
Contribution to the Themed Section: ‘Plugging spatial ecology into sustainable fisheries and EBM’

Original Article

Drivers of the summer-distribution of Northeast Atlantic
mackerel (Scomber scombrus) in the Nordic Seas from 2011
to 2017; a Bayesian hierarchical modelling approach

N. Nikolioudakis1*, H. J. Skaug1,2, A. H. Olafsdottir3, T. Jansen4,5, J. A. Jacobsen6, and K. Enberg1

1Institute of Marine Research, N-5817 Bergen, Norway
2Department of Mathematics, University of Bergen, N-5020 Bergen, Norway
3Marine and Freshwater Research Institute, Skúlagata 4, 101 Reykjavik, Iceland
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Identifying factors that are statistically correlated with the geographical distribution dynamics of a species can facilitate our understanding of causal physi-
ological and ecological relationships. Northeast Atlantic (NEA) mackerel is a species of great economic and ecological importance, whose habitat expan-
sion in the last decade has altered the biomass dynamics in the pelagic realm of the Nordic Seas. We highlight drivers that may have regulated the
geographical distribution of NEA mackerel during summers, from 2011 to 2017, by fitting Bayesian hierarchical spatiotemporal models on data obtained
during the International Ecosystem Summer Survey in the Nordic Seas. Temperature in the upper 50 m of the water column, food availability (approxi-
mated by mesozooplankton biomass), a proxy of herring abundance and longitude were the main factors influencing both the catch rates (proxy for fish
density) and the occurrence of NEA mackerel. Stock size was not found to directly influence the distribution of the species; however, catch rates in higher
latitudes during years of increased stock size were lower. Additionally, we highlight the improved performance of models with spatiotemporal covariance
structures, thus providing a useful tool towards elucidating the complex ecological interactions of the pelagic ecosystem of the Nordic Seas.
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Introduction
Atlantic mackerel (Scomber scombrus) is a widely distributed pe-

lagic fish species, found mainly in the North Atlantic, but also in

the North Sea, the Baltic, the Mediterranean, and the Black Sea

(Collette and Nauen, 1983), with important economic and eco-

logical value (Trenkel et al., 2014). The distribution of the

Northeast East Atlantic mackerel stock spans from Morocco to

Svalbard (Trenkel et al., 2014; Berge et al., 2015; Nøttestad et al.,

2016c), with mature individuals (>2–3 years old) migrating from

their overwintering and spawning areas, ranging from the Bay of

Biscay to northwest of the British Isles (Burns et al., 2016), to

their feeding areas in the Nordic Seas (i.e. The Norwegian,

Iceland, and Greenland Seas) in summer (Nøttestad et al., 2016c).

In the past, the Northeast Atlantic (NEA) mackerel stock
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(hereafter referred to as “mackerel”) utilized the Norwegian Sea as

its main summer feeding ground, but since mid-2000s its distribu-

tion range expanded towards Iceland and further west to

Greenland (Jansen et al., 2016; Nøttestad et al., 2016c), opening

new fishing possibilities in these areas (Astthorsson et al., 2012;

Jansen et al., 2016). Apart from the economic aspect, the pressure

exerted by mackerel on its prey (Bachiller et al., 2018), including

opportunistic feeding on early life history stages of Norwegian

spring-spawning (NSS) herring (Clupea harengus; Berge et al.,

2015; Skaret et al., 2015), raises important questions about species’

ecological relationships in the epipelagic realm of Nordic Seas.

Mackerel, herring and blue whiting (Micromesistius poutassou)

are the main pelagic fish stocks in the Nordic Seas, with a com-

bined spawning stock biomass (SSB) at �13 million metric

tonnes in 2017 (ICES, 2017). During summer in the Nordic Seas,

mackerel exhibits a thermal preference range from 7�C to 15�C
(Utne et al., 2012; Jansen et al., 2016, Olafsdottir et al., in press),

and is well within the thermal tolerance of the species [2–28.5�C,

as derived from laboratory experiments, Studholme et al., 1999].

It is distributed from the surface down to �40 m depth

(Nøttestad et al., 2016a), in contrast to herring and blue whiting

that are found in deeper waters (herring: 0–400 m, Misund et al.,

1997; Nøttestad et al., 2007; Huse et al., 2012; blue whiting: 200–

800 m, Johnsen and Godo, 2007) and in water masses between 2

and 8�C (Utne et al., 2012).

While blue whiting resides in deeper waters, the potential spatial

and temporal overlap, between mackerel and herring, combined

with overlapping feeding preferences allows ecological interactions

between them. All three species are planktonic feeders, with a

higher degree of diet overlap between mackerel and herring, that

consume mainly calanoid copepods, than with blue whiting that

feeds on larger prey (mainly euphausiids and amphipods;

Prokopchuk and Sentyabov, 2006; Langøy et al., 2012; Bachiller

et al., 2016; Óskarsson et al., 2016). Olafsdottir et al. (in press) re-

cently suggested that temperature and differences in prey availabil-

ity might act as a cue for mackerel to expand its distribution

outside its traditional feeding area in the Norwegian Sea (Skjoldal,

2004) to accumulate energy; a mechanism that has also been sug-

gested for herring’s feeding migrations (Broms et al., 2012).

Although prey fields and competition for prey are important

in regulating the spatiotemporal distribution of pelagic fish spe-

cies, their population size and abiotic conditions also play a ma-

jor role (Secor, 2015). Temperature is a well-known factor

influencing the changes in geographical distribution of fish stocks

(Drinkwater et al., 2014; Nye et al., 2014) and this is observed

globally, with a general agreement that warmer regimes lead to

poleward distributions changes (Cheung et al., 2009; Poloczanska

et al., 2013). Additionally, habitat expansion and contraction

phenomena in pelagic fish populations are known to be impacted

by stock size (Lluch-Belda et al., 1989; Barange et al., 2009),

among other parameters. Historically, spatial dynamics of mack-

erel in the North Sea have been influenced by the combined effect

of multiple drivers, such as reduced spawning in the area due to

decreasing temperatures, supplemented by food availability and

wind-induced turbulence (Jansen, 2014). Since 2007, mackerel

expanded its geographic distribution range, during the summer

feeding season in Nordic Seas, both northward and westward

compared with its traditional distribution in the Norwegian Sea

(Astthorsson et al., 2012; Nøttestad et al., 2016c). However,

whether the abundance of herring and/or blue whiting, in combi-

nation with factors such as temperature and prey availability,

affects the occurrence and/or the density of mackerel remains

largely unknown.

The International Ecosystem Summer Survey in the Nordic

Seas (IESSNS) provides spatiotemporal information regarding

mackerel, herring and blue whiting, as well as prey abundances

and abiotic conditions in the area in July and early August

(Nøttestad et al., 2016c; ICES, 2017). Because of the patchy aggre-

gations of pelagic fish species within suitable habitats (Fréon and

Misund, 1999), density data derived from either catch or acoustic

backscatter data are usually characterized by high proportions of

zero values and spatial dependence (Martin et al., 2005). This has

been shown for juvenile mackerel (Jansen et al., 2015).

To develop an appropriate statistical model to identify factors

affecting the distribution of adult mackerel, zero-inflation and

dependency structures in the data need to be considered. To ac-

complish this, we fitted Bayesian hierarchical spatiotemporal

models, using the Integrated Nested Laplace Approximation

(INLA) methodology (Rue et al., 2009). This methodology pro-

vides accurate approximations to the posterior marginal distribu-

tions of latent Gaussian Markov Random Field (GMRF) models

(Rue and Held, 2005) and is computationally fast, allowing the

implementation and testing of complex spatiotemporal covari-

ance structures. This is achieved by utilizing the stochastic partial

differential equations (SPDE) approach (Lindgren et al., 2011).

With the SPDE a continuously indexed Gaussian Field (GF) with

Matérn covariance function is approximated by a GMRF

(Lindgren et al., 2011) that represents an unobserved stochastic

process (random effect) that addresses the spatial autocorrelation

in the data. The INLA methodology therefore provides an effi-

cient way of testing large complex models, and has been success-

fully implemented on fisheries-related data (e.g. Mu~noz et al.,

2013; Grazia Pennino et al., 2014; Cosandey-Godin et al., 2015;

Paradinas et al., 2015; Quiroz et al., 2015; Boudreau et al., 2017;

Carson et al., 2017).

Elucidating the drivers that influence the distribution of fish is

one of the prerequisites for the successful implementation of the

ecosystem approach to fisheries (Garcia et al., 2003), as under-

standing the relationships between species and their biotic and abi-

otic environment can help us designate areas that are important

for the life cycle of a species (Planque et al., 2011). For highly mi-

gratory species, such as mackerel, under the warming global oceans

(e.g. Levitus et al., 2000; Lyman et al., 2010), the response to the

changing environmental conditions can have important implica-

tions for the species itself (e.g. reduced condition indices,

Olafsdottir et al., 2016), for other components of the ecosystem

(e.g. opportunistic predation on herring larvae, Skaret et al., 2015)

and for fisheries (e.g. disagreement on quotas between the involved

nations in a given area, Spijkers and Boonstra, 2017). In the present

study, we aim to identify which combination of predictors gives

the best explanation of the observed distribution patterns in mack-

erel density in its summer feeding area, while accounting for zero-

catch registrations. Using standardized catch rates from the

IESSNS as proxy for density, we thus test if abiotic variables (e.g.

bottom depth, temperature, salinity), proxies of food availability

and co-occurrence of herring, are important predictors for the oc-

currence and/or the density of mackerel, to elucidate possible un-

derlying mechanisms that drive the biomass distribution.

Material and methods
Mackerel survey catches (in kg), herring (acoustic) density mea-

sured as herring-assigned nautical area scattering coefficient
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(NASC) values, and total dry mesozooplankton biomass

(mg m�2, used as an index of mesozooplankton abundance) for

the period 2011–2017 in the IEESNS survey were retrieved from

the Planning Group on Northeast Atlantic Pelagic Ecosystem

Surveys (PGNAPES) database hosted at the Faroes Marine

Research Institute, Torshavn, Faroe Islands (accessed November

2017). The IESSNS is an internationally coordinated survey that

has taken place in 2007, 2010, 2011–2017, with four to five vessels

participating from research institutes in Norway, Iceland,

the Faroe Islands, and recently Greenland, covering an area of

�1.6 (in 2007) to 4 million square kilometres in the recent years

(Figure 1; ICES, 2017). Briefly, the survey is held from the begin-

ning of July until early August, with pelagic surface trawls (verti-

cal span from surface to �35 m depth) taken at fixed locations on

a grid of mostly east-to-west transects or diagonal transects across

the shelf edge, to quantify the abundance of mackerel. Inter-

transect distance varies from 40 nmi to 60 nmi while trawl sta-

tions positions are fixed at every 30–80 nmi along transects. Apart

from pelagic trawling, echosounding is also used to record

herring abundance along the transects from 15 m (depth at which

the echosounder lies) to 500 m depth. Mackerel is not detected

sufficiently by echosounders due to the weak acoustic backscatter

signal the absence of a swim bladder, as well as its distribution

very close to the surface, which causes parts of the schools to lie

in the “acoustic blind zone” (for details see Nøttestad et al.,

2016c). At each station, a CTD (deployment depth 500 m) and a

WP-2 plankton net (deployment depth 200 mm, 180–200 lm

mesh, 0.5 m2 opening, tow speed 0.5 m s�1) are deployed for reg-

istration of hydrological parameters and collection of mesozoo-

plankton. More details regarding the IESSNS sampling protocol

can be found in ICES (2015) and Nøttestad et al.(2016c).

NASC values assigned to herring, integrated over 1 nmi, were

used to calculate mean NASC for each pelagic trawl station, and

considered a proxy of herring abundance (for details see

Supplementary Figure S1). The allocation of NASC-values to her-

ring was based on the composition of the trawl catches, the char-

acteristics of the recordings, and frequency between integration

on 38 kHz and on other frequencies by a scientist experienced in

viewing echograms, onboard each of the participating vessels.

Mackerel catches were converted to catch rates (numbers of fish

per square nautical mile, N nmi�2) using the open-source soft-

ware StoX (StoX, 2015) to serve as a proxy for density of the spe-

cies at each pelagic trawl station (hereafter catch rates will be

referred to as densities). StoX is the ICES-approved software for

abundance index estimations of mackerel and herring (ICES,

2017). Swept area mackerel density estimates yk;i by length cate-

gory (k) were estimated for each pelagic trawl haul in location (i)

using the formula:

yk;i ¼
xk;i

ni

; (Equation 1)

where yk;i is the number of fish (N) of length k per nmi2 ob-

served in trawl haul location i; xk, i is the estimated frequency of

length k per nmi2 observed on trawl haul location i and ni is the

swept area calculated as:

ni ¼
tdf

1852
wdi; (Equation 2)

where tdi/1852 is the towed distance in nmi and wdi is the fishing

width of the trawl, as recorded by sensors placed at the trawl

doors, in nmi units (Mehl et al., 2016). Following, densities per

length category were summed to obtain total mackerel density (y)

in N nmi�2 per pelagic trawl station.

Vertical profiles of temperature and salinity for each pelagic

trawl station carried out during the IESSNS were obtained from

the participating nations for the same period for the calculation

of mean and integrated hydrological parameters. The parame-

ters considered were (a) temperature (T), salinity (S), and

sigma-theta density (D) for specific depths (10 m, 20 m, 50 m,

100m), (b) mean T, S, and D for specific depth layers (0–25 m,

0–50 m, 0–100 m, 25–50 m, and 50–100 m, the Potential Energy

Deficit (PED, the amount of energy required to vertically mix

the water column so that the density is even from top to

bottom, Planque et al., 2006), (c) the bottom depth (“depth,”

from survey vessels soundings and EMODnet, EMODnet

Bathymetry Consortium, 2016) and the distance from the shore

(http://www.naturalearthdata.com), and (d) the mackerel SSB

as derived from the latest stock assessment (ICES, 2017).

Satellite-derived mean monthly chlorophyll a data were down-

loaded from NASA (https://oceandata.sci.gsfc.nasa.gov/

MODIS-Aqua/, NASA Goddard Space Flight Center, Ocean

Ecology Laboratory, 2014) and values were extracted for the

geographical coordinates and month each pelagic trawl station

was carried out.

In 2007 and 2010, mesozooplankton was not collected by all

participating nations, and thus these years were excluded from

the analysis. Stations that were missing mesozooplankton and/or

CTD information for the 2011–2017 period were also excluded

from the analysis. In total, 1731 trawling stations were included

in the analysis, with the percentage of hauls with mackerel catches

ranging from �79 to 87% (Table 1). Maps of the study area with

locations of trawl stations and positive densities by year are

shown in Figure 1.

Data exploration
Initial data exploration was carried out in order to identify

(a) errors in the database that were subsequently removed or cor-

rected, (b) collinearity (using variance inflation factors) and pair-

wise scatterplots (Zuur et al., 2010), (c) any clear relationships

between mackerel density and each of the covariates both for

the pooled across years dataset and for each year separately

(Supplementary Figures S3–S10). The final dataset used for

modelling comprised mackerel density and occurrence as the re-

sponse variables and the following covariates: “depth,” mean tem-

perature (T50), and salinity (S50) at the upper 50 m of the water

column (considering them representative of the layer where

mackerel is mainly found, Nøttestad et al., 2016a), log-

transformed mean monthly chlorophyll a (“chl a”), mean (at the

station-level) log-transformed NASC for herring (HER_NASC),

log-transformed mesozooplankton density (“plankton”), longi-

tude and latitude [converted to UTM Zone 29 coordinates (units

in km)], and the SSB of mackerel (ICES, 2017). Additionally, the

interactions between each of longitude and latitude with SSB and

the interaction between T50 and plankton were included, to ex-

plore whether these interactions affected the occurrence and/or

density of mackerel. Finally, T50 entered the model as a quadratic

term, to allow for a temperature optimum. This was based on

Olafsdottir et al. (in press) and on the data exploration carried

out, revealing a dome-shaped pattern between density and T50

(Supplementary Figures S3–S10). Remaining covariates (e.g.

532 N. Nikolioudakis et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/76/2/530/5051297 by U
niversitetsbiblioteket i Bergen user on 29 January 2021

Deleted Text:  
Deleted Text: -
Deleted Text: -
Deleted Text: approximately 
Deleted Text: (Fig.
Deleted Text: <?A3B2 show [AuthorQuery id=
Deleted Text: ) (
Deleted Text: approximately 
Deleted Text:  
Deleted Text:  
Deleted Text:  nmi to 
Deleted Text:  
Deleted Text: `
Deleted Text: zone'
Deleted Text: (
Deleted Text: )).
Deleted Text: -
Deleted Text:  
Deleted Text:  
Deleted Text:  
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsy085#supplementary-data
Deleted Text:  
Deleted Text:  
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: [
Deleted Text:  (
Deleted Text: )],
Deleted Text: [`depth',
Deleted Text:  (
Deleted Text: )]
Deleted Text: (
Deleted Text: <?A3B2 show [AuthorQuery id=
http://www.naturalearthdata.com
Deleted Text: ,
Deleted Text: Spawning Stock Biomass
Deleted Text: [
https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/
https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/
Deleted Text: )]
Deleted Text: -
Deleted Text: Fig.
Deleted Text: Fig.
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsy085#supplementary-data
Deleted Text: `depth',
Deleted Text: )
Deleted Text: [
Deleted Text:  (
Deleted Text: )],
Deleted Text: (`
Deleted Text: a'),
Deleted Text: (`plankton'),
Deleted Text: )]
Deleted Text: Spawning Stock Biomass (
Deleted Text: )
Deleted Text: Fig.
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsy085#supplementary-data


distance from shore, hydrological parameters at different depths,

PED) where not considered in any of the models due to collinear-

ity with the covariates included. All abovementioned covariates

were standardized prior to inclusion in the models to facilitate

numerical computations and entered as fixed effects.

Standardization consisted of centring and scaling of the covari-

ates, i.e. subtraction of the mean and division by the standard

deviation.

K

K
K

K

Figure 1. Mackerel density in numbers of fish per square nautical mile (N nmi�2) as derived from the IESSNS catch data, for the period
2011–2017 (K: thousands of fish).
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Models tested
Prior to fitting the Bayesian hierarchical models, a generalized lin-

ear model (GLM) was used to find which distribution best fits the

positive mackerel density data. The following model was therefore

fitted to the data after excluding all zero-catches data

g lð Þ ¼ Zjb; (Equation 3)

where g is an appropriate link function, m is a distribution-specific

mean parameter, Zj is a vector comprising an intercept and all the

covariates considered for each year j, and b is the corresponding

coefficient vector (i.e. regression parameters). Two options were

tested, namely the gamma and the log-normal distributions, com-

monly used in fisheries catch data (Maunder and Punt, 2004). The

deviance information criterion (DIC, Spiegelhalter et al., 2002)

was used as a metric of goodness of fit, and it suggested that for all

years but 2011 the gamma distribution better described the ob-

served data distribution, so this was selected for further modelling

of mackerel positive density values (Supplementary Table S1).

However, the relatively high percentage of zero-catch mackerel

hauls during the IESSNS (�13–20%, Table 1), dictates for an inte-

grated approach for handling both occurrence and positive density

data, e.g. a hurdle (or delta) model. A hurdle model for continu-

ous data is a two-part model that specifies one process for zero

observations and another process for positive values, where cova-

riates can be added on both parts, i.e. on both occurrence and pos-

itive density data (Maunder and Punt, 2013).

We used a Bayesian hierarchical modelling framework for

mackerel densities, yi,j, at location i in year j. Following Quiroz

et al. (2015) we have the formulation:

p yi;j jvli;j ;/
� �

¼
pi;j if yi;j ¼ 0

1� pi;j

� �
gamma yi;j jvli;j ;/

� �
if yi;j > 0

8<
:

(Equation 4)

log it pi;j

� �
¼ gi;j

1ð Þ ¼ Z
ð1Þ
i;j b 1ð Þ þ fi;j

1ð Þ (Equation 5)

log li;j

� �
¼ gi;j

2ð Þ ¼ Z
ð2Þ
i;j b 2ð Þ þ fi;j

2ð Þ (Equation 6)

where p(yi, jjli;j ;/) is a zero-inflated gamma density, with pi,j be-

ing the probability of mackerel absence and li,j is the conditional

mean, given that yi;j > 0. We use the same parameterization of the

gamma distribution, with precision parameter /, as Quiroz et al.

(2015). log it pð Þ ¼ log p=ð1� pÞf is the link function connecting

the linear predictor gi,j
(1) to the probability of mackerel absence

(pi,j); log is the link function connecting the linear predictor gi,j
(2)

to the mean mi,j; b(1) and b(2) are coefficient vectors (or regression

parameters) of the Z
ð1Þ
i;j and Z

ð2Þ
i;j covariate vectors, respectively; and

fi;j
1ð Þ and fi;j

2ð Þ are autoregressive processes of the form,

fi;j ¼ qfi;j�1 þ ui;j (Equation 7)

where the coefficient q is the autocorrelation parameter (scalar

quantity), and the innovation term ui;j is a spatial GMRF with a

Matérn covariance function (Lindgren et al., 2011). The Matérn

covariance function has two hyperparameters: the marginal stan-

dard deviation r and j, which controls the wiggliness of the field.T
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The latter parameter determines the correlation range r, i.e. the

distance at which the correlation drops to 0.1, through the ap-

proximate formula r ¼
ffiffiffi
8
p

=j. For q¼ 0, Equation (7) results in

uncorrelated annual GMRFs, i.e. GMRFs are based on the same

hyperparameters, while the model takes into account the annual

aspect of the data).

The hurdle models tested were the following:

M1 where no spatiotemporal GMRF is included (essentially

reducing to a gamma hurdle GLM).

M2 where two independent purely spatial GMRFs (fi
1ð Þ and

fi
2ð Þ) are included (one for each linear predictor). In this

case, data are pooled (i.e. no annual structure is consid-

ered) to test whether a single GMRF captures the residual

variance in the data for all years.

M3 where a shared, purely spatial GMRF, instead of two inde-

pendent, is included, i.e. fi
1ð Þ ¼ fi

2ð Þ. In this case also, no an-

nual structure is considered, and all the data are pooled across

years [Equation (5)]. The model also involves an additional

hyperparameter called w, which is unknown scale parameter

that controls the magnitude of the spatial terms in gi
(1) in

comparison with the spatial term in gi
(2). The second linear

predictor results into gi
2ð Þ ¼ Z

ð2Þ
i b 2ð Þ þ wfi

1ð Þ for this model.

M4 where a spatial GMRF is included only in the linear pre-

dictor for positive density data, i.e. fi
1ð Þ ¼ 0 [Equation (6)].

M5 where a spatial GMRF is included in only the linear

predictor for occurrence data fi
2ð Þ ¼ 0:

M6 where two independent spatiotemporal GMRFs are in-

cluded (one for each linear predictor) in each year of observa-

tions, with no temporal correlation (q¼ 0), i.e. fi;j ¼ ui;j . The

resulting annual GMRFs are independent both between the

linear predictors (not shared GMRF) as well as between years.

M7 where a shared spatiotemporal GMRF is included in each

year of observations, with no temporal correlation (q¼ 0), i.e.

fi;j ¼ ui;j . The resulting annual GMRFs are independent only

between years, not between linear predictors (shared GMRF).

M8 where two independent AR1 spatiotemporal GMRFs

are included (one for each linear predictor).

M9 where a shared AR1 spatiotemporal GMRF is included

(the AR1 equivalent of M6).

The complete formulation of the models tested can be found in

Table 2. Furthermore, in all cases, models were also run separately,

i.e. not jointly as a hurdle model, but as separate models for (a) oc-

currence and (b) for positive mackerel densities, respectively, to assess

whether the fit was better, using DIC as the goodness-of-fit metric.

Inference and goodness of fit
INLA calculates marginal posterior distributions of all fixed effects,

random effects and hyperparameters included in a model. From the

available options in R-INLA for approximation of the posterior

marginal distributions, we used the “Laplace,” which is considered

the most accurate one (Martins et al., 2013). We also used the rec-

ommended “PC-priors” (Simpson et al., 2015) to construct a

Matérn SPDE model, characterized by spatial correlation range r

and standard deviation parameter r, with probability

P(r< 100 km)¼ 0.05 and P(r> 10)¼ 0.05. Finally, an integrate-to-

zero constraint was applied on the SPDE model (Lindgren and Rue,

2015). The mesh required to apply the SPDE approach is shown in

Figure 2. It defines the spatial domain of interest and is used to build

the GMRF. To achieve this, R-INLA functions were utilized to create

a constrained refined Delaunay triangulation, using as spatial do-

main of interest the polygon defined between land masses in the

wider area of the Nordic Seas (white area in Figure 2).

Table 2. Formulations of the models tested.

Model Linear predictors Hyperparameters GMRFs between linear predictors Temporal structure between GMRFs

M1 gi
1ð Þ ¼ Zð1Þi b 1ð Þ No No, pooled data

gi
2ð Þ ¼ Zð2Þi b 2ð Þ /

M2 gi
1ð Þ ¼ Zð1Þi b 1ð Þ þ f ð1Þi ss

1ð Þ; rs
1ð Þ 2 independent No, pooled data

gi
2ð Þ ¼ Zð2Þi b 2ð Þ þ f ð2Þi /; ss

2ð Þ; rs
2ð Þ

M3 gi
1ð Þ ¼ Zð1Þi b 1ð Þ þ f ð1Þi ss

1ð Þ; rs
1ð Þ 1 shared No, pooled data

gi
2ð Þ ¼ Zð2Þi b 2ð Þ þ wf ð1Þi /; w

M4 gi;j
1ð Þ ¼ Zð1Þi b 1ð Þ 1 (in positive densities only) No, pooled data

gi
2ð Þ ¼ Zð2Þi b 2ð Þ þ f ð2Þi /; ss

2ð Þ; rs
2ð Þ

M5 gi
1ð Þ ¼ Zð1Þi b 1ð Þ þ wf ð1Þi ss

1ð Þ; rs
1ð Þ 1 (in occurrence only) No, pooled data

gi;j
2ð Þ ¼ Zð2Þi b 2ð Þ /

M6 gi;j
1ð Þ ¼ Zð1Þi;j b 1ð Þ þ f ð1Þi;j ss

1ð Þ; rs
1ð Þ 2 independent No (q ¼ 0), independent annual data

gi;j
2ð Þ ¼ Zð2Þi;j b 2ð Þ þ f ð2Þi;j /; ss

2ð Þ; rs
2ð Þ

M7 gi;j
1ð Þ ¼ Zð1Þi;j b 1ð Þ þ f ð1Þi;j ss

1ð Þ; rs
1ð Þ 1 shared No (q ¼ 0), independent annual data

gi;j
2ð Þ ¼ Zð2Þi;j b 2ð Þ þ wf ð1Þi;j /; w

M8 gi;j
1ð Þ ¼ Zð1Þi;j b 1ð Þ þ f ð1Þi;j ss

1ð Þ; rs
1ð Þ 2 independent Yes [conditional autoregressive of

order 1, (AR1)], annual datagi;j
2ð Þ ¼ Zð2Þi;j b 2ð Þ þ f ð2Þi;j /; ss

2ð Þ; rs
2ð Þ

M9 gi;j
1ð Þ ¼ Zð1Þi;j b 1ð Þ þ f ð1Þi;j ss

1ð Þ; rs
1ð Þ 1 shared Yes [conditional autoregressive of

order 1, (AR1)], annual datagi;j
2ð Þ ¼ Zð2Þi;j b 2ð Þ þ wf ð1Þi;j /; w

Description of the linear predictor (gi;j) components and the hyperparameters included, as well as explanations on the number and temporal association of the
Gaussian Markov Random Fields (fi;j). Z: matrix of Intercept plus covariates used in the model. In all cases the same set of covariates for both occurrence and
positive densities values was used. Apart from the Intercept, the following covariates were used: depth, T50 (as a quadratic term), S50, chl a, HER_NASC, plank-
ton, longitude, latitude, SSB and the interactions longitude: SSB, latitude: SSB and T50: plankton.
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To facilitate the mesh construction, the 110 m resolution land

polygon obtained from a free online source (http://www.natural

earthdata.com/http//www.naturalearthdata.com/download/

110m/physical/ne_110m_land.zip) was smoothed, avoiding the

excessive details of the coastline and excluding the Baltic Sea (by

masking it as land). This polygon was used as a boundary in the

model. Finally, an outer extension was included to avoid the

“boundary effect” (increased variance at borders, Lindgren and

Rue, 2015). Different mesh designs (not shown here) were evalu-

ated to investigate their effects during model selection.

The goodness of fit of the tested models was assessed with the

DIC, the accuracy rate and the root mean squared estimation er-

ror (RMSEE). The accuracy rate was defined as the % sum of

observations estimated as present, when they are actually present,

and of observations estimated as absent, when they are actually

absent. Predicted presence or absence were defined as probabili-

ties > or <0.5. RMSEE was calculated as the square root of the

sum of squared differences between positive ðy) and fitted (ŷ )

mackerel density values divided by the number of observations

(nobs).

RMSEE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

nobs

X
i;j

yi;j � ŷ i;j

� �2
s

(Equation 8)

Generalized additive models (GAMs, Hastie and Tibshirani,

1990) is a common way of analysing ecological data, where a

smoothing function on the geographical coordinates can be in-

cluded. We applied a binomial and a gamma GAM to the occur-

rence and the positive density observations, respectively, to

explore whether they fitted the data better than the Bayesian

models. In both GAMs the same set of covariates as in M1 were

included, plus a thin plate regression spline smoother on the geo-

graphic coordinates, also considering the annual structure of the

data, by including the SSB (collinear to YEAR) in the “by” argu-

ment of the “gam” function. In this way, the data were treated in

a way similar to M6, i.e. as annual observations without any tem-

poral autocorrelation.

All analyses were performed using R (R Core Team, 2018) and

the packages “R-INLA” (Rue et al. 2009) and “mgcv” (Wood,

2017).

Results
Mackerel positive density, as inferred from the IESSNS catches

during the study period, ranged from 11 to 654 702 N nmi�2

(Table 1), with median values, however, ranging from 5087 to

23 074 N nmi�2 (Supplementary Figure S2). The catches were

taken in areas with bottom depth ranging from �60 m to

>3500 m. The lowest T50 was -0.5�C and the highest 12.7�C with

relatively few stations with T50< 5.0�C. S50 was 35.0 6 0.5 with

only few stations having S50< 34.0. Plankton density ranged

from 0.01 to 102.40 g m�2 and chlorophyll a mean concentration

from 0.16 to 7.74 mg m�3 throughout the study period. The cal-

culated HER_NASC per pelagic trawl station was usually low, al-

though high values were occasionally calculated reaching a

maximum of 3489 (in 2015, Table 1, Supplementary Figure S2).

Finally, the SSB, as derived from the latest stock assessment for

the species, ranged from 3.5 to 4.4 million metric tonnes

(Table 1, ICES, 2017).

The best among the tested models was formulation M6, for

which occurrence and positive density data where considered as

two separate processes (M6S), and the spatial distribution was

considered uncorrelated between years (Table 3). The hurdle ver-

sion of this model (M6H), had poorer performance

(dDIC¼ 12.298) but was better than other hurdle configurations

(i.e. M1H-M9H). M6S also had borderline higher accuracy rate

than M6H, but somewhat lower RMSEE (Table 4). For the pur-

poses of the present study we focus on the goodness-of-fit of the

selected model rather than its predictive power, hence our results

are based on the models of M6S formulation. From our results, it

was also obvious that models including spatial GMRF(s) (M2–

M9) always outperformed the model without one (M1), as well as

Figure 2. Constrained refined Delaunay triangulation of the study
region, i.e. the mesh. Only the oceanic area (white) is considered as
the domain of interest. An outer extension (grey) is added to the
mesh to avoid the “boundary effect” (increased variance near the
land borders). This mesh contains 1466 nodes (vertices).

Table 3. dDIC values for the models tested.

Model
dDIC

Occurrence Positive density Hurdle

M1S 528.262 296.236
M1H 528.263 296.234 785.625
M2S 235.732 132.861
M2H 235.228 137.101 333.457
M3H 235.1691 98.7641 295.06
M4S 528.262 132.861
M4H 528.264 134.009 623.401
M5S 235.732 296.234
M5H 225.08 296.121 482.329
M6S 0 0
M6H 22.572 29.228 12.928
M7H 65.756 �26.884 0
M8S 29.465 14.644
M8H 60.307 20.514 41.948
M9H 127.969 16.962 106.059

The full specification of the parameters of each model can be found in
Table 2. dDIC values are provided for both separate (S) and hurdle (H) mod-
els, for the occurrence data (Bernoulli likelihood) and the positive density val-
ues (Gamma likelihood) for comparison. Hurdle: combined dDIC of the
hurdle model. dDIC of the models considered best shown in bold. dDICs for
M3S, M7S and M9S are not shown as they are the same as M2S, M6S, and
M8S, respectively.
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that to obtain a better fit the annual character of observations

needs to be taken into account (higher dDIC of M2 compared

with M6–M9; Table 3). Interestingly, the positive density part of

the M7H model produced a lower DIC than the “M6S-Positive

density” (dDIC¼ -29.775), however the overall DIC of this hur-

dle model formulation was higher than the M6H, largely due to

the worse fit of the occurrence part of the model (dDIC¼ 95.857

compared with “M6S-Occurrence,” Table 3). Finally, the tested

GAMs always had poorer fit compared with the Bayesian models

fitted on non-pooled data, i.e. M6–M9 model formulations

(Table 4).

Fitted vs. observed positive densities of mackerel are shown in

Figure 3. The positive density model (M6S—Positive density)

performed well for high mackerel densities (density

�>10 000 N nmi�2), but overestimated densities below this level.

The mean and standard deviation of the annual spatial GMRFs

for the occurrence and the positive density models are shown in

Figure 4. The best models included a different realization of the

GMRF for every year of observations, resulting to different spatial

effects from year to year (Figure 4). The spatial residuals for the

positive density data model can be found in Supplementary

Figure S11.

The occurrence of mackerel was better explained when data

where considered as uncorrelated annual observations and a spatial

GMRF was included in the model, i.e. M6S formulation (Figure 4).

The intensity of the GMRF of the “M6S—Occurrence” was able to

adjust the model fit to accurately reflect the observed presence or

absence of mackerel in the area (Figure 4), resulting also in a very

high accuracy rate (Table 4). The uncertainty around the mean of

this GMRF was high, mainly in marginal areas, where the observa-

tions throughout the years were scarce. For example, observations

in the northern part of North Sea were only recorded in 2013. The

model accordingly provides results for the GMRF in this area for

all years, but accompanied with high uncertainty for the years

without actual observations in that area (Figure 4). Finally, the oc-

currence model fitted values with their associated uncertainty in

comparison with the observed presence/absence of the species are

shown in Figure 5. The model accurately captured the observed

presence/absence registrations of mackerel, with generally low un-

certainty, that was more pronounced in contrasting areas, i.e. areas

where zero-catches were consistently observed (e.g. south of

Iceland in 2017 or at the periphery of the surveyed area; Figure 5).

The intensity of the GMRF of the “M6S—Positive density”

contributed substantially in explaining the observed catch rate

patterns, capturing the areas where high and low catch rates of

mackerel were recorded (Figure 4). The uncertainty around the

mean of the positive density GMRF was also relatively high,

highlighting the need for the GMRF to adjust the linear predictor

so as to provide a better fit to the data. The fitted values along

with their associated uncertainty estimates for the positive densi-

ties model are shown in Figure 6. Overall the model captured

well the registered catch rates for values �>10 000 N nmi�2 but

Table 4. Accuracy rate (occurrence data) of the models tested (see Table 2 for model description).

Year

Model 2011 2012 2013 2014 2015 2016 2017 Total

Accuracy rate (%) for occurrence data M1S 85.56 86.06 89.68 86.79 89.18 85.92 86.13 87.12
M2S 91.11 88.46 90.39 89.64 90.48 94.95 90.15 90.82
M2H 91.11 88.46 90.39 89.29 90.48 94.95 90.15 90.70
M6S 93.89 97.60 96.09 95.36 95.24 97.47 97.08 96.19
M6H 93.89 98.08 96.09 95.36 95.24 97.47 97.08 96.13
M8S 95.00 96.64 93.24 95.00 96.54 97.47 96.72 95.78
M8H 95.00 96.15 93.24 95.00 96.10 97.47 96.72 95.73
GAM 93.33 99.04 92.17 94.29 93.94 96.03 95.62 94.86

RMSEE for positive density data M1S 48567.97 53220.11 70479.34 40951.97 56694.08 59989.52 73241.12 59250.84
M2S 46536.25 51804.13 65949.81 37529.82 50510.44 54994.15 66837.73 54824.89
M2H 46525.68 51797.05 65944.36 37546.39 50537.46 54983.13 66859.03 54829.63
M6S 41308.56 48630.15 59479.91 33231.48 46494.18 48913.13 56522.32 48844.45
M6H 41230.85 48580.65 59342.09 33358.42 46302.94 48574.90 56072.20 48659.26
M8S 42316.00 48725.72 61484.14 35315.95 45754.92 49060.43 57902.65 49771.29
M8H 42166.07 48576.71 61150.39 35257.15 45563.80 48841.22 57451.72 49526.80
GAM 45609.98 52379.5 65475.24 35748.68 51086.32 55301.79 64247.9 54151.50

RMSSE (positive density data): Root mean square estimation error. Models with higher accuracy rate and lower RMSEE are shown in bold.

2011 2012 2013 2014 2015 2016 2017

2 4 6 2 4 6 2 4 6 2 4 6 2 4 6 2 4 6 2 4 6
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Figure 3. Observed vs. predicted positive density of mackerel (in log10 scale) of the final model (M6S).
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overestimated those below this point. The associated uncertainty

for the fitted positive densities of mackerel was generally high,

and especially for higher catch rates (e.g. >100 000 N nmi�2;

Figure 6).

For the occurrence model, the set of covariates contributing

positively and significantly [i.e. their 95% credible intervals (CI)

did not include zero], comprised longitude, T50, HER_NASC,

S50 and plankton (Table 5). Given that the covariates enter the

model standardized, the magnitude of the estimated coefficients

is direct measures of the effect on the prediction. Temperature re-

sponse for the occurrence model, when the rest of the model

covariates were kept fixed at 0 (as they entered the model stan-

dardized), followed a logistic curve that initiated at �2.5�C and

reached a plateau at 10�C, after which the probability of occur-

rence slightly decreased (Figure 7).

For the positive density model, the positively contributing

covariates, in order of direct effect on the prediction, were T50,

longitude, depth, chl a, HER_NASC and plankton. Latitude and

its interaction with SSB were the covariates contributing

negatively to the linear predictor, suggesting that for increasing

SSB the density of fish was lower with increasing latitude, i.e. fish

densities in northern marginal areas remain low even when SSB

increases. Temperature response for the positive density model,

when the rest of the model covariates were kept fixed at 0 (as they

entered the model standardized), also followed an increasing pat-

tern, initiating at �2.5�C, reaching a maximum almost at 10.0�C
and afterwards decreasing rapidly up to the point where positive

densities were recorded (12.3�C, Figure 7).

The range at which the correlation of the spatial GMRF

dropped to �0.1 for the occurrence data was estimated at

roccurrence¼ 1265 6 314 km, whereas for the positive density data

at rpositive density¼ 530 6 112 km (Table 5). The range for the

GMRF of the positive mackerel densities is �500 km, which

implies that mackerel density (when mackerel is present) depends

on its neighbour observations up to this distance.

The inclusion of spatial GMRFs in the occurrence and positive

density models (with or without temporal correlation) led to in-

creased CI of the fixed effects, as can be seen by the comparison

Figure 4. Posterior means and standard deviations (SD) of the spatial random effect (GMRF) for the occurrence model and the positive
density model. Values of the fields are shown in log scale and geographical coordinates in km (UTM zone 29 projection).
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Figure 5. Observed mackerel occurrence (left panel) vs. predicted (mean posterior fitted) values for the occurrence model (right panel).
Closed and open circles in the left panel represent mackerel presence and absence, respectively. The estimated probability of presence is
represented by the different shades of grey (darker shades: higher probability, lighter shades: lower probability), whereas circle size indicates
the uncertainty for each fitted value (smaller circles indicating lower uncertainty).
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of the fixed effects’ means and 95% CI between models M1S,

M2S, M6S, and M8S (Supplementary Figures S12 and S13). It can

also be seen that absence of the spatial covariance structures from

a model, can lead to erroneous inclusion or omission of covari-

ates in the models.

Discussion
Fish distribution is influenced by a number of biotic and abiotic

factors, the latter including intra- and interspecific mechanisms

(e.g. Planque et al., 2011). In our study, mackerel occurrence in

its summer feeding areas in the Nordic Seas was found to be cor-

related with temperature (T50). Additionally, salinity (S50),

plankton, the proxy of herring abundance (HER_NASC), and the

longitude were also significantly correlated with the occurrence of

the species. These covariates, excluding salinity, were also corre-

lated with the density of mackerel, but were complemented by

depth, chl a, the latitude and the interaction between the SSB and

latitude.

For both the occurrence and positive density models, the sig-

nificant covariates were largely consistent irrespectively of the

0.75-1.00
0.50-0.75

0.50-0.25
0.00-0.25

0.01
0.05

0.15
0.30
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Figure 5. Continued.
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Figure 6. Observed mackerel densities (left panel) vs. predicted (mean posterior fitted) values for the positive density model (right panel).
Circle sizes in the right panel represent the estimated densities, whereas the colour scale indicates the uncertainty for each fitted value
(K: thousands of fish).
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addition of a temporal autocorrelation structure or not, i.e. M6

vs. M8 model configurations. In particular, for the occurrence

model, S50 was not found to be significant for the model M8

compared with M6, whereas the interaction of T50 with plankton

was significant, but with a very low overall contribution.

Similarly, for the positive densities model S50 entered the M8

configuration significantly, whereas HER_NASC and the geo-

graphic coordinates did not. Again, the changes observed resulted

in very low contribution of S50 that entered the model (low esti-

mated coefficient). Regarding the covariates in M8 that did not

enter the models, HER_NASC had low contribution in M6, so it’s

inclusion in M8 did not result into big changes in the overall per-

formance of this model and the non-significance of the geo-

graphic coordinates was ameliorated by the GMRF that had its

intensity adjusted accordingly. Naturally, in models that the data

were pooled across years, larger differences were observed regard-

ing the contributing covariates.

Temperature (T50) had a strong effect in both the occurrence

and the density of mackerel. On the basis of the occurrence model

results given a quadratic response of T50, a 50% probability of

Figure 6. Continued.
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presence for mackerel is predicted at �5.0�C, when all other

main effects are fixed to their mean. In the same way, our results

from the density model predict a peak for optimal temperature

for the species at almost 10.0�C. The highest T50 where mackerel

was captured (Bachiller et al., 2018) was at 12.3�C, with

T50> 12.3�C recorded only at four stations (zero mackerel catch

hauls). This lack of sufficient number of observations for

T50> 12.3�C, does not allow the models to predict values beyond

that point. Hence, the estimated upper thermal limit where mack-

erel density is non-zero in the study area and period is at 12.3�C,

with 97% of positive observations resting between 5.0�C and

12.0�C, whereas 73% resting between 8 and 12.0�C (Figure 7).

However, the shaping of the curve if forward projection was to be

done, would result to an upper thermal limit of approximately at

15–16�C. For the occurrence model, although the same inability

of prediction beyond the highest recorded temperature (12.7�C)

holds, there seems to be an initiation of dropping for the proba-

bility of occurrence at very high temperatures (Figure 7).

The known thermal preference, i.e. increased density, of adult

mackerel in this area, ranges from 9 to 13�C (Utne et al., 2012;

Jansen et al., 2016; Olafsdottir et al., in press). It is, however, clear

that records (trawl hauls) at higher temperatures are needed to

obtain a full picture of the thermal preference range of mackerel

in the Nordic Seas, as it is obvious from our results and from

other studies that the tolerable thermal range for the species in

the area is wider (7–15�C, Olafsdottir et al., in press, 50% proba-

bility of occurrence at >5�C, this study). The small differences in

thermal preference range observed in the present study compared

with that of Olafsdottir et al. (in press) can be attributed to the

different temperature used as input to the models. Olafsdottir

et al. (in press) used temperature at 10 m depth to represent the

ambient temperature in the surface mixed layer, considering the

latter as the layer occupied by mackerel. In the present study, a

wider layer was considered, based on the species’ vertical distribu-

tion, as suggested by Nøttestad et al. (2016a) (surface down to

�40 m depth).

Temperature is also known to influence mackerel large scale

distribution in areas outside the Nordic Seas as well (Radlinski

et al., 2013; Giannoulaki et al., 2017). Unfortunately, the results

from these studies are not directly comparable to ours, as the

authors use satellite-derived Sea Surface Temperature measure-

ments, even though the vertical distribution of mackerel in these

studies is not near the surface [Radlinski et al., 2013: bottom

trawl data, Giannoulaki et al., 2017: acoustic data and pelagic

hauls for mackerel juveniles, with schools distributed in depts.

>50 m (pers. com.)].

Salinity (S50) was only found to be important in the occur-

rence model, having a positive linear effect to the presence of the

species. This is an expected result to some extent as the bulk of

mackerel is mainly found in the wider area of the Norwegian Sea,

Table 5. Parameter estimates [mean, standard deviation (r) and 95% credible interval (CI)] in log-domain for the fixed effects, the precision
parameter (/) of the gamma distribution, the range (r) and r of each GMRF, included in the final models (M6S); Covariates entering the
model, i.e. zero is not included in the 95% credible intervals, are shown in bold.

M6S—Occurrence M6S—Positive density

Fixed effects Mean r 95% CI Mean r 95% CI

Intercept 4.018 0.937 (2.220–5.934) 9.957 0.141 (9.658–10.214)
DEPTH 0.293 0.292 (�0.277 to 0.874) 0.291 0.076 (0.143–0.441)
T502 �0.642 0.186 (�1.042 to -0.306) �0.364 0.064 (�0.488 to �0.237)
T50 1.053 0.383 (0.321–1.826) 0.413 0.110 (0.198–0.628)
S50 0.603 0.260 (0.095–1.119) 0.101 0.063 (�0.023 to 0.224)
plankton 0.447 0.143 (0.170–0.732) 0.116 0.052 (0.014–0.218)
chl a 0.310 0.175 (�0.024 to 0.664) 0.245 0.058 (0.131–0.360)
HER_NASC 0.828 0.204 (0.442–1.245) 0.129 0.062 (0.008–0.250)
longitude 1.549 0.784 (0.092–3.218) 0.304 0.125 (0.056–0.550)
latitude �0.261 0.750 (�1.679 to 1.128) �0.334 0.131 (�0.597 to �0.080)
SSB �0.278 0.745 (�1.850 to 1.171) �0.113 0.113 (�0.335 to 0.112)
longitude: SSB �0.362 0.717 (�1.911 to 1.065) �0.012 0.113 (�0.236 to 0.211)
latitude: SSB 0.878 0.734 (�0.437 to 2.418) �0.251 0.122 (�0.496 to �0.013)
T50: plankton 0.196 0.135 (�0.067 to 0.467) �0.016 0.061 (�0.135 to 0.103)
Hyper-parameters
r 1265 314 (795–2016) 525 112 (345–781)
r 5.727 1.106 (3.966–8.287) 1.007 0.106 (0.814–1.231)
/ 0.638 0.026 (0.588–0.690)
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Figure 7. Model predictions for the probability of occurrence (black
dotted line) and the positive density of mackerel (grey solid line),
based on the assumption of a quadratic relationship with the mean
temperature of the top 50 m.
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where the warm Atlantic water that flows into it, is of high salin-

ity compared with colder polar waters (Skjoldal, 2004) with low

occurrence of mackerel. As stated earlier, S50 range was relatively

narrow (35.0 6 0.5) with only few stations having S50< 34.0,

thus revealing mackerel’s avoidance of areas of low salinity.

Prey fields are also an important factor determining the distri-

bution of pelagic fish (Secor, 2015). Despite the high diet overlap

with herring, and the lower overall with blue whiting (Bachiller

et al., 2016), prey availability is not a factor hindering the co-

existence of these three stocks. Recently, a bioenergetics model-

ling study (Bachiller et al., 2018) showed that at least in the

Norwegian Sea, which is considered the traditional core distribu-

tion area of mackerel in the summer (Utne et al., 2012; Nøttestad

et al., 2016c), the planktonic prey biomass is able to sustain the

observed biomass of all three main pelagic species.

Our modelling results showed that, within the range of exam-

ined plankton biomass values, in locations where plankton values

were higher, both occurrence probability and density of the spe-

cies were increased. There are some fundamental issues to con-

sider, however, when using sampled plankton biomass as an

index of food availability. One of these issues is that the sampled

quantity does not necessarily reflect the biomass in the area prior

to the fish arrival (when considering pelagic migratory fish) and

thus, it cannot be stated that increased plankton biomass acts as a

cue that attracts fish. Because of feedback mechanisms between

predator and prey, the sampled plankton might well be what is

available in the water after fish have already preyed upon it. For

this reason, in our models we complemented the plankton dry

biomass with mean chl a concentrations, over the month that

sampling took place in order to obtain a prolonged view of the

food availability conditions, considering chl a as a good proxy of

mesozooplankton biomass. This revealed that chl a was impor-

tant for the density part of the model, suggesting that it is only

density that is positively influenced by elevated chl a concentra-

tions and not the occurrence of the species.

Another problem related to the information provided by the

mesozooplankton samples, is that of catchability. Given that

mackerel preys mainly upon large calanoids and euphausiids

(Bachiller et al., 2016), the use of the WP-2 sampler can underes-

timate the abundance of these larger-sized mesozooplankton, as

they are avoiding the net, especially during vertical tows (Gjosater

et al., 2000). Other samplers (e.g. Bongo-net, MOCKNESS) with

oblique tows could alleviate that problem (Gjosater et al., 2000),

but again such samplers are not always easy to deploy from

rented commercial vessels that lack the appropriate necessary

equipment (and are routinely used in research surveys, also the

current one). A solution to this problem could be the correlation

of model-derived planktonic fields that are based on realistic esti-

mates of production rates, with observed fish distributions, as in

this way the predation effect would not be masking the observed

patterns. Alternatively, given the advancements in the scientific

echosounders, information on planktonic biomass in high spatial

resolution can be obtained and subsequently used in spatial mod-

els. In this way, prey fields will be more accurately described and

correlated with fish distribution. Unfortunately, the snapshot

view obtained by sampling plankton cannot reveal whether

planktonic biomass is actually a driver of the distribution of its

pelagic fish predator, but only act as a proxy.

Another interesting result was the lack of significant effect of

the interaction of temperature and planktonic biomass on either

the occurrence of mackerel or its density. In fish, the relationship

between food intake and temperature increases until it reaches a

peak, after which decreases more or less rapidly, when supra-

optimal temperatures are met (Jobling, 1998). The rapid decrease

in food intake in higher temperatures could be related to limita-

tions in oxygen delivery to tissues, due to lower oxygen concen-

tration (and thus availability) in the water, under conditions of

very high oxygen demand (Jobling, 1997); conditions that are

usually met during searching, capturing and handling of prey.

Mackerel’s feeding activity is more pronounced in colder waters,

increasing both its feeding incidence and stomach fullness

(Bachiller et al., 2016), but in our case we didn’t find any results

supporting that temperature in the upper water column and

plankton interact in such a way that influences the species distri-

bution pattern. Again, the uncertainty involved in plankton bio-

mass sampling could also mask this interaction between

temperature and prey biomass. It could well be that planktonic

biomass is enough to cover mackerel’s dietary needs in the study

area, so such an interaction would not be directly evident.

Information on the diet of the species (prey composition and/or

stomach content weight) can facilitate addressing such questions,

as it can disentangle the effect of each covariate (temperature and

plankton). Unfortunately, such data were not available for the

whole area and time period of our study, thus could not be in-

cluded in our models.

Given the known high degree of spatial overlap between her-

ring and mackerel in the Norwegian Sea during the summer feed-

ing season (Utne et al., 2012), which can be expected to increase

the potential for resource competition, we chose to include a

proxy of herring abundance in our models in order to explore its

impact on mackerel’s distribution. However, differences in their

vertical positioning, as herring is being generally found in greater

depths than mackerel (Utne et al., 2012), allows the exploitation

of additional prey resources by herring (Bachiller et al., 2016).

Additionally, earlier modelling work suggests that not only mack-

erel and herring, but also blue whiting, can all coexist regardless

of their high abundance, zooplankton consumption rates and

overlapping diet in the Norwegian Sea (Bachiller et al., 2018).

Our statistical modelling results indicate that there is a positive

effect of the proxy of herring abundance on both the occurrence

(more pronounced) and the density (less pronounced) of mack-

erel, i.e. the two species co-occur spatially. The signal of this effect

might actually be even stronger than our model states, as there

are occasions where herring is distributed in the “acoustic blind

zone” of the echosounders of the vessels (i.e. in the upper 10 m or

so, above the depth of the hull-mounted transduces), resulting

into zero acoustic registrations in the area, although they can be

present in large quantities in the pelagic trawl catches(Nøttestad

et al., 2016b).

Using information on mackerel’s stock size from the latest as-

sessment (ICES, 2017) we found no direct effect of SSB, suggest-

ing that the fluctuations of the stock size in the last seven years

were not directly correlated with the species’ occurrence or den-

sity in the area. This result is contradictory to the findings of

Olafsdottir et al. (in press) that identified stock size as one of the

factors that explained the species expansion in the area, outside

its core feeding area (the Norwegian Sea) in recent years, however

not unexpected given the different time series used in the two

studies. In the present study, years from 2011 to 2017 were used,

a period when mackerel had already expanded its distribution in

the Nordic Seas compared with the past (for details see Utne

et al., 2012), whereas Olafsdottir et al. (in press) utilized a
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different and slightly more extended period[eight years (2007,

2010–2016)]. Especially in 2007, mackerel was still mainly located

in the Norwegian Sea, whereas from 2010 onwards increased

catch rates during IESSNS were obtained outside of this core area

(Nøttestad et al., 2016c). Indeed, the different time series reflect a

strong contrast in mackerel’s SSB variability between these two

different data series, with the prolonged one having 85% variabil-

ity, whereas the series used in the present study only 19% (ICES,

2017), thus a possible explanation for the lack of effect of SSB on

mackerel’s occurrence and/or density.

Additionally, our results showed that the inclusion of a spatial

random effect (GMRF) increased the credible intervals of the cova-

riates included compared with the models where a GMRF was not

included (Supplementary Figures S12 and S13). This difference in

the modelling approach might have caused SSB to be identified as

a significant factor in the study of Olafsdottir et al. (in press), al-

though it might actually not be one, as the absence of spatial co-

variance structures from a modelling approach, can lead to

erroneous inclusion (or omission) of covariates. On the other

hand, the significant negative interaction of SSB and latitude found

in our study with the density of the species suggests that SSB might

have a more complex role concerning the distribution of the spe-

cies than simply a linear effect. During years of increased SSB, the

expectation would be that mackerel would increase its density in

marginal areas (including those in the north of the study area) and

the opposite during years of low SSB, if the conditions (e.g. food

availability) were not adequate for optimal growth. We clearly did

not observe anything like this in our results. Latitude as a main ef-

fect had a negative response with density, whereas longitude had a

positive response for both occurrence and density. During 2011,

the survey coverage in the northern part of the Norwegian Sea as

only one vessel participated from the Norwegian side (Nøttestad

et al., 2011). Moreover, from 2015 to 2017 both the northward and

westward area occupied by the stock during IESSNS was found re-

duced compared with its peak in 2014 (Nøttestad et al., 2016c;

ICES, 2017; Olafsdottir et al., in press).

The above suggest that the core of the occurrence and density

of mackerel in the area remained in the eastern part of the study

area, i.e. mainly in the Norwegian Sea. Also, the densities ob-

served in the northern part of the study area were smaller than in

the southern part; something that could however also be related

to the stock size (SSB) of mackerel (see further up for discussion

regarding the interaction between latitude and SSB). These loca-

tions, i.e. roughly between 62�–72� N and 15� W–10� E, designate

mainly deep areas with higher densities of mackerel, something

also captured by our density model (significant credible intervals

for the depth) and also observed in fishery catch data from which

it was found that catches have moved further offshore, to deeper-

water areas (Hughes et al., 2015), although the latter study

extends only up to 2013. However, the obvious (from the regis-

tered observations during sampling) westward and northward ex-

pansion of the species, can only be captured efficiently by the

models when the GMRFs are included. There is a large number of

variables that can influence the distribution and density of a spe-

cies (Planque et al., 2011), especially a highly migratory one such

as mackerel. In most of the cases, the routinely recorded variables

during surveys (e.g. hydrography, planktonic prey concentra-

tions, etc.) have proved to be poor predictors of the observed var-

iability in density distributions. Hence, we need to re-evaluate

what the driving factors on a species distribution could be and

adjust our sampling schemes accordingly.

Our analysis showed that the occurrence and the density of

mackerel in the study area and period were better described if

two separate models were fitted to the data instead of a joint one

(i.e. hurdle model). This is also supported by the different covari-

ates that were identified as important during model fitting pro-

cess. To our knowledge, comparing the results of a joint (hurdle)

model and separate models for occurrence and density (continu-

ous response) in fisheries utilizing the R-INLA framework, has

only been done for Peruvian anchovy acoustics data where a joint

model was found to better fit the data (Quiroz et al., 2015). In

other fisheries-related studies, occurrence only (i.e. binary

response, Mu~noz et al., 2013; Pennino et al., 2013; Roos et al.,

2015), abundance/biomass data only (Grazia Pennino et al., 2014;

Cosandey-Godin et al., 2015; Paradinas et al., 2016; Boudreau

et al., 2017; Carson et al., 2017; Fonseca et al., 2017; Rufener

et al., 2017) or both occurrence and abundance but treated as

separate processes (Paradinas et al., 2015) have been used, but a

hurdle model was not tested.

Our results also indicated that a shared GMRF between each

set of data, i.e. occurrence and positive density, was not enough

to describe the latent process and two separate GMRFs performed

better in fitting the data. Additionally, the magnitude of the pos-

terior means of the GMRFs, suggested that the latent processes

operating on the occurrence and the density of mackerel in the

area, are important in describing the observed patterns as their

inclusion improved significantly the models tested. Given the

presence of some extreme values in the dataset (e.g.

densities> 400 000 N nmi�2), combined with their sporadic spa-

tial distribution, it would be unrealistic to expect the models to

be able to capture these values with high accuracy, even with the

inclusion of a GMRF. The adjustments on the response variable

by the inclusion of the GMRF in the model, are relative to the

neighbouring observations and if such extreme values were to be

captured by the model, it would inevitably result to overfitting.

The same sporadic distribution of the lower end density values, is

probably accountable for the similar inability of the GMRF to ad-

just the model’s predictions without ending up in overfitting.

The observed annual differences in both occurrence and den-

sity were better explained if the included GMRF was considered

independent between years, i.e. when the temporal autocorrela-

tion process (AR1) was zero. This is an indication that both the

occurrence and the biomass distribution of the species varies

from year to year without any “population memory” effects from

previous years (ICES, 2007; Planque et al., 2011). Given, however,

the good performance of also the models that included a tempo-

ral autocorrelation process in the GMRF (e.g. M8S), the possibil-

ity for population memory effects in mackerel cannot be

excluded.

Persistency in the spatial distribution of fish populations in

feeding or spawning areas is not uncommon (e.g. Paradinas et al.,

2015; Boudreau et al., 2017; Carson et al., 2017) and our results

suggest that mackerel could also be exhibiting such behaviour, es-

pecially when it comes to the occurrence of the species, when vis-

iting its summer feeding areas in the Nordic Seas. When

considering the AR1 models (e.g. M8S), the autocorrelation pa-

rameter q was found to be 0.76 and 0.82 for the occurrence and

the density data, respectively. This could suggest persistency in

the locations where mackerel is present or absent, as well as per-

sistency of the locations where low and high densities are identi-

fied. The small interannual variability in the distribution of the

species density observed during the study period, suggests that
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the underlying mechanisms that influence this distribution,

remained relatively constant, something also obvious from the in-

dividual relationships between the covariates used (mainly those

entering the models in a significant way) and the density of mack-

erel (Supplementary Figures S4–S10). However, the short time-

series used in the present study (7 years), might be one reason

why the AR1 models performed worse than the models that con-

sider no temporal autocorrelation in the underlying stochastic

process, so this is something that would need further investiga-

tion when more data are accumulated in the future.

The range and the variance of the spatial field are two useful

characteristics that allow for interpretation of how the latent pro-

cess operates in space. The range r (also referred to as connectiv-

ity) for the occurrence data was estimated to be at 1265 km. This

is interpreted as the covariance decaying more slowly in space for

the occurrence than the covariance of the density GMRF whose

estimated mean was at 530 km, i.e. the pattern is similar over a

larger distance for occurrence than it is for density. Moreover,

with a spatial variance (r of the GMRF) of 5.7 compared with

1.02 of the density GMRF, the amplitude of the spatial pattern

changes more drastically for the occurrence than for the density

GMRF. The estimated ranges are large for both the occurrence

and the density of the species but it is crucial to recall the exten-

sive area the species occupies when present at its summer feeding

areas.

Conclusively, our models revealed that the geographical distri-

bution of mackerel in its summer feeding grounds in the Nordic

Seas was better predicted when additional variables to the tradi-

tionally measured ones (e.g. temperature and prey biomass) were

used. Inclusion of proxies of competition with other co-existing

species, i.e. herring, and long-term food availability indices (chl

a), improved the models substantially, signifying that interspecific

ecological interactions and non-snapshot views of predator–prey

dynamics are necessary to better understand the spatiotemporal

distribution of species. Moreover, the improvement of the models

when a the latent process was included, suggests that the ecologi-

cal interactions regulating mackerel’s distribution are such, that

our current sampling methods and recorded variables are lacking

the explanatory power needed to provide robust predictions. In

this view, statistical models, as the ones presented in this study,

can help highlight such inefficiencies, thus stimulating research

towards mechanistic understanding of processes in the marine

environment and improved sampling efforts. Albeit limitations,

the advantage of the sampling methodology (i.e. pelagic trawl-

ing), is that it allows more accurate recordings of the environ-

mental conditions met by mackerel compared with other

approaches that utilize bottom trawl data (Radlinski et al., 2013).

In this sense, continuation (to obtain long time-series), improve-

ment (by measuring additional covariates of interest, e.g. light

and oxygen levels) and further analysis of already collected data

(e.g. taxonomic analysis of mesozooplankton samples) of large-

scale surveys such as the IESSNS, could significantly facilitate our

understanding of the mechanisms driving important pelagic fish

species distribution patterns.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the article.
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