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ABSTRACT
Fjords provide valuable research opportunities for marine scientists. They are excellent natural infrastructure for climate impact 
studies associated with hypoxic episodes and consequences for mesopelagic and deep-sea ecosystems involving oceanographic 
circulation processes and basin water renewals. Repeated sampling from the same populations is possible, making fjords excel-
lent systems for developing time series of data for climate impact studies. We provide an overview of the 14 years of data from 
Norwegian West Coast fjords, focusing on Masfjorden, and report major findings from Oslofjorden in Eastern Norway, exhibiting 
recurrent hypoxia in the basin waters. We document that the oxygen levels in Masfjorden decreased rapidly by over 60% at 450 m 
depth in < 8 years, which is much faster than the average rate of deoxygenation in the global ocean. We also discuss the increase 
in the deep-sea and low-light-adapted coronate jellyfish Periphylla periphylla in view of altered optical conditions of the basin 
water potentially related to deoxygenation. We argue that fjords like Masfjorden and Oslofjorden are not only macrocosms for 
ecological processes but also are likely an accelerated version of deep oceans with respect to climate impacts.

1   |   Introduction

Landscapes above the sea surface make fjords attractive tourist 
destinations, sheltered locations allow fish farming, while fjord 
habitat conditions below the sea surface are often less known but 

provide valuable research opportunities for marine scientists. 
Fjords are glacial landforms common in temperate and polar re-
gions including Norway, Alaska, Canada, Greenland, Iceland and 
Scotland in the northern hemisphere, and Argentina, Chile, New 
Zealand, and Antarctica, in the southern hemisphere. Natural 
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history studies of fjords have been going on for centuries (see 
overview for Norwegian waters in Brattegard et al. 2011). Recent 
climate impact studies have begun to investigate consequences 
of water column darkening (i.e., reduced light penetration) for 
mesopelagic regime shifts (Aksnes et  al.  2009) and deoxygen-
ation of the basin water of shallow-sill fjords (Aksnes et al. 2019; 
Darelius 2020; Johnsen, Loeng, and Myksvoll 2024).

Sill fjords are sites where deoxygenation linked to ocean warm-
ing is particularly common (Pitcher et al. 2021). Signals of oxygen 
loss are apparent in the benthic deep macrofauna, where typical 
opportunistic species characteristic of areas of hypoxia and sed-
iments rich in organic matter occur (Levin et al. 2009; Johansen 
et al. 2018). Pelagic fishes and zooplankton monitored acoustically 
in shallow fjords appear adapted to variations in the oxygen condi-
tions and change their behaviours to cope with varying oxygen con-
centrations both in the Pacific and Atlantic regions (Parker-Stetter, 
Horne, and Langness 2009; Solberg, Røstad, and Kaartvedt 2015). 
How mesopelagic and deep-sea ecosystems within deep fjord ba-
sins cope with oxygen loss and variations in oxygen concentrations 
is less known. Mesopelagic fishes are the largest unexploited ver-
tebrate groups on earth (Gjøsæter and Kawaguchi 1980; Irigoien 
et  al. 2014) and are abundant in West Norwegian fjords (Giske 
et al. 1990; Kaartvedt, Staby, and Aksnes 2012). Such fjord popula-
tions are close to the ideal units for studies of growth, mortality, life 
span and succession of generations as they often constitute semi-
isolated components of oceanic species with limited connection 
to other populations (Bagøien et al. 2001; Brattegard et al. 2011). 
Time-series of data from such fjord populations may thus be valu-
able for studies of biological processes relevant for the open ocean, 
where repeated sampling from the same populations is difficult.

Fjords vary in morphometry and environmental conditions. 
Many are wide and/or shallow, whereas others are narrow and 
long, with steep sides and deep inlets carved out by glaciers. 
They were filled with seawater after the Younger Dryas ice sheet 
advance that reached its maximum around 11,600 years ago. 
Masfjorden, a fjord near Bergen (Figure  1A), was deglaciated 
11,300 years ago (Mangerud et al. 2019). Many Norwegian west 
coast fjords are deep enough to support mesopelagic fish, crus-
taceans, deep-water jellyfishes like Periphylla periphylla, and 

deep-sea benthic communities. At the entrance of deep fjords 
there is typically a topographic barrier made by a sill. The sill 
isolates the deep-basin waters from waters outside the fjord 
(Inall and Gillibrand 2010; Aksnes et al.  2019; Figure 1B). As 
respiration continues below the euphotic zone and below shal-
low sills, oxygen losses can be notable in the basin water if the 
renewal rate decreases or if organic inputs increase through ur-
banisation, fish farming or other human-related activities.

Deoxygenation has become a big concern worldwide (Diaz 
and Rosenberg  2008; Keeling, Körtzinger, and Gruber  2010; 
Breitburg et  al.  2018; Levin  2018). Open ocean as well as 
coastal waters have lost oxygen over the past 50 years (Keeling, 
Körtzinger, and Gruber  2010; Gilbert  2017; Schmidtko, 
Stramma, and Visbeck 2017; Oschlies et al. 2017) and the loss 
is particularly prevalent along continental margins and in en-
closed seas and fjords (Pitcher et al. 2021). Works suggest that 
deoxygenation and coastal hypoxic events are linked to shifts in 
atmospheric circulation, rising greenhouse gas emissions, oce-
anic warming, and increased stratification (Straneo et al. 2016; 
Pérez-Santos et al. 2018; Aksnes et al. 2019; Jackson et al. 2021; 
Linford et  al.  2023). In fjords with shallow sills such changes 
lead to lower renewal frequency of the basin water below sill 
depth (Aksnes et  al.  2019; Darelius  2020) compared to deep-
silled fjords which are more directly connected to coastal 
water masses (Hannah et al. 2024). The renewal frequency in 
sill-fjords is also sensitive to changes in seawater density, and 
reduced density of the upper water column linked to ocean 
warming makes deoxygenation more rapid in such fjords. The 
mechanisms underlying naturally hypoxic sub-tropical east-
ern boundary upwelling ecosystems, such as in the Pacific and 
Southern Atlantic, are well known (Bograd et al. 2008; Moffitt 
et  al.  2014; Pitcher et  al.  2021). When, how, and why hypoxic 
events occur in temperate and Arctic coastal areas and fjords 
of the North Atlantic and their ecosystem consequences are not 
equally well known. Fjords that are easily accessible represent 
natural infrastructure for climate impact studies where the effects 
of deoxygenation on ecosystems can be investigated.

In addition to deoxygenation, studies suggest that climate 
change can make fjords prone to water darkening (i.e., reduced 

FIGURE 1    |    (A) Map showing the location of study fjords; (B) A simplified illustration of fjord topography with three layers: a thin brackish layer 
at the top, a dynamic intermediate layer which extends down to the sill depth, and the basin water below the sill depth. OB refers to dissolved oxygen 
of basin water and OS to dissolved oxygen of the oceanic water (open access under the CCBY licence: Aksnes et al. 2019).
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light penetration) (Aksnes et  al.  2009; Frigstad et  al.  2013; 
Opdal et  al.  2023). Water darkening can alter competitive 
relationships and thereby ecosystem structure. For example, 
visual zooplanktivorous fishes have poor feeding success in 
dark water while the feeding success of tactile zooplanktivores 
such as jellyfish is unaffected by light availability (Sørnes and 
Aksnes  2004). One environmental driver linked to climate 
change and coastal water darkening is increased supplies of 
Coloured Dissolved Organic Matter (CDOM) of terrestrial ori-
gin (t-CDOM) transported to sea with rivers and run-off water 
(Aksnes et  al.  2009; Larsen, Andersen, and Hessen  2011; 
Frigstad et al. 2013; Opdal et al. 2023). t-CDOM leads to dark-
ening of the entire water column, including the mesopelagic 
habitat (Aksnes et al. 2009). Additional darkening can occur 
through locally produced CDOM (l-CDOM), produced below 
the depths mainly influenced by t-CDOM (Solås, Salvanes, 
and Aksnes  2024). l-CDOM production is likely associated 
with microbial degradation of organic matter—a process 
consuming oxygen, as is also suggested for parts of the meso-
pelagic ocean through the correlation between CDOM and ap-
parent oxygen utilisation (Nelson and Siegel 2013). Stagnant 
basin waters with low oxygen concentrations might there-
fore have elevated l-CDOM concentrations. Solås, Salvanes, 
and Aksnes  (2024) measured downwelling irradiance and 
the associated light attenuation in hypoxic and anoxic water 
in the 125 m deep Haugsværfjorden, a fjord that branches 
off from Masfjorden, and compared the measurements with 
the well-oxygenated upper 125 m in Masfjorden. These data 
showed increased light attenuation in the hypoxic and anoxic 
water (see Figure S1), likely due to elevated concentrations of 
CDOM produced locally in these layers (Solås, Salvanes, and 
Aksnes  2024). Water darkening, either associated with local 
deoxygenation (l-CDOM) or with terrestrial origin (t-CDOM) 
or both, can alter ecosystems from being dominated by fish 
to favour jellyfish. The abundance of visual planktivorous 
fishes and the mesopelagic food web structure of Norwegian 
fjords appear to be strongly affected by the optical qualities 
of the water column (Eiane et  al.  1999; Aksnes et  al.  2004). 
Compared to the open ocean, deep fjords represent a unique 
and inexpensive alternative to study the impacts of darken-
ing and deoxygenation on the mesopelagic and deep-sea 
ecosystems.

Mesopelagic fishes carry out extensive diel vertical migrations 
(DVM) driven by light, and these pronounced vertical migrations 
bring organic material from the productive upper layer down into 
the mesopelagic zone, thus contributing to carbon sequestration 
(Davison et al. 2013; Bianchi et al. 2013; Irigoien et al. 2014; Saba 
et al. 2021; Aksnes et al. 2023). Together with invertebrates, these 
fishes are often visible on sonar as deep sound-scattering layers 
(SSLs). Daytime depths of SSLs are reported as being shallower 
in hypoxic water (Bianchi et al. 2013; Netburn and Koslow 2015; 
Klevjer et  al.  2016), but are also observed deep into hypoxic 
water in the Pacific (Klevjer et al. 2016) and the Red Sea (Aksnes 
et al. 2023). Is shallowing occurring due to avoidance of hypoxia, 
or seeking better light conditions for visual feeding? According to 
the results of Aksnes et al. (2017), the depth positioning appears 
to be primarily regulated by light even in the hypoxic oceanic 
areas. In these areas, reduced light penetration and darker water 
appear to be associated with hypoxic water, which also Solås, 
Salvanes, and Aksnes (2024) report for fjords. Hence, fjords are 

suitable study sites for gaining major insights into how the depth 
distribution of DVM and mesopelagic fishes are affected by dark-
ening and oxygen loss.

We have assessed the effects of hypoxia in moderately hypoxic 
fjords in western Norway, and in a periodically severely hypoxic 
and even anoxic basin water of the shallower inner Oslofjorden 
in eastern Norway. Our research group based at the University 
of Bergen (UiB) has benefited greatly from the short travel dis-
tance—only a few hours steaming by research ships—to our 
nearby fjord study sites. For 14 years, graduate students of the 
UiB Ocean Science field course have been sent out on the re-
search vessel G.O. Sars and other ships; they visited Masfjorden, 
to collect paired biological and physical data. This data time-
series allows for examination of how mesopelagic fish, crusta-
ceans, and jellyfish responded to a period of oxygen loss, and a 
subsequent basin water renewal in this fjord. In eastern Norway, 
monitoring of a shallow fjord close to Oslo has provided valuable 
knowledge on the consequences of seasonal variability in oxygen 
and responses by krill, zooplankton and fish. Our data series in-
cludes full biological, acoustic and environmental sampling, and 
we have just begun analysing the material. Below we provide a 
few glimpses of pronounced changes in oxygen concentrations, 
abundance of jellyfish and predator–prey relationships.

2   |   Basin Water Deoxygenation and Reoxygenation

Our environmental data set documents rapid oxygen loss rates 
in the deep basin of Masfjorden. These rates largely exceed what 
the general peer-reviewed literature reports on oxygen loss in the 
ocean (Figure 2). Global average oxygen loss was 2% over 50 years 
(Schmidtko, Stramma, and Visbeck  2017). At 300 m depth off 
California, a 20%–30% decline was measured over 23 years (1984–
2006; Bograd et al. 2008). In < 8 years (between 2011 and 2018), 
the dissolved oxygen in Masfjorden, decreased rapidly with > 60% 
at 450 m depth (Figure 2), before a renewal event of the basin water 
occurred in April 2021. This event was followed by a new rapid 
deoxygenation that is still ongoing, with basin conditions likely to 
become hypoxic in 2026 if current rates of oxygen loss continue 
and no deepwater renewal event occurs.

3   |   Deep-Water Jellyfish Periphylla periphylla 
Established

Our time series of trawl catch data from Masfjorden shows a 
change in the ecosystem from being dominated by mesopelagic 
fish, shrimps and krill to now also including high densities of 
the light-sensitive deepwater jellyfish Periphylla periphylla 
(Figure 3). This is an oceanic, mesopelagic species well adapted 
to the dark environment of the deep sea (Sørnes et  al.  2007), 
and appears to establish in fjords dominated by water from the 
Norwegian Coastal Current, depending on optically conditioned 
retention related to fjord topography, light attenuation and pho-
tosensitivity (Sørnes et  al.  2007; Bozman et  al.  2017; Bozman, 
Aksnes, and Eiane  2018). Eiane et  al.  (1999) compared light 
levels and food web structures in two fjords (Masfjorden and 
Lurefjorden) back in the 1990s. Lurefjorden was (and still is) a 
fjord with high densities of P. periphylla. They found severely 
lower light flux in Lurefjorden compared to Masfjorden, where 
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P. periphylla was nearly absent at that time. It is not yet fully un-
derstood why P. periphylla in Norwegian waters occur in mas-
sive densities in some fjords and not in others, but our data on 
approximated light penetration from a light attenuation model 
indicate reduced light in deep waters where oxygen levels were 
low (Solås, Salvanes, and Aksnes  2024). Newly acquired data 
from the student cruise in 2023 suggest that P. periphylla now 
reproduces in Masfjorden based on the high abundance of repro-
ductive adults captured in midwater tows, and early life stages 
captured in plankton tows.

4   |   Hypoxia Affects the Individual Species as Well 
as Predator–Prey Relationships

The 150 m deep inner Oslofjord sustains populations of the 
krill Meganyictiphanes norvegica and overwintering Calanus 

spp., which occupy mesopelagic depths in clearer oceanic wa-
ters. Sprat (Sprattus sprattus) is a main predator of the cope-
pods while gadoid fishes like cod (Gadus morhua) and whiting 
(Merlangius merlangus) prey on krill and sprat. Minimum oxy-
gen tolerance of diapausing Calanus is 0.2–0.3 mL O2 L−1, while 
krill and sprat tolerate oxygen levels down to ~0.5 mL O2 L−1 
at 7°C–8°C (Kaartvedt, Røstad, and Klevjer  2009; Kaartvedt, 
Røstad, and Titelman 2021; Figure 4). The gadoids avoid waters 
with oxygen contents below ~15%–20% O2 (< 2 mL O2 L−1), so 
that krill and sprat have a potential refuge from their predators 
defined by relative oxygen tolerances.

Mortality is very low for Calanus in the lowest tolerable oxygen 
environment. However, as they move upwards with the progres-
sion of hypoxia, they come into the reach of short-term feeding 
excursions of sprat, with copepod mortality increasing (Solberg 
and Kaartvedt 2017; Kaartvedt, Røstad, and Titelman 2021).

FIGURE 2    |    Changes in dissolved oxygen in Masfjorden at 450 m depth from 2011 to 2024. Oxygen concentration was measured by CTD and 
converted to % saturation using temperature, salinity, and pressure conditions at 450 m. The threshold for mild hypoxia follows the definition of 
Hoffmann et al. (2011).

FIGURE 3    |    Change in abundance measured as catch per unit of effort (kg of the jellyfish) P. periphylla caught per minute in Masfjorden from 
2012 to 2024. The sampling was done at 450–350 m depth. The fitted line is a loess curve with 95% confidence intervals (shaded area).
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5   |   Benefits From Time-Series of Data

There is a lack of systematic sampling of entire water columns 
and time series of data from fjords. Long-term monitoring of 
environmental variables has occurred at coastal stations in 
Norwegian waters (Sætre, Aure, and Gade  2010). With these 
observations warming and oxygen loss have both been detected 
over the last 30 years. Such data were used to model the den-
sity distribution of the water masses on the coast and in a fjord, 
and the data suggest reduced frequency of basin water renewal 
(Aksnes et al. 2019; Darelius 2020).

While the CALCOFI program (California Cooperative Oceanic 
Fisheries Investigations) has sampled dissolved oxygen of the 
California Current System, including coastal basins, since 1950 
(e.g., Gallo et  al.  2019), the Norwegian Ministry of Fisheries 
only recently began full-depth monitoring for oxygen levels in 
selected west Norwegian fjords (since 2019). The longer monitor-
ing series at coastal stations (Sætre, Aure, and Gade 2010) include 
only the basic oceanographic variables like salinity and tempera-
ture. There is no tradition for generating extensive time series 
and standardised sampling of biological data from the coast and 

the fjords. To our knowledge, the 14-year-long time series from 
Masfjorden is the first comprehensive biological/ecological time-
series of data available from a fjord, and that includes sampling 
the mesopelagic habitat.

Commercial fish stocks are managed based on time series of 
data, but in the North Atlantic, these are used to manage fish-
eries in the open seas where oxygen loss is not a problem. In the 
Baltic Sea which is naturally prone to hypoxia (and where de-
oxygenation is exacerbated by human activity), monitoring also 
involves oxygen as this severely influences ecosystem function 
and fish production (Limburg and Casini 2018; Carstensen and 
Conley  2019). Since the oxygen loss is particularly high along 
continental margins and in enclosed seas and fjords (e.g., Pitcher 
et  al.  2021), it is now time to focus more on coastal and fjord 
studies and climate impacts.

The overall objective of our work is to provide new knowledge 
on the effects of oxygen loss and reduced light on life histories, 
distribution, behaviour and trophic interactions of mesopelagic 
and demersal communities, utilising Norwegian fjords as nat-
ural infrastructure. While each fjord is different, they offer 

FIGURE 4    |    Time series of backscatter, dissolved oxygen and temperature in the Oslofjord in 2020 showing a decrease in deep water oxygen con-
centration and corresponding upwards shift in krill scattering layers. (a, d, e) Averaged diel echograms and daytime (indicated by boxes) normalised 
integrated backscatter (NASCn; grey shading: Interquartiles, black line: Median) based on several days of recording in March, August and October. 
The arrow in (c) indicates a peak in backscatter above the thin oxygen-poor bottom layer devoid of backscatter. (b, d, f) Dissolved oxygen and tem-
perature profiles based on single CTD profiles around the acoustic recordings. Backscatter was recorded with a surface-facing 200 kHz WBAT (EK80 
Wideband autonomous transceiver, Kongsberg) deployed on the bottom and mostly represents scattering layers of krill and fish. For details on the 
WBAT and CTD measurements see Appendix S1 and Christiansen et al. (2024).
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opportunity for replicating studies of processes (e.g., response 
to deoxygenation and reduced light) in a single geographical 
region. Our 14-year dataset, which is constantly extended with 
additional field campaigns, is proving to be extremely valuable 
to investigate the effects of deoxygenation and coastal water 
darkening on populations of mesopelagic fish and jellyfish, as 
well as ecosystem structure, functioning, variation, and change. 
We can compare across fjords that differ in basin water oxygen 
levels and in water clarity. For Masfjorden, our data allow us to 
study changes in a well-documented ecosystem before, during 
and after the fjord turned hypoxic and changes following basin 
water reoxygenation—including a recent massive increase in 
the abundance of P. periphylla. Our secondary objectives are to 
study the effects of the environmental drivers on vertical migra-
tion behaviours of mesopelagic fish species, their visual pelagic 
predators and demersal fish, as well as recruitment variability 
and population vital rates of the understudied mesopelagic fish.

6   |   Conclusions

The unique ‘natural infrastructure’ we have in fjords allows for 
generating time series of data for basic ecological and climate 
change impact studies of biological processes that are relevant 
for open ocean species where repeated sampling from the same 
populations are difficult. Deep Norwegian West Coast fjords 
contains an ecosystem with physical and biological processes 
like those of large oceanic ecosystems, including hosting large 
populations of mesopelagic fishes. As the environmental and 
ecological changes appear faster in fjords than in the open 
ocean, fjords like Masfjorden and Oslofjorden may not only be 
considered as macrocosms for ecological processes, but might 
also be considered as accelerated versions of deep oceans with 
respect to climate impacts similar to Reusch et al. (2018) arguing 
for the Baltic Sea to be viewed as a ‘time machine for the future 
coastal ocean’.

Additionally, deep fjords are useful study sites for mesopelagic 
fishes, which globally represent a huge marine biomass that 
is considered for future harvesting but for which vital rates 
and the effects of abiotic and biotic stressors on recruitment, 
growth, and survival are not yet known (St. John et al. 2016; 
Standal and Grimaldo  2020). Compared to the open ocean, 
mesopelagic fish populations contained in fjords represent an 
easily accessible, inexpensive opportunity for gaining knowl-
edge of recruitment, mortality, growth, and DVM behaviour. 
Such knowledge is valuable also for a deeper understanding of 
the open ocean where repeated sampling from the same popu-
lation is challenging and expensive. Hypoxic/anoxic deep wa-
ters might moreover open the avenue for novel process studies. 
Røstad and Kaartvedt  (2013) assessed the seasonal and diel 
patterns in the sedimentary flux of krill faecal pellets. Even 
individual sinking pellets were recorded acoustically since the 
low-oxygen water below the krill habitat excluded targets with 
the ability to swamp the weak acoustic signals from the pel-
lets. Any deeper fjords offering corresponding opportunities 
for studies of mesopelagic fish might be an asset in unveiling 
the passive and active role of mesopelagic fishes for vertical 
carbon flux (cf. Saba et al. 2021). Fjords represent a valuable 
tool to assess the impacts of environmental drivers on popula-
tions and ecosystems.
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