

Strengthening the evidence base for temperature-mediated phenological asynchrony and its impacts

Jelmer M. Samplonius ¹¹², Angus Atkinson ⁰², Christopher Hassall³, Katharine Keogan¹,⁴, Stephen J. Thackeray ⁰⁵, Jakob J. Assmann ⁰⁶, Malcolm D. Burgess ⁰,^{7,8}, Jacob Johansson ⁰⁹, Kirsty H. Macphie ⁰¹, James W. Pearce-Higgins ⁰^{10,11}, Emily G. Simmonds¹², Øystein Varpe ⁰^{13,14}, Jamie C. Weir ⁰¹, Dylan Z. Childs ⁰¹⁵, Ella F. Cole¹6, Francis Daunt¹7, Tom Hart¹6, Owen T. Lewis¹6, Nathalie Pettorelli¹8, Ben C. Sheldon¹6 and Albert B. Phillimore ⁰¹

Climate warming has caused the seasonal timing of many components of ecological food chains to advance. In the context of trophic interactions, the match-mismatch hypothesis postulates that differential shifts can lead to phenological asynchrony with negative impacts for consumers. However, at present there has been no consistent analysis of the links between temperature change, phenological asynchrony and individual-to-population-level impacts across taxa, trophic levels and biomes at a global scale. Here, we propose five criteria that all need to be met to demonstrate that temperature-mediated trophic asynchrony poses a growing risk to consumers. We conduct a literature review of 109 papers studying 129 taxa, and find that all five criteria are assessed for only two taxa, with the majority of taxa only having one or two criteria assessed. Crucially, nearly every study was conducted in Europe or North America, and most studies were on terrestrial secondary consumers. We thus lack a robust evidence base from which to draw general conclusions about the risk that climate-mediated trophic asynchrony may pose to populations worldwide.

he shifting seasonal timing of key life history events, such as the budburst of trees, emergence of insects or the migration and breeding times of vertebrates, is one of the three universal ecological responses to climate warming^{1,2} alongside range shifts and reductions in organismal body size^{3,4}. Such shifts in phenology have provided some of the earliest and strongest evidence that rising temperatures have left a discernible imprint on the planet's ecosystems⁵⁻⁸. For many consumer species, phenological events are timed to coincide with peak abundance of a predictable food resource. However, the strength and direction of the phenological response to temperature frequently differs among species occupying different trophic levels, leading to asynchrony between resource and consumer (Box 1). The consequences of such asynchrony were first studied in the early 1900s in the context of trophic interactions between fish larvae and their zooplankton resource. This generated the classic match-mismatch hypothesis (MMH)9. Fish larvae were found to spawn at a relatively fixed date, but zooplankton phenology was more variable across years, causing annual variation in asynchrony between consumer and resource. The degree of asynchrony (referred to as mismatch by Cushing) was proposed to account for annual fluctuations in fish recruitment to the population9. In recent years, the hypothesis that changing temperatures might increase

the frequency of costly trophic asynchrony between consumers and their resources has been increasingly discussed^{10–13}. The impact of asynchronous phenological interactions on the fates of consumer species was identified as a key uncertainty in the fifth assessment report of the Intergovernmental Panel on Climate Change¹⁴.

Phenological asynchrony and mismatch are often used interchangeably in the ecological literature, but the meaning of the term 'mismatch' is more ambiguous, as it is in some cases used to imply only dissimilar responses of adjacent trophic levels¹³, and in other cases implying negative impacts on the consumer¹⁵. In this Perspective, we refer to 'trophic asynchrony' when the consumer demand does not coincide with the phenology of the resource, and to the MMH when asynchrony has negative impacts on fitness or populations (Box 1). We note that the MMH is normally conceptualized from a unidirectional, bottom-up perspective (that is, asynchrony leading to detrimental effects on consumers), rather than potential top-down effects upon prey and resources¹⁶.

Asynchrony has been detected in many study systems^{7,17,18}, but to demonstrate negative consequences of asynchrony on the consumer (that is, the MMH), several conditions need to be met. For trophic asynchrony to be identified as detrimental, the consumer must depend on a short, seasonally pulsed or ephemeral resource^{19–25}, and

Institute for Evolutionary Biology, The University of Edinburgh, Edinburgh, UK. ²Plymouth Marine Laboratory, Plymouth, UK. ³School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK. ⁴Marine Scotland Science, Marine Laboratory, Aberdeen, UK. ⁵Lake Ecosystems Group, UK Centre for Ecology & Hydrology, Lancaster, UK. ⁶Department of Biology, Aarhus University, Aarhus, Denmark. ⁷RSPB Centre for Conservation Science, Sandy, UK. ⁸Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK. ⁹Department of Biology, Lund University, Lund, Sweden. ¹⁰British Trust for Ornithology, Thetford, UK. ¹¹Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, UK. ¹²Department of Mathematical Sciences and Centre for Biodiversity Dynamics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway. ¹³Department of Biological Sciences, University of Bergen, Bergen, Norway. ¹⁴Norwegian Institute for Nature Research, Bergen, Norway. ¹⁵Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK. ¹⁶Department of Zoology, University of Oxford, Oxford, UK. ¹⁷UK Centre for Ecology & Hydrology, Penicuik, UK. ¹⁸Institute of Zoology, Zoological Society of London, London, UK. ²⁰e-mail: jelmersamplonius@gmail.com

Box 1 | Glossary of terms widely used in the study of trophic asynchrony

Phenology: the study of cyclically recurring biological events, such as the seasonal timing of tree leafing, insect hatching or animal migration and reproduction. In this work, we also use it to refer to the events themselves, as has become the norm in the literature.

Trophic level: the position that an organism occupies in the food chain. Primary consumers are herbivores (for example, winter moth and caribou), and secondary consumers are omnivores or carnivores (for example, great tit and herring).

Phenological sensitivity or response: the interannual variation in phenology that relates to interannual variation in a biotic or abiotic cue, for example an advance in breeding in response to temperature.

Phenological or trophic asynchrony: when the seasonal peak in consumer demand for a resource does not coincide with the seasonal peak in availability of that resource.

The match-mismatch hypothesis (MMH): the MMH poses that trophic asynchrony has negative consequences for consumer fitness or population size. This is also referred to as trophic mistiming¹³.

it should be established whether asynchrony might be an adaptive baseline state^{26–28}. Moreover, there should be negative effects of asynchrony on consumer fitness^{29–34}. Ultimately, asynchrony becomes of conservation concern when it affects mean demographic parameters and leads to population declines^{13,35–38}. Although components of the MMH and consequences for population trends can be identified, these are based on very few and specific study systems. We therefore lack a general overview of how often trophic asynchrony leads to population declines.

Five criteria for demonstrating risks of temperature-mediated asynchrony

Here, based on ideas that have been widely discussed in the literature and which we outline above, we propose five criteria that must all be met for temperature-mediated phenological asynchrony to be both present, and causing population declines (Table 1): (1) the consumer is highly reliant on a seasonally ephemeral resource; (2) the degree of trophic asynchrony between consumer and resource phenology is increasing over the years (evidenced by time series); (3) increasing trophic asynchrony is due to differing temperature responses of consumer and resource; (4) trophic asynchrony impacts negatively on consumer fitness; and (5) asynchrony impacts negatively on population growth³⁷. In Table 1, we identify some of the methods that can be used to test each of these criteria. In the next section, we summarize the existing biological evidence for these criteria, with a particular focus on general insights that have emerged from multi-species studies and formal meta-analyses on questions that are pertinent to the study of the MMH. The five criteria can be seen as a best-practice framework, but we realize that each study system poses unique challenges for studying these criteria. We do not intend for their application to oversimplify the complex study of phenology, nor do we claim that they cover everything that phenological studies need to focus on.

Evidence for phenological asynchrony. Large-scale comparative analyses of phenological responses and formal meta-analyses provide ample evidence that on average spring timings are advancing at mid-high latitudes, and that species vary in their response to temperature^{8,17,39}. In two large multi-species analyses based on

phenological data from the United Kingdom, the phenology of secondary consumers advanced less than primary producers and consumers over the years (criterion 2)17 and secondary consumers have a lower phenological sensitivity to temperature (criterion 3)7. For marine taxa, the magnitude of phenological advance varied among trophic groups, with phytoplankton, zooplankton and bony fish all more responsive than seabirds^{40,41}. However, while large-scale multi-species and multi-population studies provide valuable insights into general trends and patterns of inter- and intra-specific variation in phenological responses, they do not estimate in situ responses for specific trophic interactions, nor do they reveal anything about fitness or population consequences. Of those studies that focus on trophic interactions known to be important to the consumer for a short period (criterion 1), most focus on a single interaction. Such studies have reported increasing asynchrony over the years (criterion 2), for example in great tits, Parus major, and winter moth, Operophtera brumata^{5,42}. However, a recent analysis of the phenological time series underpinning 27 species interactions (including but not limited to trophic interactions) found that whilst the degree of asynchrony has changed over the years, the number of cases where asynchrony had increased was roughly balanced by the number of cases where asynchrony had decreased18. The same study also found that whilst phenology was responding to temperature in the ecological systems considered, it was not possible to attribute temporal trends in asynchrony to long-term increases in temperature (criterion 3).

Potential consequences of trophic asynchrony. The most prominent evidence for the MMH comes from intensively studied wild systems, such as that of the reliance of great tits on winter moth caterpillars to feed their young. For these birds, asynchrony between the timing of peak nestling demand and peak caterpillar biomass has negative consequences for individual fitness and annual mean fitness ^{30,31}. Meta-analyses of selection estimates in the wild report consistent selection pressures for earlier phenology ^{43,44}, but directional selection has not become stronger over time ⁴⁴. However, meta-analyses addressing selection on phenology have considered only absolute timing, rather than the timing of a consumer relative to its resource ¹⁰, so it is unclear from these studies whether selection on consumers is being driven by asynchrony with resources.

Trophic asynchrony becomes a matter of conservation concern if it impacts negatively on population size (criterion 5)37. Two long-term studies of great tits found no evidence of an effect of asynchrony on population size^{31,45}, whereas a study of several populations of pied flycatchers Ficedula hypoleuca in the Netherlands reported stronger population declines where caterpillar phenology was earlier³⁶. The only multi-species studies on this theme that we are aware of are for birds. One of these studies found that migrant passerines breeding in European forests had declined more than resident and marsh inhabiting species, which the authors attributed to the MMH46. The other study found that, across 21 UK bird species, population declines were more pronounced for species that had advanced their breeding phenology least and in species whose annual productivity was most reduced by asynchrony with general insect and plant phenology⁴⁷. However, support for the MMH was weak and not reflected by declines in breeding success of those species.

Literature survey

We conducted a broad survey (n = 109) of published work on the MMH across terrestrial, marine and freshwater systems with the aim of: (1) examining the evidence for temperature-mediated trophic asynchrony and its impacts and (2) identifying gaps in the evidence base, thereby allowing us to (3) make recommendations for priority areas for future work. To this end, we extracted data from published, peer-reviewed original research in which a trophic interaction was

is driven by

interannual

variation in

temperature

impacts

fitness

negatively

on consumer

(the MMH), with a consideration of the data and methods that can be used						
Criterion	Evidence required	Data and methods				
1. An ephemeral resource contributes a large proportion of the consumer's diet	A large proportion of the diet is typically composed of a species or food type that shows a pulsed seasonal distribution	A variety of methods for quantifying diet composition exist, including direct observation of feeding, gut content dissection, faecal or regurgitate dissection, metabarcoding and stable isotope analysis. Requires that relevant aspects (for example, biomass and abundance) of the favoured resource are measured over time within at least one season and analysis reveals a pulsed intra-year relationship.				
2. Asynchrony between consumer and resource phenology is increasing over time	Analysis of time series of consumer and resource phenology, with a test of whether trends in timing differ and whether this leads to an increase or decrease in asynchrony	Requires a time series that covers a period of temperature change. A large number of phenological time series exist, as recorded by researchers, citizens, herbaria and so on. Statistical analysis of increasing asynchrony is easily achieved by including an interaction between year and species. Inference of whether asynchrony is increasing or decreasing requires inspection of predictions based on estimated elevations and slopes of the modelled relationships for each species ¹⁸ .				
3. Variation in asynchrony	Identification of the time period(s) over which consumer and resource is sensitive	A variety of methods exist for identifying the time period over which phenology of each species responds to temperature ⁹⁵⁻⁹⁸ . Confidence in attribution can be increased				

Table 1 | Criteria of evidence that climate-change-induced trophic asynchrony is increasing and deleterious for the consumer

4. Asynchrony A suitable measure of consumer fitness Can be assessed within years (relative fitness) or among years (mean fitness) or both^{30,31}. Depending on how asynchrony varies across individuals or years, the decreases with increasing asynchrony relationship between fitness and asynchrony may be a linear decline or a humped relationship. If the former, care may need to be taken to establish causation¹⁰² Ideally, models should take into account both asynchrony with peak resource and phenological distribution of the resource^{71,72}. Studies of impacts on relative fitness are informative regarding selection and opportunities for adaptation, whereas studies on mean fitness may be informative regarding demographic rates¹³.

5. Asynchrony Negative effects of asynchrony on fitness (4) impacts that have a negative effect on population size or negatively growth, as assessed over multiple years on consumer population size, density or growth

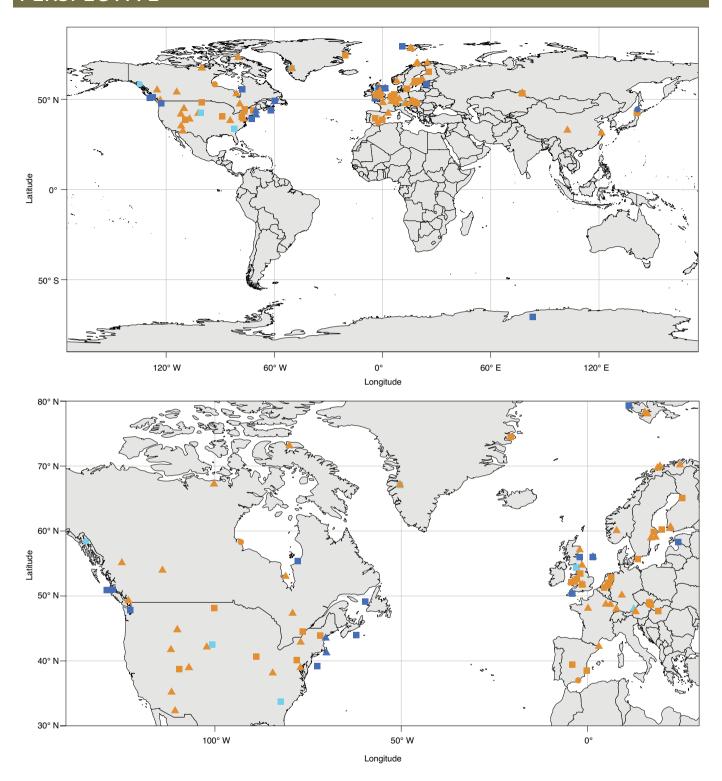
to temperature. Evidence that differential

temperature sensitivity is the driver

Requires long-term data on asynchrony and population size or density. The impact of asynchrony on demographic rates can be incorporated into a population model⁸³ or the causal pathways between asynchrony and population growth can be assessed in a structural equation model¹⁰³. It is important to rule out a causal effect of other variables (for example, land use, resource availability, sea ice or range shifts) that could cause populations to change over time²⁴. Such confounding effects can partially be accounted for by including year as a term to detrend the analysis^{41,99}. An alternative approach involves modelling a population's ability to persist on the basis of demographic and quantitative genetic parameters 45,104.

by experiments²⁶ or by including year as a term in the model⁴¹, thereby de-trending

the phenology data⁹⁹. Estimating temporal trends in temperature variables is also

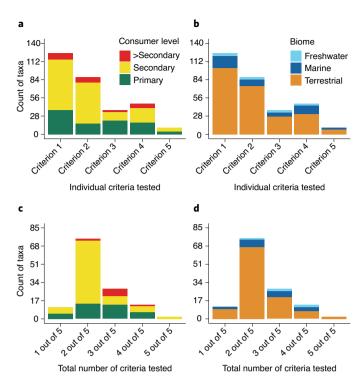

worthwhile, as differing trends may generate asynchrony 100,101.

studied in relation to any of the five criteria we proposed as vital to the MMH (Table 1; Extended Data Fig. 1). Only original studies, where the specific interaction between consumer and resource could clearly be identified, were included (see Supplementary Information for methodological details, and Supplementary Table 1 for the papers identified as relevant by the data extractors).

Taxonomic and geographical bias in the data. The search identified 772 papers, of which the full text was found for 760. Of these, 571 were not relevant (for example, no trophic interactions were reported, or none of the five criteria were extractable), and 80 had no extractable data, resulting in a total of 109 papers that had relevant data on 129 consumer taxa (Extended Data Fig. 2). All but six of the 109 trophic interaction studies were in Europe or North America (Fig. 1). The majority of trophic interactions were terrestrial (81.5% of the data), with marine (14%) and freshwater interactions (4.5%) being scarcer. For most interactions the consumer was a secondary consumer (58%), with studies of primary (36.5%) or higher than secondary (5.5%) consumers less common. Birds made up the majority of the consumer taxa studied (53%), while 29.5% of taxa were insects, 8% were fish, 5% were mammals and 4% were crustaceans.

Testing the five criteria. The most tested criterion was criterion 1 (97% of interactions, n = 125 out of 129)—relating to dependence on a seasonally pulsed resource (Fig. 2a,b). However, rather than conducting direct tests on the seasonal distribution of resources, 74% (n = 92 out of 125) of these included only a statement based on a priori knowledge of the natural history of the system that the resource was both ephemeral and important to the consumer.

Of the study systems that were tested for dependence on a seasonally pulsed resource (that is, where the resource was ephemeral and the consumer was a specialist), 42% (n = 15 out of 36) showed such dependence. Excluding the cases where criterion 1 was not explicitly tested, criterion 2 was the most frequently tested (68% of interactions, n = 88 out of 129), relating to whether phenological asynchrony was increasing over time (Fig. 2a,b). The remaining criteria were all tested substantially less frequently, with criterion 5 (population consequences) being tested least often (8% of interactions, n = 10 out of 129). Surprisingly few studies report data for criterion 3 (Fig. 2a,b), which relates temperature to asynchrony (29% of interactions, n = 37 out of 129), and this was almost never reported for marine and freshwater taxa. The distributions of criteria tested were broadly similar across consumer levels and biomes,


Fig. 1 Locations of studies on phenological asynchrony identified by our analysis. Locations are subdivided by biome (light blue, freshwater; dark blue, marine; orange, terrestrial) and consumer trophic level (triangles, primary; squares, secondary; circles, >secondary). There is a clear geographical bias of studies, with a considerable overrepresentation of Europe and North America.

with the exception of primary consumers for which criteria 3 and 4 appear slightly more common.

Our analysis could identify only two out of 129 consumer taxa for which all five of our criteria have been tested at least once: both of these are forest-breeding passerine birds studied in Europe—the great tit and the pied flycatcher. In a further 13 taxa, four out of five criteria were assessed. In the remaining 114

taxa, three or fewer criteria were studied, with the majority (58%, n = 75 out of 129) of consumer taxa having only two of the five criteria known (Fig. 2c,d). Breaking this same analysis down to the per study level, no single study explicitly tested all five criteria (Extended Data Fig. 3). This is generally due to a tendency for studies to focus on either phenology slopes (criteria 2 and 3), or the consequences of asynchrony (criteria 4 and 5). Only a handful

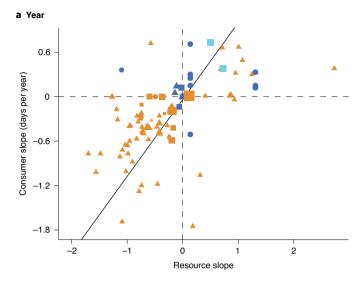
PERSPECTIVE

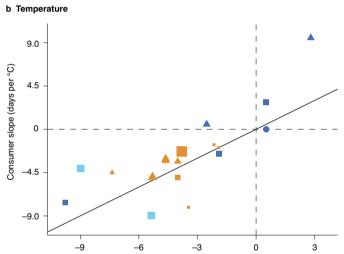
Fig. 2 | Testing the five criteria. a-d, Individual criteria tested across taxa (**a,b**), and the total number of criteria tested per taxon (**c,d**). The most tested criteria (**a,b**) were (1) 'ephemeral resource' and (2) 'phenological change over the years'. The total number of criteria tested (**c,d**) was two out of five for most taxa, and all five criteria were tested for only two out of 129 taxa (**c,d**). The left panels (**a,c**) are divided by trophic level, and the right panels by biome (**b,d**).

of studies detail temporal slopes, temperature slopes and consequences of asynchrony in one study^{48–50}.

Phenology slopes over time and temperature. Consumer and resource responses appear to be positively correlated across studies, with consumers showing a slight tendency to advance their phenology by less than their resource (Fig. 3). In 61% (n = 58 out of 95) of the cases, the phenology slope over time was greater for the resource than for the consumer (Fig. 3a,b). For the phenological response to temperature, the consumer slope was greater than the resource slope in 59% (n = 13 out of 22) of cases (Fig. 3c,d). The degree to which these patterns differ across biomes and trophic levels could not be tested with this dataset, since the number of slope estimates is too low for non-terrestrial and non-secondary consumers. Based on visual inspection, it appears that especially terrestrial secondary consumers tend to be slower-advancing than their resource. However, more data on underrepresented groups would be required to reach robust conclusions about these patterns.

Fitness and demographic consequences. Fitness consequences in relation to trophic asynchrony (criterion 4) are studied in 36% (47 out of 129) of the consumers (Fig. 2a,b). Consequences of asynchrony for offspring (n=44) are studied over three times as often as consequences for adults (n=14, Fig. 4), though it is possible that this reflects a research bias to study fitness components that are more sensitive to asynchrony. In 28% of consumer taxa (n=13 out of 47), no negative effect of asynchrony on fitness was reported (Fig. 4). The least-studied consequence of trophic asynchrony is its effects on population demography (criterion 5, Figs. 2 and 4).


In half of these interactions (n = 5 out of 10), no effect of asynchrony was reported.


Discussion

Our literature survey on the ecological impacts temperature-mediated trophic asynchrony reveals that the full causal chain from temperature change, to temperature-driven shifts in seasonal timing, consumer-resource synchrony, and individual-to-population-level impact has rarely been studied. Only two out of 129 taxa were studied for all criteria, and for the majority of study systems, only one or two out of five criteria were met. The available studies were strongly biased toward terrestrial secondary consumers (especially birds) in the Northern Hemisphere (largely Europe and North America). Notably, the effects of climate warming on trophic asynchrony in aquatic systems and in the Southern Hemisphere are understudied⁵¹, although this could be reflective of the small amount of temperate land mass in the Southern Hemisphere. Tropical studies are also underrepresented, but this may partly indicate a reduced importance of temperature as a phenological cue in tropical ecosystems8. Crucially, demographic consequences of trophic asynchrony are the least studied of the five criteria, despite this knowledge being the most important to conservation.

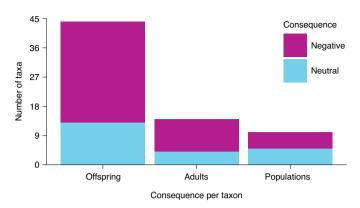
Bias in the MMH evidence base across biomes. Terrestrial systems were by far the most represented of the three environments that we considered, presumably by virtue of the comparative ease of collecting data on both phenology and fitness in these systems. This ease of data collection is evident in the great contribution that citizen-science data collectors have made to the study of terrestrial phenology^{47,52-55}, which is rare for aquatic systems. Monitoring phenology of many aquatic organisms is hampered by their wide ranges and underwater habitats⁵⁶, and compounded by the logistic and financial challenges encountered during offshore research. As a result, relatively few multi-decadal phenological time series have been collected at sufficient resolution to capture seasonal changes^{57,58}. Moreover, separate sampling programmes are often needed for consumer and resource (for example, piscivorous birds and their prey)⁵⁹, and even if resources can be quantified, many aquatic organisms are generalist feeders, further adding to the difficulties in quantifying the MMH. Citizen scientists can, however, collect valuable data on the terrestrial stages of aquatic organisms (for example, dragonflies), or aquatic seasonal events that can be observed from shore (for example, amphibian spawning and floating algal blooms). Furthermore, with ongoing technological innovation in data collection methodologies, it may become possible to widen the aquatic evidence base for some taxa. For example, radar can be used to quantify aquatic-terrestrial subsidies based on insect emergence, providing detailed measures of the timing and size of resource pulses60, and satellite-based observation tools are providing a wide-scale perspective on phytoplankton phenology changes⁶¹. It would therefore be valuable to consider how diverse data sources, and lines of evidence, can be fruitfully combined to advance our knowledge of the importance of the MMH in aquatic systems.

Despite their overrepresentation in MMH research, even in terrestrial systems there are biases and gaps in the evidence base that extend beyond the aforementioned geographic biases (Fig. 1). Of the terrestrial studies, temperate forest taxa and birds in particular predominate, which is probably due to the fact that seasonality increases with latitude. Temperate forests experience a pronounced seasonal temperature-mediated pulse in resources⁴⁶, and they present particularly suitable study systems to study individual fitness in the wild (for example, cavity-nesting birds). In aquatic systems, individual marking of philopatric seabirds and pinnipeds permits some components of fitness to be monitored⁶², but this is much harder for underwater organisms⁶³. Likewise, for many widely

Resource slope

Fig. 3 | Consumer versus resource slopes in relation to year and temperature. a, Year. **b**, Temperature. Symbol shapes denote consumer trophic level (triangles, primary; squares, secondary; circles, >secondary), colours denote biome (light blue, freshwater; dark blue, marine; orange, terrestrial) and larger symbols are from longer time series (average 21 years, range 6 to 119 years). The solid diagonal line represents an equal rate of change by consumer and resource. Where the resource slope is < 0, points above the line represent systems where resource phenology is advancing by more than that of the consumer, whereas points below the line represent systems where consumer phenology is advancing more rapidly than resource phenology. Where the resource slope is > 0, points below the line represent systems where resource phenology is delaying by more than that of the consumer, whereas points above the line represent systems where consumer phenology is delaying more rapidly than resource phenology.

distributed groups such as fish, invertebrates and plankton, individuals cannot be sampled repeatedly, and populations can rarely be sampled to the extent that demographic implications of asynchrony can be assessed. On the other hand, invertebrates are more amenable to experimental study³², and numerous national surveys of population sizes exist^{64,65} that could be used to infer demographic consequences of trophic asynchrony. Another key research gap in aquatic systems involves the specific role of cross-system consumerresource interactions in mediating trophic asynchrony. For example, some freshwater consumers feed upon terrestrial resources, which


represents a substantial source of nutrients⁶⁶. The delivery of at least some of this material is strongly seasonal. Leaf fall, for example, is triggered by photoperiod in conjunction with drought and temperature⁶⁷. Aquatic phenology research would greatly benefit from increased consideration of the synchrony between freshwater consumers and terrestrial resources.

Further challenges in studying the MMH. We recognize that studying these five criteria and improving the evidence base regarding the risks posed by the MMH will not be straightforward and we have already discussed how aquatic environments present particular challenges, but other complexities remain. While criteria 2 and 3 are perhaps the easiest to satisfy, even here challenges exist in attributing a change in phenology or asynchrony to temperature, as sensitivity estimates can be obscured by non-climate drivers or compensatory mechanisms^{49,68}. For example, changing nutrient availability and light conditions can influence the seasonal timing of phytoplankton blooms^{69,70}, but would not be expected to affect consumer organisms in the same way. In this Perspective, we have simplified the interaction between resource and consumer to a single metric, the asynchrony between the peak demand of the consumer and availability of the resource. However, as the MMH predicts that consumer fitness relates to resource availability during a particular window9, consumers might in addition to asynchrony be sensitive to the height and width of the resource11,37, either of which could be sensitive to temperature and exacerbate or ameliorate effects on fitness. Although the potential for resource abundance to influence fitness is widely acknowledged, it is unusual for studies on the MMH in relation to fitness (criterion 4) or population size (criterion 5) to include its effect^{71,72}. We realize that especially criterion 4 may be hard to satisfy for study systems where individuals cannot be studied, which should not discourage people from working on such systems. Whilst fulfilling all the other criteria would allow one to infer whether the mismatch is causing population declines, there are clear advantages of studying individuals within populations. Apart from the fact that such data help demonstrate causative effects of asynchrony on fitness, they can tell us whether seasonal timing will be under directional selection.

Where the resource is in fact a guild (for example, caterpillars or phytoplankton) rather than a species, temperature-mediated shifts in the aggregate phenology may arise from a variety of processes, from similar plastic responses of different species, to changes in the relative abundance of early- and late-blooming constituent species, even when these species independently might show no or weak phenological shifts⁷³. While the effect of asynchrony on the consumer may not be sensitive to these two scenarios, if we want to project phenological changes into the future we need to understand the processes that underpin community phenological responses. An obvious solution to this problem is to improve the species-level resolution of sampling⁷⁴, but this can be costly and impractical in the short term, and might require new sampling approaches such as environmental DNA (eDNA)⁷⁵.

Is trophic asynchrony of conservation concern? This review reveals a lack of robust evidence for the MMH, and even the two best studied taxa in terrestrial systems present a mixed message. In great tits, matching with the caterpillar peak has fitness impacts at both the individual and population level^{30,31}, but trophic asynchrony currently poses no threat to their population persistence^{31,45}. Pied flycatchers also perform worse when poorly matched with the caterpillar peak^{22,76}, but, in contrast to great tits, declines in asynchronous flycatcher populations have been recorded in the Netherlands³⁶. Nevertheless, those pied flycatcher populations have been increasing again since 2002⁷⁷. Interestingly, pied flycatchers breed about two weeks later than tits⁷⁸, the average nest is rarely matched with the caterpillar peak⁷⁹, and a long-term study in the Netherlands

PERSPECTIVE

Fig. 4 | Consequences of trophic asynchrony per taxon. Number of taxa in which consequences of trophic asynchrony were studied, divided into those where the effect reported was negative or neutral (statistically non-significant, no positive effect of trophic asynchrony was ever reported for this taxon). Results are clearly biased toward juvenile rather than adult life stages.

found no correlation between annual mean asynchrony with the caterpillar peak and the strength of the seasonal decline in the number of recruits⁸⁰. Moreover, pied flycatchers are more generalist than tits in the nestling diet⁸¹, so it remains uncertain to what extent these flycatcher populations will be negatively affected by trophic asynchrony compared to specialists.

It would nevertheless be premature to conclude from this that a relative shortage of evidence for demographic consequences of trophic asynchrony constitutes evidence of absence of an effect. Even in species for which negative population consequences are not yet apparent, such as great tits, it is possible that continued increases in temperature will be problematic. Application of an integral projection model to a UK population of great tits suggested that under a high-emission scenario, more rapid responses of the prey species (the winter moth caterpillar) coupled with limits to plasticity in great tit hatch date being reached, lead to an acceleration in directional selection. An increase in evolution of hatch-date timing was to an insufficient degree to prevent negative consequences of trophic asynchrony, and the population in that scenario is projected to have an increased risk of extinction82. Such demographic approaches should be greatly expanded upon, and provide a unique way to understand which life stages will probably matter from the perspective of pathways leading to shifts in population growth rate and density⁸³.

Research priorities

Based on our five criteria and our review of the literature, we identify six priorities for future work to properly test the MMH and its impacts.

(1) From cause to effect—focusing on population consequences. There is an urgent need for studies that consider the full causal chain, from climate driver to seasonal timing, synchrony, and individual-to-population-level impact. In particular, we need many more tests of the impact of asynchrony on population change (criterion 5), across taxa and habitat types. This is the most important criterion from the perspective of conservation and policy^{13,37} and yet has received the least attention. Furthermore, given that the population impacts of trophic asynchrony at one location may be buffered by matching at another location⁷⁹, we strongly advocate expanding the spatial scale of current research to include multi-population studies. This will allow the consequences of phenological shifts to be interpreted in the context of other universal climate warming responses such as range shifts.

- (2) Balancing the evidence—data collection and synthesis for aquatic systems. Despite the marine origin of the MMH, current monitoring and research has so far led to a limited understanding of the MMH in marine and freshwater systems, compared to terrestrial habitats. It is imperative for funders to continue to support time series, since with each passing year the statistical power of these to reveal patterns improves. We further recommend for underused historic records, including museum collections and naturalist observations, to be coupled with new work on these systems to create well-documented long time series within a matter of years. However, we must also ask how additional monitoring approaches (for example, eDNA and radar) might be usefully combined with 'traditional' monitoring approaches, to expand the species representation, monitoring of individual states and fitness consequences, and spatial coverage of aquatic ecosystem studies, and support a broader understanding of changes in phenological asynchrony (criterion 2) and the role of temperature as a driver (criterion 3) in these systems.
- (3) Environmental drivers of phenology—beyond temperature. Here, we have addressed phenological asynchrony in relation to temperature (criterion 3), the best-studied driver. However, the environmental drivers of phenology vary geographically. For instance, at lower latitudes seasonally pulsed precipitation is a more important driver of phenology⁸, and at higher latitudes the timing of snow melt is a key mechanism^{84–89}. In order to gain a global perspective on the risks posed by climate-mediated phenological asynchrony there is an urgent need to apply our framework to alternative environmental drivers of phenology.
- (4) Assessing the risks—global predictions and species traits. We need more studies on trophic asynchrony and its drivers at different latitudes, and many more to be conducted outside of Europe and North America (see Fig. 1). As data on the MMH accumulate, a fruitful approach would be to conduct comparative analyses to identify the taxonomic groups, trophic levels, environments and regions where fitness or population impacts of phenological asynchrony (criteria 4 and 5) are most probable. Based on first principles we may expect temperature-mediated asynchrony to be more frequent and deleterious when the consumers are endotherms rather than ectotherms⁸, income rather than capital breeders^{24,37}, and at higher latitude regions experiencing the most seasonal climates and the most rapid climate change⁸. However, empirical validation of these predictions is lacking.
- (5) Observing interactions—enhancing the role of citizen sci**ence.** Mass participation citizen science has resulted in millions of phenological records that underpin many of the studies quantifying phenological shifts^{7,17,52,90} and can even be used to project weather records into the past⁹¹. A strength of these schemes is their spatial as well as temporal coverage. In some instances, it is possible to identify the phenology of consumer species and their resources from existing datasets92, but this requires the assumption that co-occurring species are actually interacting. While using data amassed over larger spatial scales (for example, via citizen science or remote sensing) is attractive as a means to examining geographic variation in temporal trends in asynchrony (criterion 2) and temperature sensitivity (criterion 3) or fitness consequences (criteria 4 and 5), care is required in matching data at a resolution that is pertinent to the trophic interaction 93,94. Moreover, we are not aware of any study combining citizen-science-derived datasets to study the impacts of asynchrony of specific trophic interactions on population change (criterion 5). Therefore, an opportunity exists for development or extensions of citizen-science schemes to collect data on the phenology of species interactions across trophic levels and on the fitness and/or population sizes of the consumer.

(6) Clarifying the concept—'asynchrony' or 'mismatch'. There exists a degree of terminological inconsistency in relation to the MMH, which may confuse attempts at achieving a common understanding of the potential importance of this phenomenon. Many studies that claim to address 'mismatch' identify the conditions that could lead to greater asynchrony, but stop short of explicitly testing whether asynchrony leads to any negative consequences for the consumer. Where no evidence for negative repercussions is presented we encourage authors to use the term 'asynchrony', rather than 'mismatch', which implies a negative consequence.

Concluding remarks

Temperature-mediated trophic asynchrony and its consequences are widely discussed in global change research and have been intensively studied over the past two decades. In this study, we have presented five criteria that together provide a causal chain to explicitly demonstrate the risk that temperature-mediated asynchrony poses to populations, which we hope will strengthen future work. In an extensive review of the literature we found that no single study and only two study systems have tested all five criteria, with a clear deficit of studies considering the impact of asynchrony on population size, which is the most important criterion from a conservation perspective³⁷. This means that at present we cannot state from the literature that temperature-mediated trophic asynchrony will have a widespread negative impact on consumer population size or growth. We identify six research priorities, which need to be tackled to get a comprehensive understanding of the frequency and magnitude of trophic asynchrony and its impacts on consumers. A more consistent approach to the study of the MMH and its population consequences at the global scale will allow us to better target conservation efforts and provide much needed evidence for possible consequences of one of the most intriguing impacts of climate change on global biota: phenological change.

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

All data files related to this review are available at the Open Science Framework: https://osf.io/c8xzd/.

Code availability

All R code to generate the results in this paper can be combined with the data files, and are available at the Open Science Framework: https://osf.io/c8xzd/.

Received: 8 May 2020; Accepted: 23 October 2020; Published online: 14 December 2020

References

- Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).
- Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. *Nature* 421, 37–42 (2003).
- Walther, G.-R. Community and ecosystem responses to recent climate change. *Phil. Trans. R. Soc. B* 365, 2019–2024 (2010).
- Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. *Proc. Natl Acad. Sci. USA* 106, 12788–12793 (2009).
- Visser, M. E., van Noordwijk, A. J., Tinbergen, J. M. & Lessells, C. M. Warmer springs lead to mistimed reproduction in great tits (*Parus major*). Proc. R. Soc. B 265, 1867–1870 (1998).
- Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
- Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. *Nature* 535, 241–245 (2016).
- Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A global synthesis of animal phenological responses to climate change. *Nat. Clim. Change* 8, 224–228 (2018).

- Cushing, D. D. H. D. Plankton production and year-class strength in fish populations: an update of the match/mismatch hypothesis. *Adv. Mar. Biol.* 26, 249–293 (1990).
- Visser, M. E. & Both, C. Shifts in phenology due to global climate change: the need for a yardstick. Proc. R. Soc. B 272, 2561–2569 (2005).
- Durant, J., Hjermann, D., Ottersen, G. & Stenseth, N. C. Climate and the match or mismatch between predator requirements and resource availability. Clim. Res. 33, 271–283 (2007).
- Renner, S. S. & Zohner, C. M. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. *Annu. Rev. Ecol. Evol. Syst.* 49, 165–182 (2018).
- Visser, M. E. & Gienapp, P. Evolutionary and demographic consequences of phenological mismatches. *Nat. Ecol. Evol.* 3, 879–885 (2019).
- IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects (eds, Field, C. B. et al.) (Cambridge Univ. Press, 2014).
- Johansson, J., Kristensen, N. P., Nilsson, J. Å. & Jonzén, N. The eco-evolutionary consequences of interspecific phenological asynchrony - a theoretical perspective. Oikos 124, 102–112 (2015).
- Deacy, W. W. et al. Phenological synchronization disrupts trophic interactions between Kodiak brown bears and salmon. *Proc. Natl Acad. Sci.* USA 114, 10432–10437 (2017).
- Thackeray, S. J. et al. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. *Glob. Change Biol.* 16, 3304–3313 (2010).
- Kharouba, H. M. et al. Global shifts in the phenological synchrony of species interactions over recent decades. *Proc. Natl Acad. Sci. USA* 115, 5211–5216 (2018).
- Willson, M. F. & Womble, J. N. Vertebrate exploitation of pulsed marine prey: a review and the example of spawning herring. *Rev. Fish Biol. Fish.* 16, 183–200 (2006).
- Dunn, P. O., Winkler, D. W., Whittingham, L. A., Hannon, S. J. & Robertson, R. J. A test of the mismatch hypothesis: how is timing of reproduction related to food abundance in an aerial insectivore? *Ecology* 92, 450–61 (2011).
- Reneerkens, J. et al. Effects of food abundance and early clutch predation on reproductive timing in a high Arctic shorebird exposed to advancements in arthropod abundance. Ecol. Evol. 6, 7375–7386 (2016).
- Samplonius, J. M., Kappers, E. F., Brands, S. & Both, C. Phenological mismatch and ontogenetic diet shifts interactively affect offspring condition in a passerine. J. Anim. Ecol. 85, 1255–1264 (2016).
- Mallord, J. W. et al. Diet flexibility in a declining long-distance migrant may allow it to escape the consequences of phenological mismatch with its caterpillar food supply. *Ibis* 159, 76–90 (2017).
- Youngflesh, C. et al. Circumpolar analysis of the Adélie Penguin reveals the importance of environmental variability in phenological mismatch. *Ecology* 98, 940–951 (2017).
- Varpe, Ø. & Fiksen, Ø. Seasonal plankton-fish interactions: light regime, prey phenology, and herring foraging. *Ecology* 91, 311–318 (2010).
- Kharouba, H. M. & Wolkovich, E. M. Disconnects between ecological theory and data in phenological mismatch research. *Nat. Clim. Change* 10, 406–415 (2020).
- Visser, M. E., te Marvelde, L. & Lof, M. E. Adaptive phenological mismatches of birds and their food in a warming world. *J. Ornithol.* 153, 75–84 (2012).
- Singer, M. C. & Parmesan, C. Phenological asynchrony between herbivorous insects and their hosts: Signal of climate change or pre-existing adaptive strategy? *Phil. Trans. R. Soc. B* 365, 3161–3176 (2010).
- Vatka, E., Orell, M. & Rytkönen, S. Warming climate advances breeding and improves synchrony of food demand and food availability in a boreal passerine. Glob. Change Biol. 17, 3002–3009 (2011).
- Reed, T. E., Jenouvrier, S. & Visser, M. E. Phenological mismatch strongly affects individual fitness but not population demography in a woodland passerine. J. Anim. Ecol. 82, 131–144 (2013).
- Reed, T. E., Grøtan, V., Jenouvrier, S., Sæther, B.-E. & Visser, M. E. Population growth in a wild bird is buffered against phenological mismatch. Science 340, 488–491 (2013).
- 32. van Asch, M., Salis, L., Holleman, L. J. M., van Lith, B. & Visser, M. E. Evolutionary response of the egg hatching date of a herbivorous insect under climate change. *Nat. Clim. Change* 3, 244–248 (2013).
- Gienapp, P., Reed, T. E. & Visser, M. E. Why climate change will invariably alter selection pressures on phenology. Proc. R. Soc. B 281, 20141611 (2014).
- 34. Ramakers, J. J. C., Gienapp, P. & Visser, M. E. Phenological mismatch drives selection on elevation, but not on slope, of breeding time plasticity in a wild songbird. *Evolution* **73**, 175–187 (2019).
- Winder, M. & Schindler, D. E. Climate change uncouples trophic interactions in an aquatic ecosystem. *Ecology* 85, 2100–2106 (2004).
- Both, C., Bouwhuis, S., Lessells, C. & Visser, M. E. Climate change and population declines in a long-distance migratory bird. *Nature* 441, 81–83 (2006).

NATURE ECOLOGY & EVOLUTION PERSPECTIVE

- Miller-Rushing, A. J., Høye, T. T., Inouye, D. W. & Post, E. The effects of phenological mismatches on demography. *Phil. Trans. R. Soc. B* 365, 3177–3186 (2010).
- Plard, F. et al. Mismatch between birth date and vegetation phenology slows the demography of roe deer. PLoS Biol. 12, e1001828 (2014).
- Edwards, M. & Richardson, A. J. Impact of climate change on marine pelagic phenology and trophic mismatch. *Nature* 430, 881–884 (2004).
- Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).
- Keogan, K. et al. Global phenological insensitivity to shifting ocean temperatures among seabirds. Nat. Clim. Change 8, 313–317 (2018).
- Visser, M. E. & Holleman, L. J. Warmer springs disrupt the synchrony of oak and winter moth phenology. Proc. R. Soc. B 268, 289–294 (2001).
- Kingsolver, J. G., Diamond, S. E., Siepielski, A. M. & Carlson, S. M. Synthetic analyses of phenotypic selection in natural populations: lessons, limitations and future directions. *Evol. Ecol.* 26, 1101–1118 (2012).
- Radchuk, V. et al. Adaptive responses of animals to climate change are most likely insufficient. *Nat. Commun.* 10, 3109 (2019).
- Vedder, O., Bouwhuis, S. & Sheldon, B. C. Quantitative assessment of the importance of phenotypic plasticity in adaptation to climate change in wild bird populations. *PLoS Biol.* 11, e1001605 (2013).
- Both, C. et al. Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. *Proc. R. Soc. B* 277, 1259–1266 (2010).
- Franks, S. E. et al. The sensitivity of breeding songbirds to changes in seasonal timing is linked to population change but cannot be directly attributed to the effects of trophic asynchrony on productivity. Glob. Change Biol. 24, 957–971 (2018).
- Visser, M. E., Holleman, L. J. M. & Gienapp, P. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. *Oecologia* 147, 164–172 (2006).
- Atkinson, A. et al. Questioning the role of phenology shifts and trophic mismatching in a planktonic food web. *Prog. Oceanogr.* 137, 498–512 (2015).
- Ross, M. V., Alisauskas, R. T., Douglas, D. C. & Kellett, D. K. Decadal declines in avian herbivore reproduction: density-dependent nutrition and phenological mismatch in the Arctic. *Ecology* 98, 1869–1883 (2017).
- Chambers, L. E. et al. Phenological changes in the Southern Hemisphere. PLoS ONE 8, e77514 (2013).
- Hurlbert, A. H. & Liang, Z. Spatiotemporal variation in avian migration phenology: citizen science reveals effects of climate change. PLoS ONE 7, e31662 (2012).
- Newson, S. E. et al. Long-term change in spring and autumn migration phenology of common migrant breeding birds in Britain: results from large-scale citizen science bird recording schemes. *Ibis* 158, 481–495 (2016).
- Phillimore, A. B., Leech, D. I., Pearce-Higgins, J. W. & Hadfield, J. D. Passerines may be sufficiently plastic to track temperature-mediated shifts in optimum lay date. *Glob. Change Biol.* 22, 3259–3272 (2016).
- Tansey, C. J., Hadfield, J. D. & Phillimore, A. B. Estimating the ability of plants to plastically track temperature-mediated shifts in the spring phenological optimum. *Glob. Change Biol.* 23, 3321–3334 (2017).
- Richardson, A. J. & Poloczanska, E. S. Under-resourced, under threat. Science 320, 1294–1295 (2008).
- Mackas, D. L., Pepin, P. & Verheye, H. Interannual variability of marine zooplankton and their environments: within- and between-region comparisons. *Prog. Oceanogr.* 97–100, 1–14 (2012).
- O'Brien, T. D., Lorenzoni, L., Isensee, K. & Valdés, L. What are Marine Ecological Time Series telling us about the Ocean? A Status Report IOC Technical Series No. 129 (IOC-UNESCO, 2017).
- Burthe, S. et al. Phenological trends and trophic mismatch across multiple levels of a North Sea pelagic food web. *Mar. Ecol. Prog. Ser.* 454, 119–133 (2012).
- Stepanian, P. M. et al. Declines in an abundant aquatic insect, the burrowing mayfly, across major North American waterways. *Proc. Natl Acad. Sci. USA* 117, 2987–2992 (2020).
- Schmidt, K. et al. Increasing picocyanobacteria success in shelf waters contributes to long-term food web degradation. Glob. Change Biol. 26, 5574–5587 (2020).
- Sauve, D., Divoky, G. & Friesen, V. L. Phenotypic plasticity or evolutionary change? An examination of the phenological response of an arctic seabird to climate change. *Funct. Ecol.* 33, 2180–2190 (2019).
- Bradshaw, C. J. A., Mollet, H. F. & Meekan, M. G. Inferring population trends for the world's largest fish from mark-recapture estimates of survival. *J. Anim. Ecol.* 76, 480–489 (2007).
- Bell, J. R. et al. Long-term phenological trends, species accumulation rates, aphid traits and climate: five decades of change in migrating aphids. J. Anim. Ecol. 84, 21–34 (2015).
- Macgregor, C. J., Williams, J. H., Bell, J. R. & Thomas, C. D. Moth biomass increases and decreases over 50 years in Britain. *Nat. Ecol. Evol.* 3, 1645–1649 (2019).

 Tanentzap, A. J. et al. Terrestrial support of lake food webs: synthesis reveals controls over cross-ecosystem resource use. Sci. Adv. 3, e1601765 (2017).

- Estiarte, M. & Peñuelas, J. Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency. Glob. Change Biol. 21, 1005–1017 (2015).
- Beaugrand, G. & Kirby, R. R. How do marine pelagic species respond to climate change? Theories and observations. *Ann. Rev. Mar. Sci.* 10, 169–197 (2018).
- Thackeray, S. J., Jones, I. D. & Maberly, S. C. Long-term change in the phenology of spring phytoplankton: species-specific responses to nutrient enrichment and climatic change. *J. Ecol.* 96, 523–535 (2008).
- Ji, R., Jin, M. & Varpe, Ø. Sea ice phenology and timing of primary production pulses in the Arctic Ocean. Glob. Change Biol. 19, 734–741 (2013).
- Durant, J. M. et al. Timing and abundance as key mechanisms affecting trophic interactions in variable environments. *Ecol. Lett.* 8, 952–958 (2005).
- Ramakers, J. J. C., Gienapp, P. & Visser, M. E. Comparing two measures of phenological synchrony in a predator–prey interaction: simpler works better. J. Anim. Ecol. 89, 745–756 (2020).
- Walters, A. W., De Los Ángeles González Sagrario, M. & Schindler, D. E. Species- and community-level responses combine to drive phenology of lake phytoplankton. *Ecology* 94, 2188–2194 (2013).
- Shutt, J. D., Burgess, M. D. & Phillimore, A. B. A spatial perspective on the phenological distribution of the spring woodland caterpillar peak. *Am. Nat.* 194, E109–E121 (2019).
- Pochardt, M. et al. Environmental DNA facilitates accurate, inexpensive, and multiyear population estimates of millions of anadromous fish. Mol. Ecol. Resour. 20, 457–467 (2020).
- Burger, C. et al. Climate change, breeding date and nestling diet: how temperature differentially affects seasonal changes in pied flycatcher diet depending on habitat variation. J. Anim. Ecol. 81, 926–936 (2012).
- Pearce-Higgins, J. W. & Green, R. E. Birds and Climate Change: Impacts and Conservation Responses (Cambridge Univ. Press, 2014).
- Samplonius, J. M. et al. Phenological sensitivity to climate change is higher in resident than in migrant bird populations among European cavity breeders. Glob. Change Biol. 24, 3780–3790 (2018).
- Burgess, M. D. et al. Tritrophic phenological match-mismatch in space and time. Nat. Ecol. Evol. 2, 970–975 (2018).
- Visser, M. E. et al. Effects of spring temperatures on the strength of selection on timing of reproduction in a long-distance migratory bird. *PLoS Biol.* 13, e1002120 (2015).
- Cholewa, M. & Wesołowski, T. Nestling food of european hole-nesting passerines: do we know enough to test the adaptive hypotheses on breeding seasons? *Acta Ornithol.* 46, 105–116 (2011).
- Simmonds, E. G., Cole, E. F., Sheldon, B. C. & Coulson, T. Phenological asynchrony: a ticking time-bomb for seemingly stable populations? *Ecol. Lett.* https://doi.org/10.1111/ele.13603 (2020).
- 83. Simmonds, E. G., Cole, E. F., Sheldon, B. C. & Coulson, T. Testing the effect of quantitative genetic inheritance in structured models on projections of population dynamics. *Oikos* 129, 559–571 (2020).
- Prevéy, J. et al. Greater temperature sensitivity of plant phenology at colder sites: implications for convergence across northern latitudes. *Glob. Change Biol.* 23, 2660–2671 (2017).
- Assmann, J. J. et al. Local snow melt and temperature—but not regional sea ice—explain variation in spring phenology in coastal Arctic tundra. Glob. Change Biol. 25, 2258–2274 (2019).
- Bjorkman, A. D., Elmendorf, S. C., Beamish, A. L., Vellend, M. & Henry, G. H. R. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades. *Glob. Change Biol.* 21, 4651–4661 (2015).
- Lameris, T. K. et al. Arctic geese tune migration to a warming climate but still suffer from a phenological mismatch. *Curr. Biol.* 28, 2467–2473 (2018).
- Doiron, M., Gauthier, G. & Lévesque, E. Trophic mismatch and its effects on the growth of young in an Arctic herbivore. *Glob. Change Biol.* 21, 4364–4376 (2015).
- Iler, A. M. et al. Maintenance of temporal synchrony between syrphid flies and floral resources despite differential phenological responses to climate. *Glob. Change Biol.* 19, 2348–2359 (2013).
- Ovaskainen, O. et al. Chronicles of nature calendar, a long-term and large-scale multitaxon database on phenology. Sci. Data 7, 47 (2020).
- Brohan, P. et al. Marine observations of old weather. Bull. Am. Meteorol. Soc. 90, 219–230 (2009).
- Phillimore, A. B., Stålhandske, S., Smithers, R. J. & Bernard, R. Dissecting the contributions of plasticity and local adaptation to the phenology of a butterfly and its host plants. Am. Nat. 180, 655–670 (2012).
- Wang, S. et al. Limitations and challenges of MODIS-derived phenological metrics across different landscapes in pan-Arctic regions. *Remote Sens.* 10, 1784 (2018).

- Helman, D. Land surface phenology: what do we really 'see' from space?
 Sci. Total Environ. 618, 665–673 (2018).
- van de Pol, M. et al. Identifying the best climatic predictors in ecology and evolution. Methods Ecol. Evol. 7, 1246–1257 (2016).
- Bailey, L. D. & Van De Pol, M. Climwin: an R toolbox for climate window analysis. PLoS ONE 11, e0167980 (2016).
- Teller, B. J., Adler, P. B., Edwards, C. B., Hooker, G. & Ellner, S. P. Linking demography with drivers: climate and competition. *Methods Ecol. Evol.* 7, 171–183 (2016).
- Simmonds, E. G., Cole, E. F. & Sheldon, B. C. Cue identification in phenology: a case study of the predictive performance of current statistical tools. J. Anim. Ecol. 88, 1428–1440 (2019).
- Iler, A. M., Inouye, D. W., Schmidt, N. M. & Høye, T. T. Detrending phenological time series improves climate-phenology analyses and reveals evidence of plasticity. *Ecology* 98, 647–655 (2017).
- Both, C. et al. Large-scale geographical variation confirms that climate change causes birds to lay earlier. Proc. R. Soc. B 271, 1657–1662 (2004).
- Visser, M. E. et al. Variable responses to large-scale climate change in European *Parus* populations. *Proc. R. Soc. B* 270, 367–372 (2003).
- Verhulst, S. & Nilsson, J.-Å. The timing of birds' breeding seasons: a review of experiments that manipulated timing of breeding. *Phil. Trans. R. Soc. B* 363, 399–410 (2008).
- Mclean, N., Lawson, C. R., Leech, D. I. & van de Pol, M. Predicting when climate-driven phenotypic change affects population dynamics. *Ecol. Lett.* 19, 595–608 (2016).
- 104. Gienapp, P. et al. Predicting demographically sustainable rates of adaptation: can great tit breeding time keep pace with climate change? *Phil. Trans. R. Soc. B* 368, 20120289 (2013).

Acknowledgements

We thank A. Husby, T. Reed, M. Visser, I. Myers-Smith and M. Singer for constructive criticism on an earlier version of this manuscript.

Author contributions

All authors contributed to conceiving ideas and editing the manuscript. J.M.S., A.B.P., A.A., C.H., K.K., S.J.T., J.J.A., M.D.B., J.J., K.H.M., J.W.P.-H., E.G.S., Ø.V. and J.C.W. extracted data for the analyses. J.M.S., A.B.P., A.A., C.H., K.K. and S.J.T. contributed to writing the manuscript. J.M.S. and A.B.P. expanded on the initial ideas to determine the structure and content of the manuscript and wrote most of it. J.M.S. conducted the analyses.

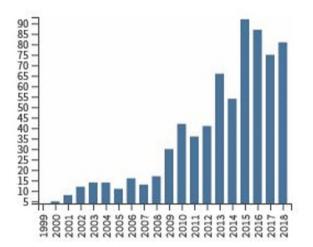
Competing interests

The authors declare no competing interests.

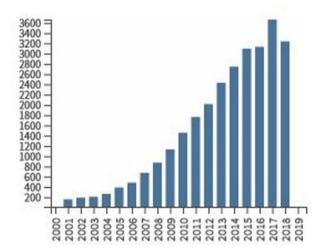
Additional information

Extended data is available for this paper at https://doi.org/10.1038/s41559-020-01357-0.

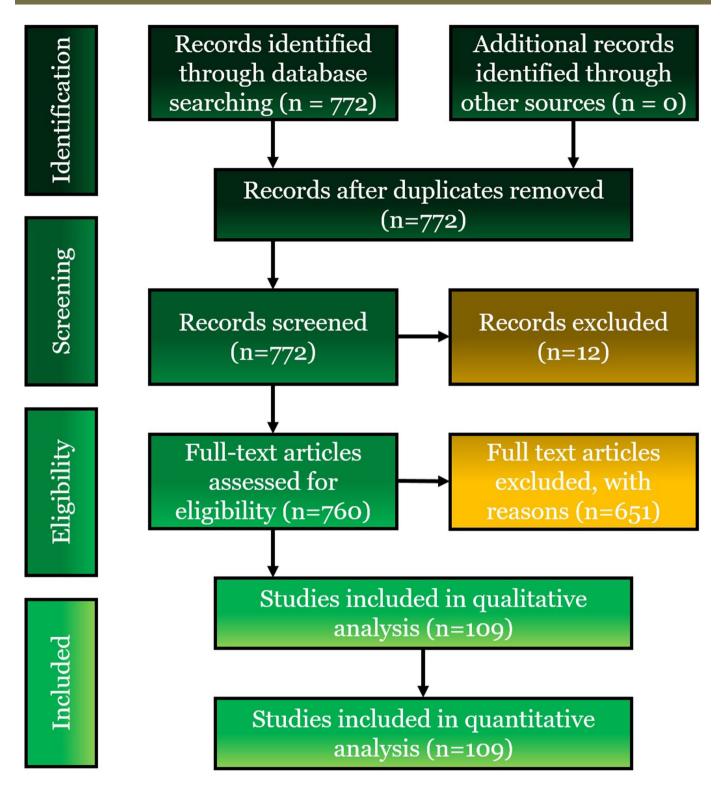
Supplementary information is available for this paper at https://doi.org/10.1038/s41559-020-01357-0.

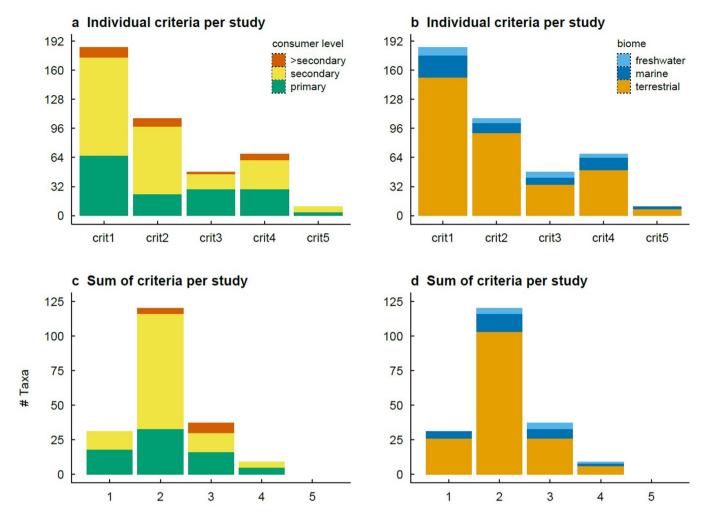

Correspondence should be addressed to J.M.S.

Reprints and permissions information is available at www.nature.com/reprints.


Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© Springer Nature Limited 2020


Total Publications by Year


Sum of Times Cited by Year

Extended Data Fig. 1 | **Records returned from literature search.** Total publications by year and sum of times cited for the studies captured by our search terms.

Extended Data Fig. 2 | PRISMA flowchart for records included and excluded. Flow chart of the number of papers screened, and those included and excluded using three filters. This process resulted in 109 relevant papers, which provided information on 132 taxa.

Extended Data Fig. 3 | Criteria per study. Overview of all the study-by-taxon combinations identified (200 in 109 papers), showing which (and how many) criteria were studied in individual papers.

nature research

Corresponding author(s): jelmersamplonius@gr	nail.cor
Jeimer ivienno Sampio	mius:

Last updated by author(s): Oct 7, 2020

Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see our <u>Editorial Policies</u> and the <u>Editorial Policy Checklist</u>.

Stati	stics
For all	statistic

n/a Confirmed ☐ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement ☐ A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly ☐ The statistical test(s) used AND whether they are one- or two-sided ☐ Only common tests should be described solely by name; describe more complex techniques in the Methods section. ☐ A description of all covariates tested ☐ A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons ☐ Afull description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) ☐ AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals) ☐ For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted ☐ Give P values as exact values whenever suitable. ☐ For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings ☐ For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes ☐ Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated Our web collection on statistics for biologists contains articles on many of the points above. Software and code Policy information about availability of computer code	For	all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly The statistical test(s) used AND whether they are one- or two-sided Only common tests should be described solely by name; describe more complex techniques in the Methods section. A description of all covariates tested A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals) For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted Give P values as exact values whenever suitable. For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated Our web collection on statistics for biologists contains articles on many of the points above. Software and code	n/a	Confirmed
The statistical test(s) used AND whether they are one- or two-sided Only common tests should be described solely by name; describe more complex techniques in the Methods section. A description of all covariates tested A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals) For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted Give P values as exact values whenever suitable. For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated Our web collection on statistics for biologists contains articles on many of the points above. Software and code		igstyle The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
 ✓ Only common tests should be described solely by name; describe more complex techniques in the Methods section. ✓ A description of all covariates tested ✓ A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons ✓ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals) ✓ For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted Give P values as exact values whenever suitable. ✓ For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings ✓ For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes ✓ Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated ✓ Our web collection on statistics for biologists contains articles on many of the points above. 		🔀 A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals) For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted Give P values as exact values whenever suitable. For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated Our web collection on statistics for biologists contains articles on many of the points above. Software and code	\boxtimes	
A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals) For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted Give P values as exact values whenever suitable. For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated Our web collection on statistics for biologists contains articles on many of the points above. Software and code	\boxtimes	A description of all covariates tested
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals) For null hypothesis testing, the test statistic (e.g. <i>F</i> , <i>t</i> , <i>r</i>) with confidence intervals, effect sizes, degrees of freedom and <i>P</i> value noted <i>Give P values as exact values whenever suitable.</i> For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes Estimates of effect sizes (e.g. Cohen's <i>d</i> , Pearson's <i>r</i>), indicating how they were calculated Our web collection on statistics for biologists contains articles on many of the points above. Software and code	\boxtimes	A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
Give P values as exact values whenever suitable. For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated Our web collection on statistics for biologists contains articles on many of the points above. Software and code	\boxtimes	A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated Our web collection on statistics for biologists contains articles on many of the points above. Software and code	\boxtimes	
Estimates of effect sizes (e.g. Cohen's <i>d</i> , Pearson's <i>r</i>), indicating how they were calculated Our web collection on statistics for biologists contains articles on many of the points above. Software and code	\boxtimes	For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
Our web collection on <u>statistics for biologists</u> contains articles on many of the points above. Software and code	\boxtimes	For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
Software and code	\boxtimes	Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
		Our web collection on statistics for biologists contains articles on many of the points above.
Policy information about <u>availability of computer code</u>	So	ftware and code
	Polic	ry information about <u>availability of computer code</u>

Data collection

Data were collected using the search engine on Web of Science Core Collection Database, and are available at https://osf.io/edvws/

Data analysis

Data were analyzed using R 4.0.2, and are available at https://osf.io/edvws/

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about <u>availability of data</u>

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

MS contains a data and code availability statement. All data and code are available at https://osf.io/edvws/

1	- 1								•	
Fiel	Q.	-sr	ec	ΙŤΙ	C	re	рс	rt	ın	g

Blinding

Did the study involve field work?

Ticia specific	e reporting
Please select the one below	v that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
Life sciences	Behavioural & social sciences
For a reference copy of the docum	ent with all sections, see <u>nature.com/documents/nr-reporting-summary-flat.pdf</u>
Ecological, e	volutionary & environmental sciences study design
	n these points even when the disclosure is negative.
Study description	We developed five criteria to prove that trophic asynchrony is detrimental to consumer species and of conservation concern. We then reviewed the literature on trophic asynchrony and its impacts following these five criteria, and found that only two out of 132 identified taxa studied all five criteria. We conclude that the evidence base for trophic mismatch is growing, but still lacking robustness across taxa.
Research sample	132 taxa were identified across 109 papers
Sampling strategy	We searched the Web of Science Core Collection Database for relevant literature on trophic mismatch using the following search terms in the Basic Search option: "*trophic* *match*" OR "*trophic* *synchr*" OR "*phenolog* *match*" OR "*phenolog* *aND mistim* OR *trophic* AND mistim* OR *phenolog* AND *synchr* AND adapt* AND climat* OR *phenolog* AND *synchr* AND plastic* AND climat* OR *trophic* AND *synchr* AND adapt* AND climat* OR *trophic* AND plastic* AND climat*. We then applied the following refining fields: "Ecology", "Marine freshwater biology", "Environmental Sciences", "Entomology" "Oceanography", "Biodiversity Conservation", "Evolutionary Biology", "Multidisciplinary Sciences", "Zoology", "Fisheries", "Forestry", "Plant Sciences", "Biology", "Ornithology", "Limnology". We included all years in our search, and the last search before paper allocation to co-authors was done in November 2018.
Data collection	Papers were allocated randomly and approximately equally among participating coauthors. For details of the numbers of papers that were included or excluded from our study at different steps see Fig. S2. We searched for each paper online, and determined whether one or more specific trophic interactions were studied in the paper, and whether inferences pertaining to any of the five criteria (table 1) could be extracted from it. If no trophic interaction was studied or if none of the five criteria could be extracted, the paper was excluded from the review (n = 663). For the 109 papers that yielded usable data we extracted meta-data, including latitude, longitude, year published, timespan, consumer species, resource species, biome, trophic level of the consumer, and data/results relating to the five criteria (Table 1). We collected data on (1) whether the consumer was a trophic specialist, (2) phenology slopes (days/year, consumer/resource timing, mismatch/year), (3) phenological sensitivity to temperature (days/°C, °C/year, mismatch/°C), (4) fitness consequences studied at the offspring or adult level, and (5) population trends in relation to mismatch. Because fitness consequences of mismatch are studied in widely different ways among fields, we chose to only extract whether the effect of mismatch was significantly positive, undetectable, or significantly negative for the consumer (1/0/-1). We adopted this approach as the main goal of the review was to draw comparisons among a wide range of studies, requiring that we had metrics that were universal. We also excluded meta-analyses, as we were specifically interested to assess the five criteria for unique study systems.
Timing and spatial scale	A search was performed once in November 2018, the spatial scale was worldwide
Data exclusions	Not relevant
Reproducibility	The first author double checked all data returned by co-authors
Randomization	Not relevant

Reporting for specific materials, systems and methods

No.

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Blinding is not relevant to this paper, as this is a descriptive review, not an experimental study with discrete groups.

Materials & experimental systems Methods n/a | Involved in the study n/a | Involved in the study ChIP-seq Antibodies \boxtimes \boxtimes Eukaryotic cell lines Flow cytometry Palaeontology and archaeology MRI-based neuroimaging Animals and other organisms Human research participants \boxtimes Clinical data

Dual use research of concern