net energy loss if changing habitat does
not increase the encounter rate sufficiently:

�5VM p 1.0 # 10 # W # Dz. (5)cost s

A basic balanced energy budget is the foundation of the
bioenergetics in this model (Hewett and Johnson 1992).
This is a way to account for energy flow in an organism:

C p (R � S) � (F � U) � DB, (6)

where C is consumption, R is respiration, S is specific
dynamic action, F is egestion, and U is excretion. Net
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Table 2: Bioenergetic equations used in the model

Description Equation Parameter (value)

Respiration R p R(W ) # f(T) # A(v)s

Resting metabolism bR(W ) p aWs s a p .0033, b p �.23
Temperature-dependent respiration (R T)qf(T) p e Rq p .055
Fish’s activity level v(RT )0A(v) p e speed p 1 BL s�1, RT0 p .03v p swimming
Egestion F p Fa # C Fa p .16
Excretion U p Ua(C � F) Ua p .10
Specific dynamic action S p Sa(C � F) Sa p .175
Gastric evacuation Re p aebT a p .0693, b p 1.0 # 10�4

Note: Due to lack of parameter values for Maurolicus muelleri, values for herring (Clupea harengus) from Hewett and Johnson (1992)

are used. weight, , length, , .W p body T p temperature BL p body C p consumption F p egestions

energy gain (DB) can be allocated to structural growth or
to fat reserve. See table 2 for a detailed description of the
bioenergetics equations.

Reproduction and Inheritance

Interannual differences in size at maturity have been re-
ported for M. muelleri populations (Gjøsæter 1981; Ras-
mussen and Giske 1994; Goodson et al. 1995). The ma-
turity threshold here is set at 0.6 g structural weight, as
used by Rosland and Giske (1994). In our model, an in-
dividual (all individuals are female) may spawn once each
month during the spawning season, according to its
spawning behavior string. Maximum gonad weight is set
to 7% of structural weight at each spawning day (Ras-
mussen and Giske 1994; Salvanes and Stockley 1996). If
an individual’s condition (current weight/structural weight
[Wc/Ws]) is lower than a threshold value (St), no spawning
occurs. Otherwise, the individual will spawn an oocyte
mass of

Wc
Do p � S , (7)t( )Ws

where Do is the weight in grams of the total oocyte batch
spawned. The number of eggs produced per spawner is
Do/o, where o the oocyte weight (Melo and Armstrong
1991).

Rosland and Giske (1997) assumed a static bell-shaped
seasonal survival curve for M. muelleri larvae to account
for seasonal variation in food availability, day length, and
temperature. The maximum relative seasonal larval sur-
vival ( ) is found in June. Larval survival forvalue p 1.0
other months is as follows: May and July, 0.9; April and
August, 0.6; and March and September, 0.1.

During reproduction the chance of a recombination of
the spawner’s and partner’s strings is set to 0.6, also mean-
ing that 40% of all offspring are clones (except for mu-
tations) of the spawner (fig. 2). This value has no real

biological foundation and is achieved after evaluation of
model performance using different recombination rates.
The chance of a mutation occurring on a single character
in the energy allocation and spawning string of the off-
spring is set to 0.001. On the depth positioning string,
only one mutation (probability of 0.1) affecting a random
character value may occur. No mutation of an offspring
character value can change the parental value by more
than 100%.

Simulations

The model simulates the environmental conditions over
one year. One day is simulated each month, with the as-
sumption that this day is representative of the whole
month. The calculated growth during one day is then
scaled to get monthly development. Other variables are
scaled in a similar fashion. This procedure is followed to
keep simulation time within reasonable limits. Each day
is divided into 5-min intervals so that short-term behavior
can also be studied.

Gundersen (1997) found that only one of several clearly
separated larval batches produced by the Maurolicus muel-
leri population in the nearby Herdlefjorden survived the
larval stage and recruited to the 1995 cohort. The narrow
length distribution of the one-group M. muelleri in Her-
dlefjorden also suggests that the surviving 1993 cohort was
born within a short time interval (Hamre 1999). Because
M. muelleri is a multiple-batch spawner, this indicates that
in some years only one or a few batches survive. This
variability in juvenile survival may be caused by horizontal
advection of eggs and larvae during periods of prevailing
northerly winds (Aksnes et al. 1989; Gundersen 1997; As-
plin et al. 1999).

Two different model simulations were therefore carried
out. The “deterministic” simulation assumes a constant
environment, while the “stochastic” simulation has in-
corporated stochasticity in the survival success of the
spawned batches both within and among years. The in-
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Figure 5: Character variability is obtained by subtracting the analogous character values of two individuals. The value 0 indicates identical character
values. One individual’s character values are compared to 200 other individuals’ character values at (A) , (B) , and (C) year pyear p 1 year p 250
500. Data are from the deterministic environment, first replicate run.

terannual variability simulates “good” and “bad” years of
juvenile prey abundance, which may affect juvenile sur-
vival (Rasmussen and Giske 1994). A uniformly distrib-
uted random number (0.5–1.5) is drawn at the beginning
of each year, simulating the interannual stochasticity (As)
in juvenile survival. Second, random numbers (0.0–2.0)
are drawn at the beginning of March, May, and August
to account for intra-annual stochasticity caused by ad-
vection (Ss). In the deterministic simulation both values
are kept at 1.0. A female’s surviving batch is found by
multiplying the oocyte number with seasonal larval sur-
vival, interannual stochasticity (As), and intra-annual sto-
chasticity (Ss). The juveniles are introduced to the pop-
ulation as 21-d-olds.

Both simulations started with an initial and maximum
population of 2,000 individuals and ran for 500 years. Five
replicates of both the deterministic and the stochastic sim-
ulation were performed, all initiated with different random
number seeds. This was done to ensure that the adapted
behavior among replicates was the same.

Results

In the presentation of results, we focus on the behavior
predicted for January/February and June/July, to enable
validation of our results with existing field data (see
“Discussion”).

Artificial Evolution

By keeping track of character variability, one can determine
the effect of the evolutionary process. When subtracting
two individuals’ character values from the same point on
the genetic string, 0 will indicate equal values. If the result

is positive or negative, the character values are different.
The initial population was seeded with a broad range of
random character values (fig. 5A), but after 250 genera-
tions the characters in the population had converged, with
a cluster of equal character values (fig. 5B). There was,
however, still some residual genetic variation. After 500
generations, genetic variation is reduced to a minimum
(fig. 5C), indicating that there was not much room for
further evolution; 500 generations was therefore a suitable
time to terminate the simulation. One can also study the
fixation of single character values used in the ANN by
recording the value of a specific character in a randomly
chosen individual during the artificial simulation. Most
character values became fixed after 100–200 yr (fig. 6). All
character values in the ANN were initiated between �5
and 5. At the end of the simulation, the numerical range
of characters exceeds the initiation range, indicating that
the GA was able to find fit character values.

Attribute Variables

Age Structure. In the deterministic environment, most sur-
viving individuals entered the second age group (220

d) early in the spawning season, resultingd ! age ! 440
in an almost discrete age structure (fig. 7A). This was
clearly seen as the second age group (220 d ! age ! 440
d) became the major age group in April, May, and June.
In the stochastic environment, however, surviving indi-
viduals entered the second age group throughout the year,
making the age structure more continuous and differences
between generations less noticeable (fig. 7B). This resulted
in the first age group ( d) being the largest0 ! age ! 220
through the entire year. The two oldest age groups
( d) were usually represented by a higher numberage 1 440
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Figure 6: The adaptation of character values during a simulation. All
character values are initiated randomly between �5 and 5. After 200
generations most character values have evolved to fixed values. Data are
from randomly chosen characters.

of individuals in the stochastic than in the deterministic
environment.

Foraging. In the deterministic environment, juveniles in
February showed a high crepuscular feeding rate at dawn
(fig. 8A), with a peak at 0700 hours. Adults maintained a
low feeding rate throughout the day, with a maximum
foraging rate at noon (fig. 8B). In addition, juveniles for-
aged for a longer period at dusk compared with adults.
In the stochastic environment, juveniles and adults exhib-
ited behaviors that were more similar to each other than
those found in the deterministic environment. Juveniles,
though, had higher foraging rates than adults and therefore
more stomach contents throughout the day (fig. 8C, 8D).
In July, both simulations predicted that juveniles and
adults foraged throughout the day. Juveniles in the deter-
ministic model had an average stomach content of 70%
at night, while the stochastic model predicted 20%–30%.
The adults of the two models were predicted to forage
quite similarly in July.

Strategy Variables

Energy Allocation and Fat Reserve. The average relationship
between structural weight and fat reserves for adults is
shown for each month in figure 9. In the deterministic
model, adults had only a very small amount of fat during
the spawning season (fig. 9A). The average adult in the
deterministic model was generally heavier than the average
adult found in the stochastic model and therefore had a
potentially larger gonad weight. The stochastic model pre-
dicted structural growth in adults to occur mainly during
March to June, with fat reserves decreasing from January
to July (fig. 9B). Since there was no spawning or structural
growth in January and February, the loss of fat was there-
fore due to a negative energy budget. This was observed
in both simulations. The main difference between the sto-
chastic and the deterministic simulation in relation to en-
ergy allocation was a greater amount of energy allocated
to fat in adults that had adapted to the stochastic
environment.

Energy allocation was controlled by the individual’s en-
ergy allocation string. In the deterministic environment,
no clear trend was seen in the period from January to
August, which was probably caused by a lower energy
intake and consequently little or no excess energy available
for allocation. In September and October the percentage
of adults allocating excess energy to fat was high (fig. 10),
which corresponds to the increase in fat reserve during
these months (fig. 9). In the stochastic environment the
percentage of adults allocating excess energy to fat de-
creased from 90% to 2% during the period from January
to June (fig. 10). However, from July to September,
90%–100% of the adult population allocated excess energy
to fat instead of structural growth. This matches the trend
seen in individual fat amount versus structural weight.

Spawning. The deterministic environment shows a bell-
shaped spawning pattern, with maximum spawning oc-
curring in July (fig. 11A). First-time spawners were dom-
inant during spawning. Little or no spawning occurred in
March, April, or May. In the stochastic model, spawning
occurred in all spawning months (fig. 11B). The first three
months are, however, clearly dominated by older spawners
( d), while the 1-yr-olds ( d) reachedage 1 440 age ≈ 300
maturity and commenced spawning in June.

Vertical Distribution. The diel vertical distributions of ju-
veniles and adults in both simulations are shown for a
winter (February) and summer (July) situation in figure
12. In February, the juvenile part of the population per-
formed extensive DVM behavior, staying close to the sur-
face at night and moving deeper during the day. The pre-
dicted behavior for juveniles differed little between the two
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Figure 7: The population age (d) structure for Maurolicus muelleri in the (A) deterministic and (B) stochastic environment at year 500. Individuals
are divided into four age groups. Bars are 1 SE from the five replicate runs. Note the exponential Y-axis.

simulations, except that the dawn descent of juveniles in
the stochastic environment occurred 5–10 min earlier (fig.
12A, 12B). At the same time, adults performed little or
no DVM. Juveniles positioned themselves higher in the
water column than adults during daytime. In summer, only
juveniles in the deterministic environment performed
DVM, while the adults maintained a static position
throughout the day (fig. 12C). Juveniles and adults in the
stochastic environment behaved similarly in July, staying
almost statically at depths around 75 m (fig. 12D). The
greatest variation in individual behavior was found during
the night, indicated by the standard error shades calculated
from the five replica simulations.

Juveniles in both the deterministic and stochastic sim-
ulations showed an asymmetry in their DVM patterns in
February, with a relatively late descent from the surface at
dawn and a delayed ascent at dusk (fig. 12A, 12B). This
resulted in conspicuous crepuscular feeding only at dawn
(fig. 8A, 8C), particularly noticeable in the deterministic
model. Hence, juveniles did not follow a strict isolume
during the day but also took individual state into consid-
eration. The degree of stomach fullness seemed to play the
key role in explaining the asymmetric DVM pattern, as
juveniles were less prone to risk in the crepuscular period

when their stomachs were fuller (fig. 13). The predation
risk was proportional to visual range (see eq. [4]).

Discussion

Artificial Evolution

Adaptation models must strike a balance in the imposed
selection pressure level so that the simulated population
remains alive and, at the same time, exert a selection pres-
sure significant enough to ensure evolution of desired
traits. At model initiation, the first generation’s strings are
seeded at random (Goldberg 1989). This means that in-
dividuals have random behavior and are unable to cope
with a high selection pressure. Gomez and Miikkulainen
(1997) showed that it was profitable to simulate evolution
by starting with a simple task and gradually making it
more challenging, as opposed to constant environmental
forcing. In the present model, the selection pressure is
adjusted by tuning the imposed predation risk. Huse and
Giske (1998) also used this approach with a stepwise in-
crease in predation risk, decrease in food availability, and
a reduced area for successful reproduction to allow a grad-
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Figure 8: Average feeding rate (g g�1 [5 min]�1) and stomach contents (%) in February for adults (B, D) and juveniles (A, C) in the deterministic
(A, B) and the stochastic (C, D) environment.

ual increase in the difficulties of adaptation to the
environment.

Genetic control of phenotypic variation among indi-
viduals is the basis for natural selection (Maynard Smith
1993). In constant environments, natural selection works
to reduce variability while other events such as mutations,
recombinations, and genetic drift increase variability
(Lande and Shannon 1996). Similarly, selection processes
in the GA reduce the variability of the initially random
character values, while recombinations and mutations dur-
ing sexual reproduction create new variation.

The character values among individuals used in the
ANN to control depth position evolved toward the same
values, indicating a “genetically” homogeneous population
converging to a single best strategy in each replicate run.
Between the replicate runs, the evolved phenotypical ver-
tical position strategies were similar, signifying that the
same optimum was found in each run. However, when
comparing specific character values in replicate runs, the

numerical values are not the same. This is due to the
polygenic influence of characters on ANN behavior. Hence
are there many different genotypes able to produce vir-
tually the same phenotype in an ANN. Dissimilarly
adapted character values further stem from the initiation
procedure, where the first generation was assigned random
character values, hence making the “genetical” starting
point for evolution different in each replicate. The low
character value variability at the end of simulations and
the fixation of character values during simulations confirm
that a significant selection caused by individual variation
in fitness has taken place.

Genetic Algorithm and Population Genetics

In nature, as in the current model, evolution is driven
mainly by natural selection, mutation, and recombina-
tions. There are, however, other forces at work that can
affect evolution.
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Figure 9: Seasonal changes in average fat reserve and structural weight for adults. In both environments, fat reserves decrease during spring and
increase during autumn. Structural weight is greater and fat reserves smaller in the deterministic environment, as compared to the stochastic
environment. Bars are 1 SE of the five replicate runs.

Since the genomes in the current model are haploid and
thus without Mendelian segregation, the effect of genetic
drift is rather small. Genetic algorithms can be made dip-
loid (Calabretta et al. 1996), in which case genetic drift
and dominance relations between character values could
influence artificial evolution. Currently mating is com-
pletely random. This system could certainly be replaced
by other schemes such as, for example, assortative mating
(preference for same genotype as self) or preferences for
certain other features such as size or condition. Different
mate selection schemes could have an impact on results
and increase the selective pressures for certain phenotypes.

Because of the recombination mechanism, characters
that are far apart on the string have a lower probability
of being passed on together than characters close together.
This is parallel to the way recombinations work in biology.
The complex linkage between characters and phenotype
is one of the reasons for labeling neural networks “black
box” models. There are, however, ways to examine an

ANN, and an analysis of the input weights usually reveals
what input factors are most important in determining the
phenotype (Aoki and Komatsu 1997).

Model Validity

Attribute Variables. The predicted feeding pattern of ju-
veniles in February indicates low feeding at night and a
relatively high feeding rate during the day. This matches
the patterns observed by Giske and Aksnes (1992) and the
model results from Rosland and Giske (1994). The sig-
nificant crepuscular feeding at dawn seen in the deter-
ministic environment was also predicted by Rosland and
Giske (1994) and fits well with the theory of antipredator
windows (Iwasa 1982; Clark and Levy 1988). The adults
showed no crepuscular feeding, which can be explained
by the absence of vertical migration behavior at dusk and
dawn. Skagseth (1999) found that only 18% of juveniles
(upper SSL) had empty stomachs in Herdlefjorden in Jan-
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Figure 10: The adapted energy allocation rule for the stochastic and the
deterministic environment. Dots and diamonds represent the average
value of the five replicate runs.

Figure 11: Number of spawners each month in year 500 (�1 SE). The spawning occurring from March to May is performed mainly by second-
and third-season spawners ( ) in the stochastic environment (B) and by first-time spawners in the deterministic environment (A).age 1 440

uary, compared to 74% of adults (lower SSL). These find-
ings match well with the present model, and especially the
deterministic model, where there is significant difference
in stomach contents between juveniles and adults. In June,
about 75% of both adults and juveniles have full stomachs
(Skagseth 1999). Both the deterministic and the stochastic
simulations predict an average stomach fullness of ap-
proximately 90% for both juveniles and adults in the same
period.

The stochastic environment explains the observed lon-
gevity of Maurolicus muelleri populations (Gjøsæter 1981)
better than the deterministic environment, which predicts
maximum longevity to be only 2 yr. Generations become
increasingly separated in the deterministic environment as
a result of the shorter spawning season.

Strategy Variables. Our model predicts that the daytime
vertical distribution of juveniles and adults in February
would be around 60–65 m (upper SSL) and 70–75 m

(lower SSL), respectively. Our results also show that the
adults did not ascend to the surface to feed during the
night, as juveniles did (fig. 12). Giske et al. (1990) and
Baliño and Aksnes (1993) reported an equivalent distri-
bution for juveniles and adults in Masfjorden in winter
(fig. 14). However, both studies found the SSLs to be po-
sitioned deeper (100 and 140 m, respectively). Similar pat-
terns have been found by Goodson et al. (1995) in Herdle-
fjorden and by Kaartvedt et al. (1996) off the Norwegian
coast. A test of the current model, where individuals were
forced to position themselves at 150 m, resulted in 100%
mortality by starvation. We believe incorrect values of eye
sensitivity in the visual model or excessive metabolic rate,
caused by the use of bioenergetic parameters for herring,
to cause the variation between observed and predicted
depth positions.

Giske et al. (1990) hypothesized that juvenile M. muel-
leri forage extensively in autumn, winter, and spring to
reach maturity the following spawning season, while adults
maximize survival during the nonspawning season. Ros-
land and Giske (1994) also found the “maximize growth”
strategy for juveniles, and a “maximize survival” strategy
for adults, to be optimal in winter. Our simulations show
that the juveniles reach maturity during spring or early
summer. The two vertical layers then merge at a depth
(75–80 m) that allows visual foraging during the spawning
period. This is also consistent with observations (Ras-
mussen and Giske 1994; Goodson et al. 1995).

Crepuscular migration extends the daily period of po-
tential foraging without significantly increasing the feeding
rate to mortality risk ratio because of the intermediate
light levels (Clark and Levy 1988) and the optical prop-
erties of the surface water (e.g., high turbidity and beam
attenuation; Giske et al. 1994; Rosland and Giske 1994).
Since juveniles in winter empty their stomachs during the
night, the feeding rate in the crepuscular period is poten-
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Figure 12: Average vertical position for juveniles (thin black lines) and adults (gray lines). Vertical bars indicate 1 SE of the five replicate runs.
Distributions are from February (A, B) and July (C, D) for both the deterministic environment (A, C) and the stochastic environment (B, D).

tially greater at dawn than at dusk, as juveniles have some
stomach contents after daytime feeding (Rosland and
Giske 1994). However, that this variation in potential feed-
ing rate results in an asymmetric DVM pattern (fig. 13)
has not, to the best of our knowledge, been reported pre-
viously. When reexamining the field results of Baliño and
Aksnes (1993; fig. 14) and the model predictions of Ros-
land and Giske (1994), the same pattern is observed. In
the present model this asymmetric DVM pattern is trig-
gered by the amount of stomach contents.

Observations show that juveniles reach maturity and
commence spawning in May/June (Goodson et al. 1995)
as 1-yr-olds (see, e.g., Gjøsæter 1981; Rasmussen and Giske
1994). This is predicted in both simulations. There is,
however, one major difference between the two environ-
ments. In the deterministic environment, very few or none
of the individuals spawned in two consecutive years.
Goodson et al. (1995) found a difference in seasonal fe-
cundity between age groups and suggested that repeat
spawners spawn earlier in the season and with greater
intensity than first-time spawners do. This spawning strat-
egy is found only in the stochastic environment, and is
thought to be a result of the interannual variation in larval
survival (Sa).

There are significant differences in fat reserves between

adults adapted to the deterministic and those adapted to
the stochastic environment. Hamre (1999) found that fat
reserves reach a minimum in adult M. muelleri in June
and July (fig. 15). In the period from August to January,
adults allocate net excess energy to fat, probably to cope
with a period of negative growth during winter/early spring
(see, e.g., Giske et al. 1990; Goodson et al. 1995). The
same seasonal pattern in fat content is found in both of
our simulations, although the amount varies significantly.
We believe this to be related to the adapted longevity and
the second spawning season in the stochastic environment.
In the deterministic environment, energy is allocated to
structural growth, thereby maximizing the possible gonad
weight. In the stochastic environment, adults traded in-
creased structural weight for increased fat reserves and
gained the possibility of a second spawning season. Most
of the fat allocation took place during July to September
(fig. 9). In the same period, the adults in the stochastic
environment positioned themselves deeper (85–90 m)
than in the deterministic environment (75 m). This de-
scent doubled their survival probability. In the stochastic
environment, no structural growth occurred during this
period.

Stochastic versus Deterministic Environment. The effect of
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Figure 13: The relation between depth position, visual range, and stomach content throughout the course of one day in February. Juveniles show
a delayed ascent at dawn that results in an asymmetry in the experienced visual range. This behavior is caused by higher stomach content at dusk
than at dawn. Data are from the stochastic environment.

environmental fluctuation on a population’s life-history
strategy has been studied in detail (see, e.g., Southwood
et al. 1974; Stearns 1976, 1992; Roff 1992). In the above
section we compared our model’s predictions with other
model simulations and with field observations. We have
found that the stochastic environment better explains
some life-history traits (e.g., age structure), while others
are better explained by the deterministic environment
(e.g., depth positioning and foraging).

To the best of our knowledge, there exists no numerical
value of the effects of intra-annual (Ss) or interannual (As)
variation on recruitment in M. muelleri populations. The
values applied are therefore only approximations in
strength, pattern, and frequency. We believe, however, that
stochastic events have been a major factor in shaping the
life history of M. muelleri. Kristoffersen and Salvanes
(1998) compared M. muelleri populations in oceanic and
fjordic environments and found individuals inhabiting
fjords to have a longer spawning season and a greater
reproductive life span than oceanic populations. They also
found indications of higher recruitment variation in
fjordic populations and suggested that the spawning pat-
tern of the fjordic population is a bet-hedging strategy.
The “bet-hedging” theory (Murphy 1968; Schaffer 1974)
concerns individuals that reduce their variation in fitness
caused by environmental variability in mortality at the
expense of their expected total fitness (Seger and Brock-
mann 1987). Among the predictions derived from envi-
ronments with varying juvenile mortality are increased
longevity, more broods, and smaller brood sizes (Stearns
1976). This is in accordance with the difference in our
predictions for deterministic and stochastic environments.
We believe interannual variation in larval survival to be
the main selection factor for the increased longevity seen

in the stochastic environment. This strategy will be favored
over other strategies by enabling successful spawning the
following year if conditions have been unfavorable.

ING Perspectives

Railsback (2001) proposed that ecological individual-based
models would profit by adopting key elements from the
field of complex adaptive systems, a field of research that
shares a lot with the A-life community. The present model
supports this view by showing that fit behavior can emerge
as individuals are adapted to various environments.
Individual-based models may and should be used for ex-
perimental purposes, to test existing biological theories
and search for new ones (Grimm 1999). The ING approach
is able to solve a series of biological problems where con-
ventional approaches in evolutionary ecology, such as life-
history theory (LHT), game theory (GT), and stochastic
dynamic programming (SDP), may not be adequate. How-
ever, the ING tool also comes with its own limitations,
and below we discuss some pros and cons of ING and
how it compares to these traditional modeling approaches.

Unstable Environments. The Euler-Lotka equation and life-
history models based on this equation require a stable age
(or stage) distribution to find the solution that returns
maximum reproductive rate (Roff 1992; Stearns 1992).
The stable age distribution appears when conditions are
repeated exactly for each generation, so that mortality and
fecundity depend on age (or stage) alone. Life-history the-
ory therefore addresses rather idealized worlds, where fluc-
tuations and instabilities may be ignored. In GT (Sigmund
1993; Dugatkin and Reeve 1998), time is not a variable at
all, and consequently solutions that are found describe
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Figure 14: Observed vertical position of Maurolicus muelleri in Masfjorden, western Norway, modified from a echogram by Baliño and Aksnes
(1993), showing the two sound scattering layers (SSLs) and their vertical position during the visual and crepuscular period of one day in late January.
Vertical bars indicate the width of the SSLs.

Figure 15: Average abdominal fat index for adult Maurolicus muelleri in
Herdlefjorden, western Norway (modified from Hamre 1999). Fat scores
for individuals were assigned as follows: , ,0 p none 1 p some 2 p

, and . Data are pooled for adult males and females.much 3 p abnormal

only steady state situations. In SDP models, variation can
occur at several time scales, but the method requires that
the future (i.e., the modeling horizon) is known or can
be estimated (Houston and McNamara 1999; Clark and
Mangel 2000). The ING model is not restricted by any of
these demands. The present model is run for both a de-
terministic and a stochastic environment, and in the sto-
chastic environment, conditions are never repeated exactly
for two generations. This allows the study of behavioral
adaptation under stochastic population dynamics (Yosh-
imura and Clark 1993), which vastly increases the biolog-
ical realism of evolutionary models of behavior.

Complex Interactions. The model presented here is notably
elaborate, with the use of three strategy variables, a detailed
description of the environment and the organisms’ phys-

iology, and a high time resolution. Hence, one of the major
strengths of the ING approach is its potential for solving
complex problems. In SDP models, the optimal solution
is found by backward induction. This means that decisions
taken early in life (i.e., late in the backward decision pro-
cedure) cannot be allowed to impact the future in a way
that invalidates the solutions already found. Strong trophic
interactions can be studied by dynamic games (Houston
and McNamara 1999), but this method is still limited to
a lower level of complexity than in the ING approach.
Game theory is also limited to two or at most a few classes
of interacting agents. Giske et al. (1997) modeled the ver-
tical distribution of a copepod population by ideal free
distribution (IFD; Fretwell and Lucas 1970) in a complex
landscape with density-dependent mortality risk and
growth rate. They concluded that inclusion of individual
variation in this landscape would not be feasible because
of the IFD demand on equal fitness for all actors. Further,
as SDP compares all possible solutions and picks the best,
it is limited by the “curse of dimensionality.” As the GA
performs only a local search for increasing peaks in the
fitness landscape, and as the fitnesses of suboptimal so-
lutions are not stored, the ING can describe the organisms
with more biological detail than SDP.

Two common types of complex interactions are density
dependence and state variation. Stochastic dynamic pro-
gramming can explore state variation, while density de-
pendencies can only be investigated to some degree by
dynamic games. Game theory, and in particular IFD, can
handle density dependencies, though only at the expense
of state description and time variation. Individual-based
neural network genetic algorithm models can include si-
multaneous variation in environment, state, and densities.
This was done in the model of capelin (Mallotus villosus)
distribution in the Barents Sea (Huse and Giske 1998).
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Their model was based on the same description of the
physical and biological environment as in the SDP model
by Fiksen et al. (1995). Both models captured the major
seasonal horizontal migration routes for all age groups.
However, the backward induction in the SDP model did
not enable it to incorporate density-dependent interactions
in feeding and mortality risk. Therefore the SDP model
predicted the entire population of Barents Sea capelin to
aggregate in a few horizontal cells each month, while the
ING model predicted a wider spatial distribution as a result
of food competition.

Games between predators and prey are an additional
kind of complex interaction with which the ING approach
is in principle able to deal. However, since the method
has only been applied to simple predator-prey problems
(Huse et al. 1999), it is premature to draw conclusions
about its applicability in this field.

Linking Proximate and Ultimate Explanations. Ethologists
and ecologists have, since Tinbergen (1963), distinguished
between ultimate and proximate explanations. While ul-
timate models focus on the fitness consequences of actions,
and on the evolvability and evolutionary stability of the
trait, proximate models concentrate on the environmental
and physiological triggers of a response. Tinbergen (1963)
called them survival value and causation, respectively. The
ING is simultaneously an ultimate and proximate ap-
proach. The GA works by finding differences in fecundity
and survivorship, while the ANN performs decisions based
on local knowledge. The ING can thus work to bridge the
perspectives of ultimate explanations in behavioral ecology
and proximate explanations in ethology. While the GA
ensures that the decisions made by the ANN are adaptive,
the ANN is also able to make decisions in the absence of
fitness gradients. Individuals are also able to make mis-
takes, and once led astray, a locally informed ING indi-
vidual may have serious trouble getting back on track.
(This may also remind one of real animals.) The evolved
individuals will respond to the information they receive,
irrespective of their lack of immediate link to growth or
survival. According to the fundamental theorem of natural
selection (Fisher 1930), the speed of the GA will depend
on the steepness in the fitness gradients and the amount
of genetic variation available. The weaker the link between
a series of decisions or ANN genes and fitness, the lower
the credibility their adapted values will have.

Genetics. The genetics of the evolving ING population re-
mains the key to understanding the ING approach. In ING
models with emergent fitness, the gene pool is completely
explained by the surviving reproducers of the previous
generation(s). As in real biological evolution, the evolution
of the ING gene pool is forced by mutations, recombi-

nations, surplus reproduction, and natural selection due
to mortality and variation in fecundity. Several of these
forces contain a substantial random component. Unlike
optimization tools such as SDP, the GA does not search
the entire solution space for potentially superior solutions.
The hill-climbing procedure of a local search allows much
quicker localization of the peaks in the fitness landscape.
In addition, it allows for searching in far more complex
solution spaces. However, the structure of the landscape
also impacts the ability of the GA to arrive at the globally
optimum solution (Kauffman and Levin 1987; Goldberg
1989). There is a trade-off in complexity of the genome:
too few genes may hinder the exploitation of the entire
fitness landscape. Too many genes may require a very long
adaptation period. The genome size chosen in this model
has struck the right balance, as genomes stabilize before
the end of the simulation period (fig. 6), and as repeated
computer runs arrive at the same behavior (e.g., figs. 7,
9, 12). However, allele frequencies differ between replicate
runs. The genome used in the ANN can be seen as an
equation set with 140 variables (number of characters on
the depth position string), for which there may exist more
than one biologically possible solution. The repeated sim-
ulation runs show that several equally fit structures of the
ANN exist with regard to the environment and the de-
cisions the organism must make. If the goal is to under-
stand the resulting behavior, then this variation is un-
problematic. If, however, the goal is to analyze the ANN,
then it may be fruitful to consider simpler brain structures
that are more likely to repeat.

A-Life and B-Life. As pointed out by Toquenaga and Wade
(1996), there has been little interaction between A-life and
conventional biology (B-life) as a result of sparse com-
munication between the two fields. While the exploration
of B-life is conducted by biologists, A-life is the creation
of computer scientists and mathematicians (Levy 1993).
The number of conventional biologists interested in A-life
remains rather low (but see Belew and Mitchell 1996).

By incorporating a GA into an IBM, the aspect of evo-
lution can be included as is shown here. The IBM then
becomes a robust tool for calculating fit life histories and
behaviors. No theory, be it verbal, analytical, or numerical,
can incorporate everything that we consider being reality.
In this sense, theories necessarily describe artificial worlds,
something that is made explicit in A-life. In this article,
techniques that have been successful in A-life are applied
to simulate real life. Through simulation of artificial sys-
tems that resemble the basic properties of an ecosystem,
A-life may provide a direct conceptual understanding of
how complex systems function and behave. This study
shows the possible continuum between A-life, a minimal
model for proving a point, and B-life, a complex model
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of a specific species at a given location. One problem with
simulating “realistic” ecology, as compared to the abstrac-
tion of an A-life model, is that the evolutionary constraints
acting on the target species must be recognized and quan-
tified. If realistic behavior is to be expected, the model
should be forced in a restrictive manner to follow an evo-
lutionary trajectory similar to that of the particular animal.
By imposing such constraints, however, the model loses
some of its explanatory power (Loehle 1983). The degree
to which one should try to force the adaptive system in a
specific direction should therefore depend on the nature
of the problem one is trying to solve.

Limitations. Every new offer on the market comes with
additional costs. We will try our best to articulate the most
serious of these. The most obvious cost in using an ap-
proach based on the GA is that one cannot easily ascertain
that the solution arrived at is the best solution globally. If
the problem to be solved is very simple, then alternative
methods like SDP, LHT, or GT may be used to verify the
likelihood of the ING solution. However, in situations
where these other methods are not easily applicable, there
may not be alternative methods with which to compare
the solution. We cannot then readily know that the ING
solution found is biologically plausible. One solution to
this problem is to conduct several simulation runs (as done
here) with differing random seeds, in order to check
whether the solution arrived at a local or global maximum.
But again, several different gene pools may exist that are
of similar fitness values.

The adaptation process will also require attention. No
standard mutation or recombination rates exist; instead
these must be found by trial and error. Rates that are too
low may lead to stranding on suboptimal local fitness
peaks, while rates that are too high may hinder the adapted
string from being maintained at the global maximum
(Sumida et al. 1990). Neither is there yet a standard pro-
cedure for selecting a structure of the ANN. Alternatively,
these rates can be implemented as characters and adapted
in the same way as other traits.

In models with emergent fitness, the whole life cycle of
the organism must be modeled. However, if a fitness cri-
terion is chosen (see Huse et al. 1999), the ING model
will find itself in the same situation as models with explicit
fitness formulations: the credibility of the emerging be-
havior will depend on the quality of the fitness measure.

Conclusions

We have shown that the ING modeling approach and ar-
tificial evolution has a great potential outside the realm of
A-life and provides realistic predictions about the behavior

of natural populations. There is, however, no such thing
as a final modeling approach in ecology.

Each method will have its own simplifying assumptions
and restrictions on validity. These restrictions are not as
obvious in ING and other adaptation tools as they are in
the optimization tools (Giske et al. 1998). However, ING
(or SDP) approaches cannot match the intuitive mathe-
matical elegance of a simple LHT-based model. In addi-
tion, ING is a laborious method and should not be
undertaken unless standard optimization methods are in-
capable of answering the scientific issue in question. As
such issues appear more and more frequently, we believe
that a tool that can direct individual behavior in fluctuating
or stochastic environments, under complex selection pres-
sures, and in the absence of strong fitness gradients will
be a valuable addition to the ecologist’s tool kit.
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