Modelling optimal responses and fitness consequences in a changing Arctic

Reimer, JR, Mangel, M, Lewis, MA, & Derocher, AE
Global Change Biology. doi: 10.1111/gcb.14681

A female polar bear lives in a world of tradeoffs:

Should she hunt in the riskier active ice...

- Prey are abundant, but cubs are at risk of infanticide, or having to swim long distances.

...or in the safer fast ice?

- Prey are less abundant, but cubs face less risk.

Should she continue investing in a reproductive attempt or save her energy for next year?

How might the answers to these questions change if the sea ice breaks up earlier, shortening the important spring feeding period?
We explored these tradeoffs using **stochastic dynamic programming**, a type of mathematical model.

We found that:

- **earlier ice breakup** leads to increased use of riskier habitat and shifts in reproductive thresholds, resulting in fewer cubs produced over the lifetime of a female polar bear.

<table>
<thead>
<tr>
<th>historical date</th>
<th>1 week earlier</th>
<th>3 weeks earlier</th>
</tr>
</thead>
<tbody>
<tr>
<td>fast ice</td>
<td></td>
<td>active ice</td>
</tr>
</tbody>
</table>

- female's stored energy

 - attempt below this line
 - abandon a reproductive attempt
 - 2830 MJ
 - 3260 MJ
 - 3480 MJ