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The population dynamics of marine fish stocks are influenced by both physical and biological conditions. Yet, such environmental
impacts on stock dynamics, and hence stock production, are rarely included in applied fisheries management. To test the utility
of taking ecosystem information into account in management decisions requires efficient tools. We propose a simulation framework
for evaluating fisheries management schemes that use environmental information as part of the decision basis. A key feature is to link
environmental signals to parameters in functions that define the population dynamics. This allows a direct incorporation of environ-
mental drivers into models of population dynamic processes and emphasizes the need for a quantitative understanding of the influ-
ence of environmental drivers on such processes. The utility of the simulation framework is demonstrated through a worked example
with different management scenarios, where decisions to increase or decrease the exploitation rely on environmental indicators only,
or also on information on stock abundance. In this example, a management that was based on indicators only, without updated mea-
sures of the state of the stock itself, failed to respond adequately to changes in stock productivity.

Keywords: ecosystem-based management, environmental indicators, harvest control rules, link functions, management strategy evaluation,
population dynamic models, super-individuals.

Introduction
Marine fish stocks are part of ecosystems, influenced by physical
conditions and species interactions (Ottersen and Stenseth,
2001; Pörtner et al., 2008; Kjesbu et al., 2010; Stige et al., 2010).
Considering the impact of the environment on fish stock product-
ivity, and thereby fisheries, is one of the main pillars of the
Ecosystem-based Approach to Fisheries Management (EAF,
Bianchi et al., 2008). EAF is ascribed to, and adopted by, many
governments and international organizations and agreements
(Bianchi et al., 2008). Yet, information about the environmental
state, such as e.g. ocean climate, food availability and predator
abundance, is rarely included in fisheries management (e.g.
ICES, 2010; Brunel et al., 2010). Furthermore, how to incorporate
environmental information in practical management is not
straightforward or well documented. One approach can be to
include this information in the decision basis of management
strategies, where the benefits can be tested by simulation

(Basson, 1999; Brunel et al., 2010; A’Mar et al., 2009, 2010). For
that purpose, we here demonstrate a simulation framework devel-
oped to test the performance of management decision rules that
take the influence of environmental drivers on stock dynamics
into account (Figure 1).

Management of fish stocks relies on information about the state
of the stock and its resilience to exploitation. This information
may come from an analytical assessment e.g. Virtual Population
Analyses (Shepherd and Pope, 2002) or be based on catch statistics
and fishery-independent information, from which the current
state of the stock, its historical development and its presumed po-
tential for harvestable surplus production can be inferred (Hilborn
and Walters, 1992; Hilborn, 2011). The gain of including environ-
mental information into management decisions depends on the de
facto strength of environmental effects on population processes,
the level of process understanding and stock dynamics, as well
as the quality of monitoring/prediction of the environment
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(Basson, 1999; Walters et al., 2005; Brunel et al., 2010). When an
analytical stock assessment is not possible due to restricted data
availability, information about the ecosystem may be more
rewarding as additional support for managers’ decisions than in
the case of stocks where analytical assessments are available. For
example, reducing an apparently tolerable exploitation may be
warranted if there are indications that the external conditions
for the stock are deteriorating (Caddy, 2002; Potts et al., 2008).
In recent decades, pre-agreed rules for tactical decisions on the
permitted catches in the immediate future, commonly called
harvest control rules (HCRs), have developed as a key element
in fisheries management strategies (Froese et al., 2011). Such
rules provide a framework for deciding on the level of removals,
for example a total allowable catch (TAC), based on information
that typically will come from an analytical assessment, if available.
Assuming that environmental factors influence population dy-
namics, HCRs may be developed to take environmental informa-
tion into account as part of the decision basis, with or without
direct measurements or assessment of the state of the stock itself
(Brunel et al., 2010).

Here we suggest a methodological framework for exploring
the necessary and sufficient conditions for such HCRs to
work. Following the common practice in evaluating HCRs
(Butterworth and Punt, 1999; ICES, 2005), we developed a simu-
lation tool designed to assess the likely performance of rules that
take environmental information into account. In this tool, the
model population is sensitive to environmental drivers. In our
framework, we assume that the decision-makers are aware of
the environmental drivers and try to take such effects into
account, although not necessarily in a correct manner. A simplis-
tic application of this principle would be to recognize that the
environment defines the carrying capacity of the relevant part
of the ecosystem in question, and assume that the system is
autonomous within that constraint. Going beyond that by mod-
elling underlying processes, one may assume that dynamic

properties of the stock, i.e. individual growth, recruitment, mi-
gration and natural mortality are influenced by the environment
on both short, medium and long time-scales (e.g. Ottersen and
Loeng, 2000; Mikkelsen and Pedersen, 2004; Hjermann et al.,
2004; Fauchald et al., 2006; Klyashtorin et al., 2009). These
dynamic population processes are commonly described through
well-established equations, for example the von Bertalanffy equa-
tion for growth of individuals (von Bertalanffy, 1938). In our
simulation framework the influence of environmental drivers is
expressed through linking the parameters in well-established
population dynamic equations to these drivers. Thus, we
included the effects of environmental drivers on the fish stock
without disrupting the common process-oriented way of pro-
gramming population dynamics. Short of a better term, we
have used the term “link functions” for expressing the effect of
environmental drivers on these parameters (this use of the term
should not be confused with link functions in statistical
models). For example, temperature effect on growth may be
expressed by a link function that describes how the k-value in
the von Bertalanffy growth equation depends on temperature.
In this way, environmental drivers are directly linked to
dynamic processes in the simulated population (e.g. Fiksen and
Slotte, 2002; Mikkelsen and Pedersen, 2004; Folkvord, 2007;
Olsen et al. 2011).

Here we present the simulation framework, and demonstrate its
application in three management scenarios for a generalized
gadoid-like stock where the population dynamics are impacted
by environmental drivers (e.g. temperature, prey availability). In
these scenarios, management decisions are based on environmen-
tal indices only (Scenario 1), on environmental and relative stock
abundance indices (Scenario 2), and finally on an analytical
stock assessment (Scenario 3). The management performance in
each scenario is evaluated by assessing model results for fishing
mortality, fisheries catches, spawning stock biomass (SSB) and
risk of stock extinction.

Figure 1. Schematic outline of the simulation tool kit. The boxes are processes; arrows indicate the information flow. Further details are given
in the main text.
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Material and methods
Simulation framework
The overall design of the simulation framework, as outlined in
Figure 1, generally follows the commonly used template (Basson,
1999; Butterworth and Punt, 1999; Sainsbury et al., 2000; ICES,
2005): A perceived “real world” is created with a stock represented
by a forward-projecting population model, in which a fish is born,
grows, matures and dies over time. The dynamics of the popula-
tion are fully described by these processes. They can be represented
by well-established parametric standard functions, and we relate
the parameters of these functions to environmental drivers
through link functions. Decisions on the size of catches are
made in a “manager’s world”. Managers will have information
about the environmental drivers and their effects, but only with
error (observation model, Figure 1). They may also have informa-
tion about the state of the stock through some procedures (e.g.
stock assessment, survey indices), but again with error. Based on
this information, a TAC is decided through a decision rule, repre-
senting the HCR to be explored (decision model, Figure 1). An im-
plementation model converts the decided TAC to actual removals
from the real stock, assuming that the TAC is taken as decided.

Population model
The population model (Figure 1) projects a population forwards
in time, with predefined dynamic elements (recruitment,
growth, maturation and mortality) including random terms that
are selected to cover a plausible range of realistic representations
of the modelled stock. Because we want to cover mechanisms
and use information related to length rather than age, we used a
population model that was structured by both age and length.

Our population model was designed as a collection of super-
individuals, along the lines of individual-based models (IBMs)
(e.g. Scheffer et al., 1995). Each super-individual represents a
number of fish. This number declines with time due to mortality.
The dynamic properties of these super-individuals were expressed
through parametric functions, as further described in Table 1. A
fixed number of new super-individuals were created annually at
recruitment. The number of recruited fish was determined from
a parametric stock-recruit function with random terms, and was
equally distributed on the new super-individuals. When created,
each super-individual was given individual standard values for

the parameters in its biological dynamic properties functions
(as described in Recruitment), drawn according to a specified dis-
tribution (lognormal as a standard used in our worked example)
with input expectation value and dispersion parameter. We then
applied the link functions to convert these standard values into
actual parameter values that were explicitly affected by environ-
mental conditions.

The stock was projected forwards in time in seasonal (quarter-
ly) time-steps. To simplify the model we let, in each time-step, the
super-individuals first grow and mature and then die according to
their length and condition. Since growth only took place between
time-steps, the duration of the time-steps had to be small com-
pared to the growth rate. Spawning took place in one defined
season, and recruitment in another.

Biological dynamic properties
The model works at two levels: as a collection of super-individuals,
and as the internal characteristics of each super-individual. Each
super-individual has a set of parameters for its biological
dynamic properties, which is updated in each time-step within
the population model. Table 1 summarizes the functions and
parameters used in the present implementation, including the
values that have been applied in the worked example. Each
model property is described in detail below.

Recruitment
In our framework, a number of super-individuals enter the popu-
lation each year in the recruiting season. The total number of
recruits, as determined by the recruitment function, was shared
evenly between the super-individuals. The stock recruitment func-
tion consisted of a deterministic part and a random multiplier.
The deterministic stock recruitment functions used standard func-
tions to derive the expected total recruitment as a function of a
variable S, which could for example be SSB. The framework
included several stock recruitment functions. In the worked
example the Beverton-Holt function was used:

R0 = a∗S/(S + b). (1)

The stock recruitment function has two parameters a and b, where
a is a scaling parameter while b is related to the shape of the func-
tion. Stochasticity in recruitment was introduced by a random
multiplier j(y) applied to the total yearly recruitment drawn as
a log normally distributed random number with parameters that
were input, i.e. R(y) ¼ R0(S(y))* j(y)

Growth
In each time-step t, each super-individual i grows in length L
according to the von Bertalanffy growth equation (von
Bertalanffy, 1938.) with the parameters Linf and k which are
current for the time-step:

L(i, t + 1) = L(i, t) + (Linf (i, t) − L(i, t))∗(1
− exp (−k(i, t))). (2)

The corresponding weight at length is given as

W(i, t) = Condition(i, t)∗L(i, t)3 (3)

Table 1. Overview of biological dynamic parameters in the
population model.

Function Parameters

Input values and
CV for the
worked example

Recruitment Beverton-Holt a 1000, 0.5
b 500, 0.0

Length growth von Bertalanffy Linf 100, 0.1
k 0.2, 0.2

Individual weight Fulton Condition 0.000 008, 0.1
Power 3, 0.0

Maturity Logistic L50 50, 0.1
Slope 0.03, 0.0

Natural mortality Fixed Value 0.2, 0.1
Selection in fishery Logistic L50 40, 0.0

Slope 0.04, 0.05

Except for recruitment, specific values are drawn for each super-individual.
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Maturation
A super-individual can be either sexually immature or mature. The
fraction mature at length in the whole population was assumed to
follow a logistic function. When projecting the stock forwards, the
probability that a still immature super-individual would become
mature in the next time-step was derived as:

Prob{Mature at L | Immature at (L − DL)} =
(Logist(L) − Logist(L − DL))/(1 − Logist(L − DL)), (4)

where DL was the growth in the time-step and Logist(L) the logistic
function of length of the form (6) below. Deciding whether the
super-individual matured or not was undertaken randomly in
each time-step, with the above probability as its success rate.

Mortality
Within each super-individual, the number of fish was reduced by
mortality, which is a sum of natural mortality M and fishing
mortality F. Mortalities were expressed on a yearly time-scale.
Accordingly, the number N of fish represented by a super-
individual i was reduced in a time-step of duration Dt as:

N(i, t + Dt) = N(i, t)∗ exp(−(F(i, t) + M(i, t))∗Dt) (5)

The natural mortality M should be dependent on fluctuating ex-
ternal drives. However, in the worked example, this was not
done for simplicity.

The fishing mortality F is a product of a year/season factor and
a selection at length. The year factor Fy was set for each year
according to the decided and implemented TAC, and was
common to all super-individuals. The selection (S(L)) was repre-
sented by a logistic function with the general form:

Logist(L) = 1/{(1 + exp[−4∗slope∗(L − L50)]} (6)

with two parameters, L50 and slope, specific to each super-
individual. Hence, F(i,t,L) ¼ Fy(t)*Logist(i,L).

Catches in numbers in a time-step from t to t + Dt were
derived for each super-individual by the standard Baranov’s
catch equation (Baranov, 1918), according to the current length
L of the super-individual:

C(i, t) = N(i, t)∗F(i.t, L)∗(1 − exp(−(F(i.t, L))
+ M(i))∗Dt)/(F(i.t, L)) + M(i)) (7)

The corresponding catch in weight was the product of the catch in
number and weight-at-length of the super-individual, and the
total catch in a time-step was the sum of the catches from all
super-individuals.

Link functions
The link functions (Figure 1) describe the relation between envir-
onmental drivers and parameters of the biological dynamic prop-
erty functions of the population. The link functions are in
themselves parametric functions of one or more environmental
variables. We use the term “link parameters” for the parameters
in the link functions. For our purpose, we found it convenient
to establish a few building blocks with properties that can be rele-
vant, and to write the link functions by combining such blocks.

Scaled logistic function
The logistic function (6) is used to simulate cases where one may
assume an effect that increases with the value of some explanatory
variable within some range, but with asymptotic values outside
that range. To extend the value space to the range (plow, phigh)
we used the form:

Scalelog(x) = plow + ( phigh − plow)/(1 + exp (−4∗slope∗(x
− x50))). (8)

where the link parameters are: plow, phigh, and slope, and x50 and x
can be an environmental variable or a population state value. The
function can be used for maturity, selection etc., but can also be
used to model the effect of an environmental variable on a popu-
lation property parameter. For example, it can be used as a step
function by setting a high slope. It may also be relevant where
an effect actually has been demonstrated with a linear model,
e.g. by linear regression, but within a quite narrow dynamic range.

An asymmetric bell
In some situations there may be an optimum value of the environ-
mental driver, for example an optimal temperature for the recruit-
ment in a stock. This is represented by an asymmetric bell-shaped
function:

Abell(x) = y0∗exp {− (abs(x − x0)/shape)r)}; (9)

where the parameter shape can have separate values shape1 and
shape2 for x . x0 and x , x0. The link parameters are y0, x0,
shape1, shape2, and r, and x represents some environmental vari-
able. An example is shown in Figure 2a, with y0 ¼ 1, x0 ¼ 0,
shape1 ¼ 7 for x , x0, shape2 ¼ 5 for x . x0, and r ¼ 3.

The use of link functions
To illustrate how link functions may be constructed, we have pro-
vided some examples. One example related to recruitment is out-
lined above. For growth, condition, weight and maturity we used a
more elaborate relation that assumed impact by two environmen-
tal variables, e.g. temperature (T) and food availability (P). It is
derived in multiple steps:

Step 1. Let k in the growth function be dependent on T and
on P as a product of a logistic function and an asymmetric bell
function:

k = kmax∗Abell(T;T0(L), a, r)∗Logistic(P; P50, slope) (10)

where kmax is the k-value at T ¼ T0 and P large. We assume that
T0 is different for small and large fish, and that the a-parameter
may be different for T . T0 and T , T0. An example of this com-
bined asymmetric bell and logistic function is shown in Figure 2b.

Step 2. Let the condition factor Cond be dependent on tem-
perature and prey availability, with similar functions as for k,
but with different parameter values.

Step 3. Weight per individual is Cond*Lp where p is a fixed par-
ameter, normally near 3.

Step 4. Let maturation be dependent on condition as a step
function; below a certain condition level, no further maturation
takes place. Above that level, the probability of getting mature is
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derived according to the logistic maturity function (8):

Prob{Mat(t) | Immat(t − 1)} = (logist(L) − Fractmat(t
− 1))/(1 − Fractmat(t − 1)) (11)

if Cond . Cond crit
¼ 0 if Cond , Cond crit

In practice, the zero probability can be incorporated by letting the
slope in the logistic function equal 0, which would make the prob-
ability of maturing zero. This link function is used in the worked
example below.

Initializing the population model
To initialize the population model, the model was “primed” by
running it for a number of years equal to the maximum number
of ages (10) in the model. That generated all the year classes
present in the initial year. This was done with random recruit-
ments derived assuming that R0 equals the a-parameter rather
than being dependent on the stock biomass. Admittedly, this
can imply a higher recruitment in the priming phase than later
on, depending on the stock-recruit function. A constant fishing
mortality was applied and all other parameters were drawn as
described above, but without applying link functions. Thus, the

initial population was at stochastic equilibrium without modifica-
tions by the environment, and with a fixed exploitation. Link func-
tions to be applied after the priming phase typically have a
maximum of 1.0, which implies that the initial input parameters
may represent a situation where the environment is absolutely
optimal. Therefore, a fixed “environmental multiplier” can be
applied to the relevant parameters, to get parameters in the
priming phase calibrated to a realistic future level.

Observation model
We here use the term observation model to describe the collection
of models that translate the population model variables and the
environmental drivers to the information that is the basis for man-
agers’ decisions. Hence, the observation model provides a dis-
torted perception of the stock status, and a distorted perception
of the effect of the environmental drivers.

The outcome of the observation model was in terms of categor-
ical indices. An example of the classification (used in the worked
example) is given in Table 2. Note that “good” mean length
means high mean length, which can reflect contrasting situations,
such as good growth conditions, poor incoming year classes in the
recent past, or low mortality over a long period letting old and big
individuals accumulate in the population. The vector of these
classification results is the input to the HCR.

The distorted perception of reality was introduced at the clas-
sifying stage, by basing the classification on true values multiplied
with a random noise factor. The true values were extracted from
the population model or from the outcome of the link functions
applied to true values for environmental drivers. This design was
made to facilitate scaling of the uncertainty in the information
that goes into the decision process.

The assumption that the drivers and links are perfectly known
to managers can hardly be met in reality. However, the purpose
was to mimic a situation where admitting uncertainties leads to
a management based on semi-quantitative “indicators”. This
may be regarded as a simple and pragmatic way of programming
an erroneous decision basis in a controlled way.

Decision model
The decision model derives a TAC according to a HCR. For the
scenarios in the worked example, only a limited set of rules was
constructed. Each of these rules had a set of criteria relating to
the categorical evaluations of the indices described above. If all cri-
teria in a set were met, the TAC was changed by a fixed percentage,
associated with each set. If not, the current TAC was maintained.
The criteria used in the worked example below are presented in
Table 3. The rule prescribed percentage changes in TACs. If the
previous TAC is zero, it would be impossible to reopen the
fishery once it had been closed. The following rule for re-opening

Figure 2. Examples of output from link functions. (a) An example of
the asymmetric bell link function (equation 10 in text), with
deviation of a temperature indicator from a normal value along the
x-axis. (b) A link function made by multiplying an asymmetric bell
function of temperature deviation from a normal value with a
logistic function of an environment indicator, which may represent
the food availability (equation 11 in the text). The function is used to
model the growth rate k, relative to a standard value, in the worked
example. The grey shadings and isoclines indicate the relative
k-values.

Table 2. Example of classification of indicators for management
decisions, according to values in the observation model (i.e.
expected values given environmental conditions) relative to their
reference values.

Poor Fair Good

Recruitment, a-parameter ,0.7 0.8– 1.2 .1.2
k-value ,0.8 0.8– 1.2 .1.2
Condition ,0.7 0.8– 1.3 .1.3
Mean length ,0.9 0.8– 1.1 .1.1
TSB ,0.5 0.5– 2.0 .2.0
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the fishery was therefore defined: if the advice was to increase the
TAC and the current TAC is zero, the next TAC would be 10% of
the TAC in the first simulation year.

Implementation model
The implementation model translates the TAC decision into actual
removals from the stock. The annual TAC was evenly split over the
seasons to give four TACs per year, and in the worked example it
was assumed that these were taken as exactly the decided amount.
A simple forward projection was made with the true stock
numbers, and for each season a search was made to find the
overall seasonal F-factor that gave a total catch as prescribed.
The selections and weights for each super-individual were those
in the population model, and the individual seasonal Fs for each
super-individual became the individual selection multiplied by
the overall F-factor. We included rules in the simulations to
handle situations if there was not sufficient fish in the stock to
take the decided TAC. The primary purpose of these rules was
to avoid simulation crashes if the decided TAC exceeds the
model stock abundance. The rules are admittedly arbitrary, but
may represent a quite likely response to a crisis with a depleted
stock. Before searching for an F giving the agreed seasonal TAC,
the yield was calculated corresponding to a very high F (2.0). If
this “ceiling TAC” was smaller than the decided seasonal TAC,
the TAC for that season and for the remaining seasons that year
was set to zero. The TAC for the whole year, which may be
needed for reference in the decision model, was set as the sum
of the seasonal TACs in the previous seasons that year. The
fishery was closed when stock abundance was less than TAC. If
this occurred in the first season of the year, the resulting yearly
TAC was zero.

Results
A worked example
To illustrate the simulation framework, we provide a worked
example. This encompasses a fictitious stock, assuming some en-
vironmental influence and a decision rule based on categorical
indices representing imperfect knowledge of the environmental in-
fluence. We make a brief comparison of the performance of a rule
when only environmental information is available, and when that
can be supplemented with a semi-quantitative knowledge of the
stock abundance. We also compare the result with a management
where the stock abundance is known (with some error) and the
core of the harvest rule is to apply a fixed harvest rate.

The stock in this example is a gadoid-like stock with medium
lifespan. The main parameters determining the stock biology
are tabulated in Table 1. The recruitment was according to a
Beverton-Holt model with a ¼ 1000, b ¼ 500, and a lognormal

stochastic term with sigma ¼ 0.5. Yield and SSB per recruit are
shown in Figure 3. The maximum long-term yield (taking the
stock recruitment relation into account) was at a harvest rate of
15%, corresponding to an F ¼ Fmax at approximately 0.175.

We express the environmental conditions as three time-series,
one influencing recruitment and two influencing growth
(Figure 4). We characterized the environmental conditions as to
represent a challenge to managers, starting with good conditions
followed by poorer conditions leading to strongly declining
growth and recruitment during most of the period, but with
some improvement towards the end (Figure 5). The link functions
applied were those presented above. All examples were run for 20
years after priming at a fishing mortality of 0.175 (Fmax), and with
50 super-individuals per year class. Each run is the result of 100
replicas.

Figure 3. Characteristics of the model population in the worked
example. (a) Total allowable catch (TAC), and (b) spawning stock
biomass (SSB), as functions of mean fishing mortality after 20 years
simulation with constant environmental influence (mean and 10, 50
and 90 percentiles).

Figure 4. Time-course of environmental variables in the worked
example. The variables include temperature associated with
recruitment (Temp R), temperature (Temp K), and food availability
associated with growth.

Table 3. Decision rules used in the worked example.

Increase TAC Decrease TAC

Recruitment Fair or good Poor
k-value Fair or good Poor or fair
Condition Fair or good Poor or fair
Mean length Low or fair Fair or high
TSB 1: Ignored

2. Good
1: Ignored

2: Poor

If the set of indicators does not fit all entries in any of the criteria sets, the
TAC remains unchanged. The criteria for TSB refer to Scenarios 1 and 2
(please refer to text for further details on the scenarios).
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Figure 5. Time-course of stock development and responses to environmental drivers in the worked example. Time-course of (a) mean
modelled a-parameter in the Beverton-Holt function for recruitment, (b) mean weight at age, and (c) mean proportion mature at age.
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Management decision scenarios
We present three scenarios to illustrate the use of the simulation
framework and the utility of environmental indicators as the deci-
sion basis in this kind of framework. The rules for the different
scenarios are presented in Table 3. Scenario 1: The rules for the
first scenario were made mainly through “common sense”—
increase the TAC if the outlook is good and there are no
indications that the stock is in trouble, and decrease it if there
are indications that the stock may be in trouble and the outlook
does not look favorable. The basis for decisions were the semi-
quantitative indicators described above, but indicators relating
to the stock biomass were ignored. Scenario 2: In this scenario
the state of the stock is better known, represented by an uncertain
measure of the total stock biomass (TSB). The criteria are as in
Scenario 1, but in addition, a perceived low TSB is required to de-
crease the TAC and a high perceived TSB is required to increase the
TAC. Although the classification here is based on the absolute
values of TSB (with error), it may to some extent illustrate the situ-
ation where there is some relative measure of the biomass, for
example a time-series of CPUE. Scenario 3: As a third example
we include a simple constant harvest rate rule, where TAC is
decided directly as a fraction of an uncertain estimate of TSB.
The harvest rate was 0.20, corresponding approximately to F ¼
0.25, and maintained as long as TSB was above the value of
1000 (arbitrary units). Below that, the harvest rate was reduced
linearly towards the origin.

In Scenarios 1 and 2 the initial TAC was the catch at the end of
the priming period, which should represent equilibrium at a con-
stant fishing mortality of 0.175. The TAC increase was standar-
dized at 20% and the decrease at 30%. The decisions to increase
or decrease the TAC were taken on a year-to-year basis according
to the situation in the current year, without considering trends or
previous changes.

Scenario outcomes
Summaries of the simulation results are presented in Figure 6. We
describe “risk” as the cumulated probability that either the agreed
TAC could not be taken or that the SSB was below a low value,
indicating stock depletion. This value was set arbitrarily at 400,
corresponding to about 3% of the unexploited SSB.

In all scenarios, the stock development reflected trends in the
environmental drivers (cf. Figures 4 and 5). Furthermore, the
catches generally increased when the SSB stock increased, and
decreased when SSB decreased. Relying on only the environmental
indicators and the mean length in the catches (Scenario 1) allowed
for an increase in the catches in the early phase, which sometimes
was too strong, but triggered no reduction in the catches suffi-
ciently early to preclude a strong decline in SSB as environmental
conditions got worse. With this regime, the cumulated probability
of depleting the stock by the end of the simulation period became
near 100%, and the fishery was fully or almost stopped in most
cases. Including the TSB as an index (Scenario 2) improved
the performance, as it did not allow for a too strong increase in
the catches in the first period. However, during stock decline the
fishing mortality and catches were not reduced rapidly enough
to prevent stock depletion in a substantial number of cases.
With the constant harvest rate (Scenario 3) the catches followed
the stock abundance quite well, with a relatively stable fishing mor-
tality and no risk of depleting the stock.

Discussion
A simulation model framework for testing the inclusion of envir-
onmental information in fisheries management decisions is
demonstrated. More specifically, the impact of the environment
on the modelled population is studied through functions termed
“link functions”. The link functions modify the parameters of
standard population dynamic functions, for example the growth
rate in the von Bertalanffy growth equation (Von Bertalanffy,
1938), or parameters in stock-recruitment functions.

In our framework we used a simple operating model, along the
lines advised by Sainsbury et al. (2000) and A’Mar et al. (2010). We
incorporated the effect of environmental drivers by letting them
impact multiple dynamic population processes of the fish stock.
One challenge in the field of fisheries management is good com-
munication between scientists working in fishery oceanography
and in stock assessment and management advice (Ulltang, 2003;
Huse et al., 2007). Programming such a framework was a useful
and challenging exercise in bridging gaps between branches of
science, because it required very specific and detailed formulations
of relations and structures, and ambiguities were effectively
revealed. Our solution was to establish functional relationships
between environmental drivers and parameters in functions de-
scribing population dynamics, in terms of the link functions.
That made it necessary to develop very precise formulations on
how environmental drivers act on population processes.
Whereas the scientific literature on environmental impact on
dynamic fish population processes is rich and served as input in
constructing the link functions (e.g. Ottersen et al., 2001; Fiksen
and Slotte, 2002; Hjermann et al., 2004, 2007; Pörtner et al.,
2008), the right functional forms are rarely identified (e.g. de
Oliveira and Butterworth, 2005; Kell et al., 2005). For instance, en-
vironmental impacts on fish stocks are often identified as correla-
tions, without clear identification of the underlying processes.
The mechanisms are not sufficiently known to claim that the
population model in our framework represents reality, but we
constructed the environmental effects on the population to repre-
sent plausible scenarios. More conceptually, our approach allowed
a structured modelling of the environmental impact on the popu-
lation, where each step can be justified in a logical way as an iden-
tifiable process.

To mimic the current level of knowledge available to manage-
ment, decision makers should have some knowledge of the envir-
onmental drivers and an understanding, albeit incomplete and
sometimes erroneous, of their effect. Hence, two sets of links
between environmental drivers and stock dynamics were included:
one for nature, i.e. the population model, and one for managers,
i.e. the observation model. The observation model thus has to
cover both how well the environmental status is known and how
well the effects of environmental influence are understood by
managers and their advisors. It would be misleading to restrict
the study to the case where the link functions are perfectly under-
stood by managers. Rather, an important aspect should be to
explore how far from reality the understanding of environmental
effects by managers can be before management fails. Thus, we
ran into the paradox that both the operating model representing
the “real” world and the observation model for managers’ deci-
sions should be based on best knowledge, and still be different.
The pragmatic solution here was to introduce errors in the classi-
fication step where categorical indices were generated by introdu-
cing errors to the true basis for classification.
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Figure 6. Summary of simulation output of three management regime scenarios for 20 years. Each panel shows the mean and 10, 50 and 90 percentiles by year. Left column: fishing mortality;
centre column: spawning stock biomass (SSB) and cumulated risk of stock depletion; right column: catch. Upper row: management regime based on environmental indicators only (Scenario 1).
Centre row: management regime based on environmental indicators and total stock biomass indicators (Scenario 2). Lower row: management regime based on estimated stock abundance and
fixed harvest rate (Scenario 3). Please refer to text for further definition of decision rules (Table 3) and of risk.
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Since we wanted to simulate external influences on not only
population abundance, but also on properties such as fish length
and maturity at age, a population model that was both age- and
length-structured was required. There are several ways of doing
that (e.g. Methot, 2000; Frøysa et al., 2001). Our choice was to
use IBMs to construct the population as a collection of super-
individuals. This was partly motivated by previous experience
with such models (Hinrichsen et al., 2011; Hjøllo et al., 2012;
Utne et al., 2012). Basic values for all model parameters are pri-
marily given as input, and characterize the kind of population
we wanted to simulate. For the population model, each super-
individual obtains its own set of basic parameters, by applying
random multipliers to the original basic values. Each year, apply-
ing the link functions to environmental influence leads to multi-
pliers for the individual basic values that produce the parameter
values that are used in the operating model.

There are some advantages with this construction. Giving each
super-individual its own growth parameters, allows a realistically
broad distribution of lengths at older ages, rather than congestion
towards Linf. It also makes some future extensions easier, in par-
ticular bringing in the spatial dimension to the simulations. The
spatial properties of fish stock distributions, and dynamic spatial
responses to environmental variability through e.g. climate
changes, influence both the environmental and fisheries impact
on stock development (Link et al., 2011; Ciannelli et al., in
press). Hence, spatial properties and responses by fish stocks
should be included in a Management Strategy Evaluation (MSE)
framework (Link et al., 2011; Ciannelli et al., in press). Within
the IBM approach it is straightforward to e.g. include migrations
and to take the spatial distribution of environmental drivers into
account (Hinrichsen et al., 2011; Utne et al., 2012). Likewise,
spatial overlap between interacting stocks can be directly modelled
(Utne et al., 2012). The most commonly applied alternative, to use
state space models of the Markov chain type with transition matri-
ces and functions that are sensitive to environmental drivers, has
the disadvantage of lacking memory. Both constructions can
become demanding with respect to computing power.

In simple simulation models without environmental influ-
ences, the basis for decisions, i.e. the observation model, typically
estimates stock abundance through an analytical assessment with
noisy input data from the population model, or a proxy of a full
assessment (Butterworth and Punt, 1999; Sainsbury et al., 2000).
Possible environmental influence is incorporated in the popula-
tion model as stochastic terms (Butterworth and Punt, 1999;
Sainsbury et al., 2000). When the basis for management decisions
is restricted to an analytical assessment, our approach only differs
from the standard framework in that here the population model
is explicitly sensitive to environmental drivers. An additional
element could be included if the error in deriving input for the as-
sessment (e.g. variations in survey catchability) is influenced by
environmental factors (Stoner, 2004). This aspect is not consid-
ered here.

We have presented a worked example where the observation
model, as well as the HCRs, was made to simulate so-called
indicator-based management (Caddy, 2002; Potts et al., 2008;
Butterworth et al., 2010; Dichmont and Brown, 2010). Rather
than requiring a fully quantitative decision basis and abandoning
information that cannot be expressed in a quantitative manner, we
sought to utilize all relevant information, even if it is only qualita-
tive (Caddy, 2002; Potts et al., 2008). The present criteria for clas-
sification into “poor”, “fair” or “good” (Table 2) were based on

how the perceived values of some population properties
compare with “standard” values, for pragmatic, programming
reasons. Such standard values may not be known in a real
setting, although it is likely that there will be some experience
that can be used as guidance (e.g. Potts et al., 2008; Butterworth
et al., 2010). Such classification schemes should be associated
with a relevant precision level of the management regime. An in-
dicator–based management of stocks where there is insufficient
information to undertake an analytical assessment may not
support smaller, annual quota adjustments, but rather a manage-
ment regime where quotas remain stable unless indications of
altered stock productivity suggest a stepwise reduction or increase
in quotas (Caddy, 2002; Potts et al., 2008).

The worked example was included to illustrate how this simu-
lation framework could be designed for practical situations. It was
not intended as a demonstration of how to undertake indicator-
based management. The decision criteria were derived through
trial and error, where the key problem was to strike the balance
between incentives to increase and decrease the TAC. In our
example the use of environmental information, combined with
knowledge on how the environment impacts the stock, did not
compensate for the lack of abundance estimates. However, to con-
clude on the usefulness of including environmental variation and
impact in fish stock models, would require extensive studies of op-
portunities and limitations. The scope of the present work was
rather to present a modelling approach that can be used in such
studies.

A number of simulation studies have explored the feasibility of
incorporating environmental factors in management evaluation
procedures. In such studies, the operating models range from
simple single-species models with simple environmental para-
meters impacting on one or a few dynamic population processes
(e.g. Basson, 1999; A’Mar et al., 2009, 2010; Brunel et al., 2010;
Hurtado-Ferro et al., 2010), to more complex coupled biophysical
models (Hinrichsen et al., 2011; Hollowed et al., 2011), multispe-
cies models with dynamic species interactions (Howell and
Bogstad, 2010) and comprehensive end-to-end ecosystem
models (Fulton et al., 2007; Smith et al., 2007). Collectively,
these studies, including the present study, demonstrate that the
usefulness of including environmental drivers in fisheries assess-
ment and management depends on a variety of factors, including
the strength of environmental impact, the level of process under-
standing, the life history of the stock, the trends in environmental
change, and the responsiveness of the management system.

In summary, we have designed and demonstrated a simulation
framework for evaluating fisheries management schemes that uses
environmental information as part of the decision basis. A key
feature is to link environmental signals to parameters in functions
that define population dynamics, like growth functions and stock-
recruitment functions. We also provide a worked example that
shows some weaknesses in a management that is based solely on
environmental indicators as the decision base, to increase and de-
crease the exploitation, without responding to updated measures
of the state of the stock itself. In that sense, this study is a demon-
stration of the utility of evaluating a harvest rule by simulations
and of the utility of the present framework for such studies.
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