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Abstract
Arctic zooplankton develop large energy reserves, as an adaptation to strong seasonality, making them valuable prey items. 
We quantified the energy content (kJ  g−1 dry weight) of abundant krill (arcto-boreal, Thysanoessa inermis and boreal, 
Meganyctiphanes norvegica) and amphipods (Arctic, Themisto libellula and sub-Arctic-boreal, Themisto abyssorum) in the 
Barents Sea in late summer (August) and early winter (December). Variation in energy content was attributed to species-
specific traits and body size categories, the latter in part as a proxy for ontogeny. T. inermis had the highest energy content, 
(Aug: 26.8 ± 1.5 (SD) kJ  g−1) and remained similar from summer to winter. Energy content increased in M. norvegica and 
decreased in both amphipod species, with the lowest energy content being in T. abyssorum (Dec: 17.8 ± 0.8 kJ  g−1). The 
effect of body size varied between species, with energy content increasing with size in T. inermis and T. libellula, and no 
change with size in M. norvegica and T. abyssorum. The reproductive stages of T. libellula differed in energy content, being 
highest in gravid females. Energy content varied with species’ dependence on energy storage. Our findings highlight how 
phylogenetically and morphologically similar prey items cannot necessarily be considered equal from a predator´s perspec-
tive. Energetically, the northern T. inermis was higher quality compared to the more southern M. norvegica, and mostly so 
during summer. Ecological models and management strategies should consider such variation in prey quality, especially as 
Arctic borealization is expected to change species composition and the energetic landscape for predators.

Keywords Energy density · Seasonality · Bomb calorimetry · Life history strategies · Lipids · Borealization · 
Macrozooplankton

Introduction

Energy flux is a key component in an ecosystem’s function-
ing (Barnes et al. 2018). Inherent to this flux, from primary 
producers to apex predators, is the energy content of an 
organism (Brown et al. 2004; Van de Putte et al. 2006). Prey 
quality typically increases with energy content and thereby 

impacts the foraging behaviour and prey choice in consum-
ers (Lawson et al. 1998; Houston and McNamara 1999; Spitz 
et al. 2010a). Thus, quantifying the energy content of key 
species in an ecosystem is an important step in understand-
ing food web dynamics, energy flux and overall ecosystem 
functioning.

However, an organism does not exist in a constant state, 
but rather experiences physical, physiological and behav-
ioural changes throughout its lifetime, and through the year. 
This variability is apparent with changes in body size and 
developmental stage, where trade-offs in the energy allo-
cated to growth and reproduction occur over an annual cycle 
and throughout a lifetime (Perrin and Sibly 1993; McNamara 
and Houston 1996; Stearns 2000). Seasonal environmental 
variables, such as food availability, shape life history and 
foraging strategies, which in turn impact selection pressures 
on energy storage and allocation (Varpe 2017).

Arctic marine ecosystems have strong seasonality, in par-
ticular through changing light conditions, sea ice cover and 
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primary production (Ji et al. 2013). Arctic zooplankton spe-
cies have evolved adaptations to this seasonal environment, 
notably through their use of energy reserves. Many Arctic 
species develop prominent lipid stores to survive periods of 
low food availability, as well as use reserves to fuel reproduc-
tion ahead of the productive period (i.e. capital breeding), 
rather than depend on concurrent food intake (i.e. income 
breeding) (Hagen 1999; Varpe et al. 2009; Daase et al. 2013).

In Arctic and sub-Arctic seas, macrozooplankton such as 
krill and amphipods are an important dietary link between 
primary and secondary producers and higher trophic levels, 
being prey items of fish (Cusa et al. 2019; Eriksen et al. 2021), 
seabirds (Mehlum and Gabrielsen 1993; Dalpadado 2001) and 
marine mammals (Falk-Petersen et al. 2004). The Barents Sea 
is highly productive and one of the most biodiverse marine 
ecosystems in the Arctic (Sakshaug et al. 1994; Michel et al. 
2012; Dalpadado et al. 2020). Both Arctic and Atlantic water 
influenced, the Barents Sea hosts Arctic and boreal species of 
macrozooplankton, including krill, such as the arcto-boreal 
Thysanoessa inermis and the boreal Meganyctiphanes nor-
vegica, as well as amphipods, such as the Arctic Themisto 
libellula and the sub-Arctic-boreal Themisto abyssorum. 
These species make for interesting comparisons of species-
specific traits related to feeding and reproductive strategies, 
and how these differences may affect energy content. How-
ever, there are only a few studies that explore the energetic 
dynamics of these important prey species, as outlined below.

To our knowledge, only two studies so far report energy 
content of these krill and amphipod species for the Barents 
Sea region (Mårtensson et al. 1996; Weslawski et al. 1999). 
More so, a key seasonal transition in the Arctic is the shift 
from summer to winter, from the productive to the relatively 
unproductive period. However, most of the existing studies 
for these species take place almost exclusively in the summer 
months (Percy and Fife 1981; Kulka and Corey 1982; Wolo-
wicz and Szaniawska 1986; Weslawski et al. 1999, 2000; 
Walkusz et al. 2012) excluding energetic changes occurring 
in the lead up and during winter. Indeed, we are not aware 
of winter energy content data for these macrozooplankton 
species from the Barents Sea region. Borealization, with 
sub-Arctic species already seen to be moving northwards 
into warming Arctic waters (Fossheim et al. 2015), is also 
expected to alter current species composition in the Barents 
Sea and may impact the quality of prey available for preda-
tors (CAFF 2017; Griffith et al. 2019). It is important to 
understand the energetic dynamics of key prey species, such 
as krill and amphipods, to predict the effects such changes 
will have on the functioning of a future Arctic system.

The aim of this study is to quantify the energy content 
of abundant macrozooplankton species, making compari-
son between Arctic and boreal species, namely the krill T. 
inermis and M. norvegica, and the amphipods T. libellula 
and T. abyssorum, in the late summer and early winter in 

the Barents Sea. We investigate how energetic changes 
from the productive to unproductive period are related to 
the feeding and life history strategies and annual routines of 
these species. We categorise individuals into size classes, 
to investigate the effect of different developmental stages 
on changes in energy allocation. We also compare the early 
winter energy content of male and female T. libellula. Addi-
tionally, we summarise energy content estimates from the 
literature for these species and review our results in the con-
text of these works.

Methods

Study site, species, and sample collection

The target macrozooplankton species were sampled at six 
stations along a transect from 76° N to 82° N in the Barents 
Sea during late summer (August 4–27, 2019, SQ3, Nansen 
Legacy project) and at nine stations in early winter (Novem-
ber 28–December 17, 2019, SQ4, Nansen Legacy project) 
on-board RV Kronprins Haakon (Fig. 1).

At the sampling stations in open water, a Methot Isaac 
Kidd (MIK) net (13 m length, 2 m diameter, 1.5-mm mesh, 
with rear 1.5 m 500-µm mesh) was towed as an oblique haul, 
or a macrozooplankton trawl was used. In ice covered water, 
the MIK net was towed vertically. At each station, the entire 
water column was sampled, from 20 m above the bottom 
depth to the surface. At the northernmost station, where bot-
tom depth exceeded 3000 m, nets were taken from 1000 m 
and 500 m to the surface, due to limitations of wire time.

Macrozooplankton were sorted to species level in cold 
seawater on ice, to keep individuals alive and prevent deg-
radation. Using millimetre paper, individuals from each 
species were measured to the nearest millimetre and sorted 
into size classes: 0–10 mm, 11–20 mm, 21–30 mm and 
31–40 mm. Amphipods, T. libellula and T. abyssorum, were 
measured from the front of the head to the tip of the longest 
uropod (Dunbar 1957). Krill, T. inermis and M. norvegica, 
were measured from the anterior edge of the eye to the tip of 
the telson, excluding the setae (Mauchline and Fisher 1969). 
The size classes represent a rough estimation of life stage. 
Within each size class, individuals that were collected at 
the same sampling station, or sometimes at two consecu-
tive stations, were pooled together to achieve a bulk sam-
ple with a minimum wet weight of 1 g. This minimum 
weight is required to have enough biological material for 
energetic analyses. In cases where bulk samples were less 
than 1 g, then multiple samples would be pooled together 
to have enough material for analysis. If bulk samples were 
large enough, multiple subsamples were taken and used to 
make replicate pellets for bomb calorimetry. The number of 
individuals per sample varied depending on species and life 
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stage. The samples were weighed and stored in aluminium 
foil at -20ºC until analysis. The number of samples for each 
species, season and size class combination varied, due to 
sampling effort and the abundance of krill and amphipods.

During the winter cruise, sexually mature individuals of 
T. libellula were observed and sampled. Males were identi-
fied by the presence of long antennae and gravid females 
were identified by the presence of eggs in the brood pouch. 
Therefore, winter samples of this species were classified as 
undetermined sex, male or gravid female.

Details on the distribution within the Barents Sea, average 
adult body size, feeding strategy, and reproductive strategy 
and breeding season were summarised for the four species 
of macrozooplankton in this study (Table 1). Capital breed-
ing is when energy reserves are used to fuel reproduction, as 
opposed to income breeding which is when reproduction is 
dependent on concurrent energy intake (Varpe et al. 2009). 

Capital and income breeding are extremes on a gradient, and 
many species combine elements of the two, which can be 
referred to as mixed breeding (Varpe and Ejsmond 2018). 
References in Table 1 do not explicitly use capital-income 
terminology, and the capital-income terms we apply in 
Table 1 are approximations of where they lie on this repro-
ductive spectrum.

Energy content

Energy content was measured using a Parr® 6725 Semi-
micro Oxygen Bomb Calorimeter. Frozen samples were 
freeze-dried for a minimum of 24 h, after which the dry 
weight of each sample was determined. Dried samples 
were homogenised using a pestle and mortar. Using the 
Parr® 2812 Pellet Press, subsamples were taken from the 
bulk homogenised sample and pressed into pellets roughly 

Fig. 1  Map showing wider 
European Arctic (inlay) and 
the Barents Sea (main) with 
summer (August) and winter 
(December) transects and sam-
pling stations indicated for each 
cruise. The ice edge, as defined 
by the limit between “very open 
drift ice” and open water, is 
indicated by the white dashed 
lines for August and December. 
Ice edge is based on satellite 
data from the 12th day of each 
month. Map provided by Bernt 
Bye, Norwegian Polar Institute 
(2021)
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weighing between 0.1 and 0.3 g (Table 2). Energy content 
(kJ  g−1 dry weight) was measured for each pellet. Where 
possible, two replicate pellets of a single sample were run 
to ensure the calorimeter output was consistent. In some 
cases, more than two replicate pellets were run from a single 
sample (see data DOI for information regarding the num-
ber of replicates per sample). An average was taken of the 
replicates per sample (i.e. each sample produced a single 
calorimetric value), for use in further data analysis. Benzoic 
acid tablets (0.2 g) were used for calibration. Error margin 
for benzoic acid was ± 0.9%, while the error margin for bio-
logical material is slightly higher depending on homogeneity 
of the sample.

Data treatment and statistical analysis

Due to the unbalanced data set, the effects of season, spe-
cies and size class were tested using a combination of Two-
Way ANOVAs: To test for intra-specific differences in 
energy content from summer to winter, data were grouped 

by species and effects of season and size were estimated. 
To test for inter-specific differences, data were grouped by 
season and tested for the effect of species and size class on 
differences in energy content in both summer and winter. 
The effect of reproductive stage and size class on energy 
content was also tested for in winter T. libellula samples. 
Post-hoc Tukey’s HSD tests were used where ANOVAs were 
significant (p value < 0.05). For statistical testing, the mid-
point of the allocated size classes was used (i.e. 15 mm for 
the 10–20 mm class). All statistical testing was performed 
with R software (version 4.0.2) (R Core Team 2020).

Results

Intra‑specific energy differences, based on seasons 
and size classes

The energy content of the krill T. inermis was similar from 
summer to winter (ANOVA, F = 0.10, p = 0.76 (Table 3; 

Table 1  Summarized information regarding the focus species of this study on energy content in macrozooplankton of the Barents Sea

Includes distribution within the Barents Sea, approximate adult size, feeding and reproductive strategy, regarding a capital-income approach and 
breeding season
a Dalpadado and Skjoldal (1991)
b Dalpadado and Skjoldal (1996)
c Schmidt (2010)
d Dalpadado and Skjoldal (1995)
e Tarling (2010)
f Pond et al. (2012)
g Dalpadado (2002)
h Auel and Werner (2003)
i Kraft et al. (2013)
j Percy (1993)
k Weslawski and Legeżyńska (2002)
l Kraft et al. (2015)
m Koszteyn et al. (1995)

Krill Amphipods

Thysanoessa inermis Meganyctiphanes nor-
vegica

Themisto libellula Themisto abyssorum

Distribution within the 
Barents Sea

Southern and Western Bar-
ents Sea (Arcto-boreal)a

Atlantic waters and South-
ern Barents Sea (boreal)a

Predominately Arctic 
waters, Central and 
Northern Barents Sea 
(Arctic)g

Predominately Atlantic 
waters, Southern Barents 
Sea (sub-Arctic-boreal)g

Average adult body size
(total length, mm)

25b 42 (varies regionally)e 40 (max. 60)h 18m

Feeding strategy Predominantly herbivo-
rous, some observation 
of feeding on  copepodsc

Omnivorous, very flexible 
 dietc,f

Carnivorous, feeding 
throughout the  yeari

Predominantly carnivorous, 
feeding throughout the 
 yeari

Reproductive strategy and 
breeding season

Capital breeding. Spawn-
ing-May to  Juned

Income breeding. Spawn-
ing-March to  Julye

Mixed breeding. Brood-
ing- December to March, 
young released-February 
to  Mayj–l

Mixed breeding. Brood-
ing- December to March, 
young released-May to 
 Juneg,k,l
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Fig. 2a, b). The only seasonal energetic differences occurred 
when comparing different size classes, with the largest size 
class, 21–30 mm, having the highest energy content in both 
seasons (Tukey’s HSD, both seasons p < 0.001) (Fig. 2c, 
d). For M. norvegica, the average energy content increased 
8.3%, by 1.89 kJ   g−1, from summer to winter (ANOVA, 
F = 14.36, p < 0.001) (Table 3; Fig. 2a, b). However, there 
was no difference in the energy content between size classes 
(ANOVA, F = 1.38, p = 0.27) (Fig. 2c, d). 

The amphipod species showed greater seasonal vari-
ation in energy content compared to the krill species. T. 
libellula showed the largest difference, from summer to 
winter, with a 18.6% decrease, of 4.3 kJ  g−1, whilst T. 
abyssorum saw a 15.6% decrease of 3.3 kJ  g−1 (ANOVA, 
F = 11.47, p = 0.001 and F = 9.44, p = 0.01, respectively) 
(Table 3, Fig. 2a, b). The average energy content for T. 
libellula was higher in summer compared to winter across 
all size classes. Within both summer and winter, the 
energy content of T. libellula increased with size, from 

11–20 to 31–40 mm (ANOVA, F = 18.28, p < 0.001), but 
remained similar in the 0–10 mm and 11–20 mm size 
classes (Tukey’s HSD, p = 0.73) (Fig. 2c, d). For T. abys-
sorum, energy content did not differ between size classes 
within either season (ANOVA, F = 0.79, p = 0.40) (Fig. 2c, 
d).

Inter‑specific energy differences in summer 
and winter

Summer

T. inermis had the highest energy content of all study species 
in summer, whilst T. abyssorum had the lowest (ANOVA, 
F = 17.01, p < 0.001) (Table 3). The Arctic counterpart in 
krill, T. inermis, had a higher energy content compared to 
the boreal M. norvegica (Tukey’s HSD, p < 0.001), whilst 
both the amphipod species were similar in summer (Tukey’s 
HSD, p = 0.1) (Fig. 2a). There was no difference in energy 
content between M. norvegica and both T. libellula and T. 
abyssorum (Tukey’s HSD, p = 0.95 and p = 0.39, respec-
tively) (Fig. 2a).

Winter

Differences in energy content between species were depend-
ent on size class in winter, for all species (ANOVA, F = 3.93, 
p = 0.005). T. inermis in the 21–30 mm size class had the 
highest energy content compared to other study species and 
sizes (Tukey’s HSD, ranging from p = 0.001–0.04, depend-
ing on species and size) (Fig. 2d). T. abyssorum had the 
overall lowest energy content in winter but was similar in 
value to the smaller size classes (0–30 mm) of T. libellula 
(Tukey’s HSD, p > 0.5) (Fig. 2d).

Energetic differences between T. libellula 
reproductive stages in winter

In winter, the energy content of T. libellula varied depending 
on reproductive stage (ANOVA, F = 6.72, p < 0.001). The 

Table 2  Overview table for the number of pellets (n) used in calorim-
etry, to determine energy content, for each study species, size class 
and season

Krill and amphipods were collected from the Barents Sea in late sum-
mer and early winter

Species Size class (mm) n

Summer Winter

Thysanoessa inermis 11–20 2 14
21–30 10 14

Meganyctiphanes norvegica 11–20 0 2
21–30 4 17
31–40 3 4

Themisto libellula 0–10 2 1
11–20 3 20
21–30 3 27
31–40 14 2

Themisto abyssorum 0–10 1 2
11–20 3 6

Table 3  Average seasonal energy content estimates for each species, in kJ  g−1 of dry weight ± SD

Mean size for each species was calculated by taking the average of size class midpoints and should only be considered a rough estimation. N rep-
resents number of pellets used in calorimetry analysis per species per season

Summer Winter

Energy content (kJ 
 g−1 DW ± SD)

Mean size ± SD (mm) n Energy content (kJ 
 g−1 DW ± SD)

Mean size ± SD (mm) n

Thysanoessa inermis 26.75 ± 1.48 23.33 ± 3.89 12 26.24 ± 1.30 20.00 ± 5.09 28
Meganyctiphanes norvegica 22.71 ± 1.57 29.29 ± 5.35 7 24.60 ± 1.03 25.87 ± 5.15 23
Themisto libellula 23.07 ± 2.60 28.18 ± 10.41 22 18.77 ± 1.84 21.00 ± 6.06 50
Themisto abyssorum 21.13 ± 2.91 12.50 ± 5.00 4 17.83 ± 0.82 12.5 ± 4.63 8
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average energy content of gravid females was 2.57 kJ  g−1 
higher than males (Fig. 3a). The highest energy content 
was in a single 31–40 mm gravid female, at 24.9 kJ  g−1. 
Males had a lower energy content than both undetermined 
(Tukey HSD, p = 0.01) and gravid (Tukey HSD, p = 0.006) 

samples (Fig. 3a). Differences in energy content varied 
between size classes, with the 30–40 mm size class hav-
ing higher energy contents than both the 11–20 mm (Tukey 
HSD, p < 0.001) and 21–30 mm (Tukey HSD, p = 0.003) 
size classes (Fig. 3b).

Fig. 2  Boxplots showing energy content (Energy content kJ  g−1 dry 
weight (DW)) across species in a late summer and b early winter and 
the distribution of energy content across size classes in each species 
in c late summer and d early winter. Boxes represent the interquar-
tile range (IQR), with the horizontal line representing the median and 

vertical bars representing range, up to 1.5 × IQR. Points beyond these 
lines are considered outliers. In a and b the number of samples rep-
resented by each box plot is indicated by “n = ”, and diamonds inside 
boxes represent the mean
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Discussion

Energetics and feeding strategies

As expected, the highest energy content in both summer and 
winter was in the herbivorous Arctic krill, T. inermis. This 
species is known to have large lipid stores, primarily consist-
ing of energy-rich wax esters (Falk-Petersen et al. 1981), a 
trait it shares with other predominantly herbivorous Arctic 
zooplankton, such as the copepods Calanus hyperboreus 
and Calanus glacialis (Hüenerlage et al. 2016; Cabrol et al. 
2019a). Wax esters are associated with long-term energy 
storage in zooplankton (Lee et al. 2006). The relative stabil-
ity in T. inermis energy content estimates coincide with the 
need to conserve energy throughout the winter, both to sur-
vive low food availability and fuel reproduction in the spring 
(Falk-Petersen et al. 2000). This conservation is achieved 
through a range of adaptations, such as sexual regression and 
negative growth, however metabolism through the winter is 
not reduced (Hüenerlage et al. 2015). There is also evidence 

of some carnivory in T. inermis (Hüenerlage et al. 2015; 
Cabrol et al. 2019a), which could subsidize energy stores.

The Atlantic krill M. norvegica had a lower energy con-
tent than T. inermis, likely due to lower lipid content, as 
well as its primary storage lipid being triacylglycerol, which 
is less energy dense than wax esters (Falk-Petersen et al. 
1981). Furthermore, triacylglycerol is associated with short-
term storage in marine zooplankton (Lee et al. 2006), with 
M. norvegica likely relying on feeding throughout the year, 
compared to the stronger reliance T. inermis has on energy 
stores (Cabrol et al. 2019b). M. norvegica was the only spe-
cies in our study to show an increase in energy content from 
summer to winter. Inhabiting an extensive geographic range, 
occurring across the north Atlantic and reaching south to 
the Mediterranean, M. norvegica shows great plasticity in 
its feeding depending on region and season (Schmidt 2010; 
Pond et al. 2012). In northern regions, this Atlantic krill 
shifts from a relatively herbivorous to a Calanus spp.-based 
diet in autumn (Båmstedt and Karlson 1998; Schmidt 2010; 
Cabrol et al. 2019a) which could explain higher winter 
energy contents that reflect preying on lipid rich copepods.

Contrastingly, the two amphipod species we studied 
showed lower energy content than either krill species, as 
well as a greater difference between summer and winter. 
These amphipods are known to be predominantly carnivo-
rous, with less dependence on energy stores to withstand the 
non-productive period (Auel et al. 2002). Despite showing a 
large decrease in energy content from summer to winter, both 
amphipod species have been found to feed during the polar 
night in some Svalbard fjords (Kraft et al. 2013). However, 
more than half of the Themisto spp. guts sampled in Rijpf-
jorden, a fjord characterised by Arctic waters, were less than 
25% full (Kraft et al. 2013), indicating that hunting during the 
dark winter months might be less effective for these predomi-
nantly visual predators. Although there will be differences 
between fjord and Barents Sea populations, this potentially 
less effective winter feeding may, in part, explain the decrease 
in energy content from summer to winter in Themisto spp.

Energetics, body size and life history strategies

There was a strong positive relationship between size and 
energy content for T. inermis and T. libellula. However, 
M. norvegica and T. abyssorum, did not show variation in 
energy content based on size. For M. norvegica, this was 
likely a result of small sample sizes per size class in summer, 
with no samples at all for the 11–20 mm size class (Table 2), 
therefore making it difficult to discuss ontogenetic energetic 
variation. For T. abyssorum, the lack of energetic variation 
with size may be due to applying size classes that were too 
broad for this small species, as T. abyssorum has a maximum 
size of about 18 mm (Koszteyn et al. 1995; Table 1).

Fig. 3  Boxplot showing energy content (Energy content kJ  g−1 dry 
weight (DW)) across a reproductive stages and b size classes, of win-
ter T. libellula samples. Boxes represent the interquartile range (IQR), 
with the horizontal line representing the median and vertical bars rep-
resenting range, up to 1.5 × IQR. Points beyond these lines are consid-
ered outliers. In panel a the number of samples represented by each 
box plot is indicated by “n = ”, and diamonds inside boxes represent 
the mean
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The increase in energy content with size in T. inermis is 
likely due to reallocation of energy from growth to reproduc-
tive efforts upon reaching maturity. T. inermis spawns from 
May to June, fuelling reproduction with energy reserves 
(Dalpadado and Skjoldal 1995; Table 1). Therefore, the 
increase in energy content with increasing body size is likely 
a result of energy being allocated to reserves for reproduc-
tion in the spring, versus being used for growth (Dalpadado 
and Ikeda 1989; Falk-Petersen et al. 2000; Pinchuk and Hop-
croft 2006). This dependence on building energy stores for 
reproduction aligns with the stability in the energy content 
from summer to winter seen in this krill species.

T. libellula showed the most pronounced energy increase 
with size. Thus, energy content, from small to large indi-
viduals, is likely driven by ontogenetic changes in energy 
allocation, from somatic growth to energy reserves, for sur-
vival and reproduction. Total lipids increase from juveniles 
to adults (Noyon et al. 2011), correlating with the increase in 
energy content we see with increasing size in our study. The 
observed decrease in energy content, from summer to winter, 
aligns with lipid content being seen to decrease from sum-
mer to winter in T. abyssorum and T. libellula, due to repro-
duction (Kraft et al. 2015). This suggests there is an increase 
in reproductive investment towards the winter, which aligns 
with a mixed breeding approach (Table 1). This is further 
supported by the presence of mature males and gravid 
females of T. libellula in winter samples and although sam-
ple sizes were small, there were some differences between 
these reproductive categories. T. libellula is a brooder, with 
females carrying developing eggs in a brood pouch until 
they are released as juveniles (Percy 1993). However, eggs 
were not removed from the brood pouch in the analysed 
females, and therefore the estimates from these female sam-
ples “retain” the energetic content allocated to reproduc-
tion, through lipid rich eggs. This is one explanation for the 
highest energy content in winter T. libellula samples being 
a 31–40 mm gravid female, as well as higher energy con-
tent in 11–20 mm gravid females compared to males. From 
a predator perspective, gravid females could offer a highly 
nutritious prey option compared to males.

Present understanding and energetics in a future 
Arctic

We summarised energy content estimates in the existing 
literature (Table 4), and here compare our estimates with 
previous works. Where seasons and body sizes were com-
parable, the energy content estimates between our study and 
previous studies were mostly similar (e.g. energy content for 
T. libellula in our study and Walkusz et al. 2012). Energetic 
variation between seasons and body sizes has been shown 
to some extent in previous studies, with varying degrees 
of resolution (Table 4). One caveat of the present study is 

its restriction to only two seasons, namely late summer and 
early winter. Many past studies focused only on a single 
season, or a few months, but some studies sampled over the 
course of a full year (e.g. Tyler 1973; Table 4). Although, 
compiling studies gives additional insight into seasonal vari-
ation, in some cases over almost the entire year (e.g. for T. 
inermis, Table 4).

However, lack of differentiation between size classes 
of the individuals used for calometric analyses, or in some 
cases complete lack of size determination, is a barrier to 
comparisons between studies. In such cases, it cannot be 
known if variation in energy content is due to seasonal 
differences, or simply differences in the size classes used 
for analyses. The present study has shown that size is an 
important factor in energy content variation, both within and 
between species, due to changes (i.e. in diet or developmen-
tal stage) occurring over an organism’s annual and life cycle. 
More so, size is known to impact a predator´s choice of prey 
(Gill 2003). Therefore, energetic values for a range of size 
classes will improve our knowledge of the energy content 
of prey available to predators. Such size dependencies are 
amplified in visually searching predators that more easily 
detect large individuals, and in the Arctic, sea ice declines 
may provide a more beneficial light environment for such 
visual search (Langbehn and Varpe 2017). Future studies, 
with frequent seasonal sampling and a high resolution of 
size classes, would provide an important understanding of 
the energetic landscape available to predators over an annual 
cycle.

Energy content is another important factor in prey choice 
(Houston and McNamara 1999; Spitz et al. 2010b, 2012). 
For endothermic predators, such as seabirds and marine 
mammals, living costs and the resultant metabolisms are 
high. More so, they can experience periods of particularly 
high energy demands, such as when seabirds are feeding 
their chicks (Gabrielsen et al. 1987). Therefore, changes 
in prey quality, from energy-rich to energy poor, can have 
major consequences. Coined the “Junk-food hypothesis”, 
the phenomena of changing prey quality, from high to low, 
resulting in adverse effects on predators, has been well-doc-
umented (Österblom et al. 2008). Studies have suggested 
that lack of energetically rich fish species has resulted in 
decreased body condition and population decline in stellar 
sea lions (Eumetopias jubatus) (Alverson 1992) and reduced 
breeding success in black-legged kittiwakes (Rissa tridac-
tyla) and tufted puffins (Fratercula cirrhata) (Romano et al. 
2006), cape gannets (Morus capensis) (Grémillet et al. 2008) 
and common guillemots (Uria aalge) (Wanless et al. 2005). 
These negative outcomes were all a result of changing prey 
composition, where there was a reduced availability of high-
quality prey. In a future Arctic, changes in the species com-
position of prey items could end up impacting predators in 
similar ways.
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Like the rest of the Arctic, the Barents Sea is experi-
encing the effects of climate change at a faster rate and a 
greater magnitude than elsewhere on the planet, predomi-
nantly through increasing temperatures and reduced sea ice 
cover (CAFF 2017; Lind et al. 2018; AMAP 2021). This 
warming climate is leading to borealization, with sub-Arctic 
species of zooplankton and fish becoming more abundant 
in Arctic regions (Fossheim et al. 2015; Vihtakari et al. 
2018). The present study shows that phylogenetically and 
morphologically similar prey items cannot necessarily be 

considered equal, and that feeding and reproductive strate-
gies influence the energy content of prey. This is shown in the 
comparison of Arctic and Atlantic krill in the present study, 
whose energetic discrepancies are also seasonally depend-
ent. Spitz et al. (2010b) categorised the energetic quality of 
prey (kJ  g−1 of wet weight (WW)) as follows: Low Quality 
(< 4 kJ  g−1), Moderate Quality (4–6 < kJ  g−1) and High Qual-
ity (> 6 kJ  g−1). For the 20–30 mm size class of Thysanoessa 
inermis and Meganyctiphanes norvegica, the average per-
centage dry weights (%DW) were then taken for each species. 

Table 4  Overview of the existing literature that contains estimates for the energy content of the four species of macrozooplankton in this study

Information is given regarding: Geographic region; Time of year for which the energy content estimates apply to, as stated in original study; Size 
class in terms of total length, as stated in original study for mean or range (given in parentheses) of lengths, or life stage where length wasn’t 
stated; Energy content as mean or range (given in parentheses). Energy content is shown in kJ  g−1 of dry weight (DW), unless otherwise noted 
(i.e. Ash-free dry weight, AFDW; wet weight, WW). In some cases, original energy content estimates have been converted from calories to kilo-
joules to allow for better comparison across studies, indicated with an asterisk (*)

Species Geographic region Time of year Size class: mean, 
range (mm) or life 
stage

Energy content: mean 
or range  (kJg−1 DW, 
unless otherwise 
noted)

References

Thysanoessa
 inermis

Bering Sea (a) Apr-Jun, (b) Jun-
Sept

(a) (8–22), (b) (14–24) (a) 18.22–27.42*,
(b) 28.96–32.13* (kJ 

 g−1 AFDW)

Harvey et al. (2012)

Western sub-Arctic 
Pacific

(a) Jan-Mar, (b) Apr-
Sept

Adult (a) 8.1 ± 0.6, (b) 6.3 (kJ 
 g−1 WW ± SD)

Kooka et al. (2018)

Kongsfjorden, 
Svalbard

July Juvenile and Adult 25 Weslawski et al. (2000)

Frobisher Bay, Canada Aug-Sept Not stated in study (24.28–26)* Percy and Fife (1981)
Meganyctiphanes
 norvegica

Kosterfjorden, 
Sweden

December Not stated in study (24.76–31.66)* Norrbin and Båmstedt 
(1984)

Bay of Fundy, Canada August Not stated in study 19.68* Kulka and Corey (1982)
Passamaquoddy Bay, 

Canada
(a) Feb-Dec, (b) Jan-

Dec
Not stated in study (a) 20.70*, (b) 21.10* Tyler (1973)

Themisto
 libellula

Kongsfjorden, 
Svalbard

July (6–8) and (12–14) 19.8 Weslawski et al. (2000)

Kongsfjorden, 
Svalbard

August and March 23 16.71 Weslawski et al. (1994)

Frobisher Bay, Canada Aug-Sept Not stated in study (17.67–23.53)* Percy and Fife (1981)
Southern Barents Sea
and Isfjorden, 
Svalbard

July (11.1–12) 17 Weslawski et al. (1999)

Beaufort Sea August 16 19.99* Walkusz et al. (2012)
Hornsund, 
Svalbard

Jul–Sept Not stated in study 13.64 ± 0.51 (± SD) Wolowicz and Szaniaw-
ska (1986)

Themisto
 abyssorum

Kongsfjorden, 
Svalbard

July Over 5 19.8 Weslawski et al. (2000)

Southern Barents Sea
and Isfjorden, 
Svalbard

July (8.1–9) 18.4 Weslawski et al. (1999)

Kosterfjorden, 
Sweden

April Not stated in study 19.82* Norrbin and Båmstedt 
(1984)

Thysanoessa spp. Norwegian Sea and 
Barents Sea

Jan- Nov Not stated in study (2.3–8.2)a (kJ  g−1 
WW)

Mårtensson et al. (1996)

Themisto spp. Western sub-Arctic 
Pacific

(a) Jan-Mar, (b) Apr-
Sept

Adult (a) 4.4 ± 0.2, (b) 3.4 (kJ 
 g−1 WW ± SD)

Kooka et al. (2018)
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The dry weight of the total sample was divided by the wet 
weight, for each species in each season. In some cases, the 
dry weight or wet weight had not been taken, and therefore 
these samples were excluded from the %DW calculation. The 
existing average energy content (kJ  g−1 dry weight) for each 
species in each season was divided by the average %DW, to 
produce energy content estimates in kJ  g−1 wet weight. When 
the summer and winter averages for T. inermis and M. nor-
vegica in the size class 20–30 mm are converted into energy 
content based on wet weight, T. inermis can be considered a 
high-quality prey item in both summer and winter, 8.6 kJ  g−1 
(WW) and 8.3 kJ  g−1 (WW), respectively. Contrastingly, M. 
norvegica shows an energy content almost half of its Arc-
tic counterpart in summer, 4.5 kJ  g−1 (WW), categorising it 
as moderate quality, and rising to a high-quality standard in 
winter, 6.6 kJ  g−1 (WW). If M. norvegica were to replace T. 
inermis as a dominant prey item in Arctic waters, it would 
prove a lower quality replacement in the summertime.

Indeed, the complexity of prey energetics shown in this 
study needs to be fully realised, to make informed decisions 
on the sustainable development of Arctic marine ecosys-
tems. The Norwegian Ministry of Climate and Environment 
(2006; referenced in 2020 report) explicitly states the need 
for “more knowledge about energy flow and interactions 
between species if we are to develop a sound management 
regime” in the Integrated Management Plan for the Barents 
Sea. The energy content estimates in the present study takes 
a step towards this understanding.

This study has shown that energy content, and hence 
the quality of prey, can vary seasonally and so cannot be 
considered a constant value over an annual cycle. More so, 
this study shows that energy content can vary between even 
seemingly similar species and is associated with traits related 
to feeding and energy storage. Size differences, within and 
across species, are also an important factor in the energy 
content. Realising the energetic variation of key prey spe-
cies is paramount in our understanding of the functioning of 
Arctic marine ecosystems, particularly when considering the 
effects to higher trophic levels. Hence, the dynamics shown 
in this study should be considered when incorporating ener-
getics into ecological models and management strategies.
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