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Summary

Testing will remain a key tool for those managing health care and making health policy for 
the current coronavirus pandemic, and testing will probably be an important tool in future 
pandemics. Because of test errors (false negative tests in which an infected individual tests 
as uninfected and false positive tests in which an uninfected individual tests as infected), 
the observed fraction of positive tests out of a total of T tests, the surface positivity, is gen-
erally different from the underlying incidence rate of the disease.

In a companion report,1 we describe a method for translating from the surface positivity to 
a point estimate for the incidence rate, then to an appropriate range of values for the inci-
dence rate (the test range), and finally to the risk (the probability of including one infected 
individual) associated with groups of different sizes. Three key messages of that report are 
(1) surface positivity is not an accurate indicator of the incidence of coronavirus; (2) false 
negative tests lead to overestimation of the incidence rate, and false positive tests lead to 
underestimation of the incidence rate; and (3) the risk of groups of different sizes is not an 
either-or situation but can be graded according to the incidence rate, the size of the group, 
and the specified level of tolerance for risk.

The main purpose of this report is to provide supporting analysis for the recommendations 
for practice given in our companion report,2 summarized in Equations 1–4 in this report, 
and to provide an additional recommendation for practice. To do so, we model the process 
generating test data in which the true state of the world (incidence rate, probability of a false 
negative test, and probability of a false positive test) is assumed to be known. This allows 
us to compare analytical predictions with a known situation. We begin by showing how to 
compute the risk associated with groups of different sizes (defined to be the probability of 
including at least one infected individual) when one has an estimate for incidence rate.

When test errors are known, we show that surface positivity can be a very poor proxy for 
the underlying incidence rate and that the estimate for incidence rate in our companion 
report is the maximum likelihood estimate (MLE). We show how to calculate test range 
directly from the simulated data and that the approximation given in our companion report 
is very accurate if the number of tests is sufficiently large. We evaluate the MLE for test 
numbers ranging from 50 to 5,000 and show that its mean is an accurate estimate (close 
to the true value of the incidence rate) for even a modest number of tests, but that its vari-
ance is so large for a modest number of tests that the MLE is very imprecise. However, the 
standard deviation of the MLEs and the test range decline as 1/

for test numbers ranging from 50 to 5000 and show that its mean is accurate estimate47

(close to the true value of the incidence rate) for even a modest number of tests, but48

that its variance is so large for a modest number of tests that the MLE is very imprecise.49

However, the standard deviation of the MLEs and the test range decline as 1/
p
T so that50

with a sufficient number of tests the method of Brown and Mangel (2021) gives both51

an accurate and precise prediction. Because the test range declines with the number of52

tests, it is possible to oversample spatial regions by allocating too many tests. When test53

errors are not known, we generate data using the true test errors and incidence rate but54

compute the estimate of incidence rate with test errors that may di↵er from the true ones.55

Using the simulation, we show that when the choice of probability of a false negative test56

exceeds exceeds the true value, one overestimates the true incidence rate. Similarly when57

the choice of the probability of a false positive test used in computing the estimate of58

incidence rate exceeds the true value, one underestimates the true incidence rate. Using59

a Certainty Equivalent approximation, in which we replace stochastic surface positivity60

by its mean, we confirm these observations from the simulation analytically. In addition,61

using the Certainty Equivalent approximation, we show how to include distributions of62

test errors in the construction of the estimate of incidence rate (Appendix B of Brown63

and Mangel (2021)). We also explicitly considered the case in which surface positivity is64

0, which is likely to happen during testing as the pandemic wanes, and derive a formula65

for the maximum incidence rate consistent with no positive tests. This estimate of the66

incidence rate can be used in a risk calculation. In the Supplementary Figures, we use67

an additional 27 sets of parameters characterizing the true state of the world and con-68

firm that all of the qualitative patterns in the main text remain, although some minor69

quantitative details change.70

 so that with a sufficient 
number of tests our method3 gives both an accurate and precise prediction. Because the 

1 Brown and Mangel, Recommendations for Practice.
2 Brown and Mangel, Recommendations for Practice.
3 Brown and Mangel, Recommendations for Practice.
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test range declines with the number of tests, it is possible to oversample spatial regions by 
allocating too many tests. When test errors are not known, we generate data using the true 
test errors and incidence rate but compute the estimate of incidence rate with test errors 
that may differ from the true ones. Using the simulation, we show that when the choice 
of probability of a false negative test exceeds the true value, one overestimates the true 
incidence rate. Similarly, when the choice of the probability of a false positive test used in 
computing the estimate of incidence rate exceeds the true value, one underestimates the 
true incidence rate. Using a certainty equivalent (CE) approximation, in which we replace 
stochastic surface positivity by its mean, we analytically confirm these observations from 
the simulation. In addition, using the certainty equivalent approximation, we show how to 
include distributions of test errors in the construction of the estimate of incidence rate.4 We 
also explicitly consider the case in which surface positivity is 0, which is likely to happen 
during testing as the pandemic wanes, and derive a formula for the maximum incidence 
rate consistent with no positive tests. This estimate of the incidence rate can be used in a risk 
calculation. In the supplementary figures,5 we use an additional 27 sets of parameters char-
acterizing the true state of the world and confirm that all the qualitative patterns described 
in the main text remain, although some minor quantitative details change.

4 Brown and Mangel, Recommendations for Practice, Appendix B.
5 Available at https://www.jhuapl.edu/Content/figures/Mangel_Brown_SuppFigs.pdf.

https://www.jhuapl.edu/Content/figures/Mangel_Brown_SuppFigs.pdf
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Introduction, Summary of Our Companion Report, and 
Overview of This Report

.  .  .  if you don’t do the best you can with what you happen to have got, you’ll 
never do the best you might have done with what you should have had. . .

—Aris, Discrete Dynamic Programming, 27

Introduction

Even though vaccines for coronavirus are increasingly available, testing remains a key tool 
for those managing health care and making policy decisions, and large-scale testing is prob-
ably essential for resilience to the pandemic and reopening society.1

In the companion to this report,2 we provide a method for interpreting coronavirus tests, 
addressing the following questions:

 • How does one go from surface positivity (the observed fraction of positive tests) to 
the incidence rate (the unobserved fraction of individuals infected with coronavirus) 
knowing that there are test errors (false negatives in which infected individuals give a 
negative test and false positives in which noninfected individuals give a positive test)?

 • How does one go from a point estimate for the incidence rate to a range of reasonably 
likely incidence rates?

 • How does one compute the risk (the probability of including one infected individual) of 
coronavirus transmission in groups of different sizes, given the point estimate and range 
of values for the incidence rate?

As Aris notes in the epigraph, one will almost never have an ideal situation for analysis of 
a problem but should strive to do the best possible analysis in an imperfect situation. In 
addition to providing insight into the current problem, effective analysis gives guidance on 
how to prepare for the next analogous problem.

We next briefly review relevant aspects of coronavirus infection, transmission, and testing, 
after which we give an overview of the entire report.

1 Allen et al., Roadmap to Pandemic Resilience; Auger et al., “School Closure and COVID-19 Incidence and 
Mortality”; Booeshaghi et al., “Heterogeneous COVID-19 Testing Plans”; National Academies, Reopening K–12 
Schools; and Wilson et al., “Multiple COVID-19 Clusters on a University Campus.”
2 Brown and Mangel, Recommendations for Practice.
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Relevant Etiology of Coronavirus Infection

Coronavirus is highly infectious,3 with a large reproductive number, R0, and a long asymp-
tomatic phase during which infection can be transmitted.4 For example, He et al.5 estimated 
that 44% of secondary cases occurred before the onset of symptoms and that infectious-
ness peaked on or before the onset of symptoms. Oran and Topol6 estimated asymptomatic 
individuals on average accounted for 40–45% of coronavirus infections, with a range from 
6.3% (King County, Washington, nursing facility residents) to almost 100% (inmates in 
Arkansas, North Carolina, Ohio, and Virginia). Shental et al.7 estimated that the percentage 
of asymptomatic infected individuals was 10–30%, but Li et al.8 estimated that asymptom-
atic individuals could have been responsible for 79% of documented cases.

The high R0 and asymptomatic infections are complicated by coronavirus tests having 
false positive results (a noninfected individual tests positive) and false negative results (an 
infected individual tests negative). Kucirka et al.9 estimated that on the day of infection the 
probability10 of a false negative test is 100%, and then it falls to 67% on day 4 of infection, 
38% on day 5 (assumed onset of symptoms), 20% on day 8, 21% on day 9, and 66% on 
day 21. (See Figure 2 of their paper for the full temporal dynamics.)

Summary of Our Companion Report

In Table 1, we list the major symbols used in the remainder of the report, their interpreta-
tion, and their first appearance in this text.

The operational situation is that T tests are administered to a population, and each individ-
ual tested has either a positive or negative test result for coronavirus. An unknown fraction 
ft of these individuals are infected with coronavirus and are antigen positive, with the sub-
script t denoting the true but unknown value. However, such individuals have a probability 
pFNt

 of a false negative result in which the test reports no infection. The remaining individ-
uals, a fraction 1 – ft of the sample, are not infected (i.e., are antigen negative) but have a 
probability pFPt

 of testing positive.

3 Bi et al., “Epidemiology and Transmission of COVID-19.”
4 Oran and Topol, “Prevalence of Asymptomatic SARS-CoV-2 Infection.”
5 He et al., “Viral Shedding and Transmissibility.”
6 Oran and Topol, “Prevalence of Asymptomatic SARS-CoV-2 Infection.”
7 Shental et al., “Asymptomatic Carriers.”
8 Li et al., “Substantial Undocumented Infection.”
9 Kucirka et al., “Variation in False-Negative Rate.”
10 Green et al., “Molecular Tests”; He et al., “Diagnostic Performance”; Kucirka et al., “Variation in False-Negative 
Rate”; and Watson, Whiting, and Brush, “Interpreting a Covid-19 Test Result.”
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Table 1. Variables, Symbols, Their Interpretation, and First Appearance in Text

Variable/Symbol Interpretation First appearance in text

Incidence rate

  f Incidence of coronavirus infection Summary of Our 
Companion Report

  ft
True but unknown incidence of coronavirus 
infection generating the observations

Summary of Our 
Companion Report

   f̂ Recommendation for practice of the 
estimate of incidence of coronavirus 
infection

Eq. 2

   f̂n
Estimate of coronavirus infection incidence 
on the nth simulation of the testing process

Eq. 8

Test errors

  pFNt
True probability of a false negative test Summary of Our 

Companion Report

  pFPt
True probability of a false positive test Summary of Our 

Companion Report

  pFN
Assumed probability of a false negative test Summary of Our 

Companion Report

  pFP
Assumed probability of a false positive test Summary of Our 

Companion Report
Test data

  T Number of tests administered Summary of Our 
Companion Report

  P, 
happen during testing as the pandemic wanes (although as shown in Figure 14 stochastic492

fluctuations may lead to P̃ = 0 even when ft is far from 0). In this case the MLE for493

incidence rate is 0 and although the 95% CI can be computed from the stochastic simu-494

lation, that method is not appropriate as a recommendation for practice. When P̃ = 0495

the likelihood function simplifies considerably (Eqn 38) and using a method for approx-496

imating the 95%CI directly from the likelihood, we derived a formula for the maximum497

incidence rate consistent with no positive tests (i.e. the right hand limit of the 95% CI;498

Figure 15, Eqn 39). This can then be used in risk calculations relating group size and the499

probability of including an infected individual when P̃ = 0 (Figure 16).500

There is a remaining question about how to develop recommendations for practice501

when surface positivity P/T  pFP in which case Eqn 2 can no longer be applied since502

the right hand side is 0, which we interpret as the MLE being 0 (Figure 14d). As in the503

case of surface positivity equal to 0, the the 95% CI can be computed from the stochastic504

simulation but a simpler recommendation for practice still needs to be discovered, unless505

a test with no false positive errors is developed.506

Number of positive test results obtained Summary of Our 
Companion Report

  p = P/T Positivity rate Summary of Our 
Companion Report

  p+( f ) Probability that a positive test result is 
obtained when the incidence rate is f

Eq. 1

  Range( f̂) Range of incidence rates that is compatible 
with the data and model

Eq. 3

  flower, fupper
Smallest and largest values, respectively, 
for the estimate of the incidence rate 
compatible with the data and model

Below Eq. 3

Risk

  R(g, f̂) Probability that a group of size g contains 
at least one infected individual when the 
estimate of incidence rate is  f̂

Eq. 4

  Racc
Specified level of risk that can be tolerated Below Eq. 7

  g( f̂ , Racc) Group size giving risk no larger than Racc
Eq. 8

(continued)
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Variable/Symbol Interpretation First appearance in text

Simulation method

  N Number of simulations Simulating the Test Data

  n Index for the simulation, running from 1 to 
N

Simulating the Test Data

  Pn
Number of positive tests on the nth 
iteration of the simulation

Simulating the Test Data

  B(∙, T, p+( ft ) Binomial distribution for the number of 
positive tests when T tests are given and 
the probability of a positive test is p+( ft )

Eq. 9

  L(p+( f ) | Pn, T) Likelihood that the probability of a positive 
test is p( f ) given Pn positive tests out of T 
total tests on the nth simulation

The Likelihood of an 
Incidence Rate Given the 
Number of Positive Tests

  ϕ(f | Pn, T) Probability density for the incidence rate 
in the nth iteration of the simulation given 
that Pn positive tests are obtained

Eq. 12

 E( f̂n) Expectation of the estimate of the 
incidence rate,  f̂n, on the nth replicate of 
the simulation

Eq. 14

  Var( f̂n) Variance of the estimate of the incidence 
rate,  f̂n, on the nth replicate of the 
simulation

Eq. 16

Uncertainty in test errors

  RE( f̂(pFN,
 
pFP | pFNt

,
 
pFPt

) Relative error in the estimate of incidence 
rate when the true test errors are pFNt

 and 
pFPt

 and the assumed test errors are pFN 
and pFP

Eq. 18

Certainty equivalent (CE) approximation

  pCE(ft, pFNt
, pFPt

) Probability of a positive test uncertainty 
using the CE approximation that the surface 
positivity can be replaced by its mean

Eq. 19

   f̂CE(pFN, pFP) CE estimate for the incidence rate, in which 
the surface positivity is replaced by pCE(ft, 
pFNt

, pFPt
)

Eq. 20

Heterogeneity in test errors

  pFN, pFP
Means of the probabilities of a false 
negative or positive test

Accounting for 
Heterogeneity in Test Errors

  VpFN
, VpFP

, Cov(pFN, pFP) Variances of the probabilities false negative 
or positive test and their covariance

Accounting for 
Heterogeneity in Test Errors

Table 1 (continued)
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The goal is to begin with the test data, P positive results out of T tests administered, giving 
surface positivity P/T, and obtain an estimate  f̂  for the unobserved incidence rate of 
coronavirus, ft, recognizing that ft will never be known exactly.

The expected positivity rate p+( ft ) (the probability of a positive test) is composed of two 
terms: (1) the fraction of antigen-positive individuals tested who test positive (a true pos-
itive result) and (2) the fraction of antigen-negative individuals tested who test negative (a 
false positive result), so that

 p+( ft ) = ft(1 − pFN) + (1 − ft )pFP . (1)

It is clear from this equation that the surface positivity rate is not equal to the incidence rate 
unless there are no test errors. The analytical challenge is that we observe the surface positivity 
but want to know the incidence rate. False negative tests reduce the contribution of infected 
individuals to the positive tests obtained in the sample, and false positive tests increase the 
contribution of uninfected individuals to the positive tests obtained in the sample.

From Surface Positivity to Incidence Rate

The estimate of the incidence rate  f̂  from the test results P positive tests out of a total of T 
tests when test errors are assumed to be pFN and pFP is

 f̂ =
P/T − pFP

1− pFN − pFP

Range(f̂) = 3.92

s
p+(f̂)(1− p+(f̂))

T (1− pFN − pFP )2

. (2)

We show below that  f̂  given by Eq. 2 is the maximum likelihood estimate (MLE) for the 
incidence rate, and is to be interpreted as 0 whenever P/T ≤ pFP.

From a Point Estimate of the Incidence Rate to a Range for the 
Incidence Rate

Surface positivity P/T is a random variable; if one were to repeatedly sample the same pop-
ulation, the values of P/T would generally be different but around the expected positivity 
rate.

Variation in P/T generates variation in  f̂ . A range of values of f that is compatible with the 
data and model is11

 

f̂ =
P/T − pFP

1− pFN − pFP

Range(f̂) = 3.92

s
p+(f̂)(1− p+(f̂))

T (1− pFN − pFP )2
. (3)

11 In the section on the likelihood of an incidence rate, we explain our determination of range, which we inter-
pret as a compatibility interval (McElreath, Statistical Rethinking, 54) and thus avoid the undesired implications 
of words such as confidence or credible (Morey et al., “Fallacy of Placing Confidence in Confidence Intervals”).
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We refer to Eq. 3 as the test range and will show that (1) Range( f̂) is symmetrically dis-
tributed around the true range, Range( ft ), which is obtained by replacing  f̂  by ft in Eq. 3; 
and (2) the mean error between to the two is a fraction of a percent, so that Eq. 3 is, on 
average, a very accurate characterization of the range. Thus, reasonable lower and upper 
limits, respectively, for the estimated infection rate are  f̂ lower  =  f̂   –  0.5  ∙  Range( f̂) and 

 f̂ upper =  f̂  + 0.5 ∙ Range( f̂ ).

From Incidence Rate to Risk Associated with Groups of Different Sizes

In our companion report,12 we define the risk associated with groups of different sizes as the 
probability that a group of g individuals contains at least one infected individual when the 
estimate for incidence rate is  f̂  and denoted by R(g, f̂). This is,

 R(g, f̂) = 1 (1 f̂)g . (4)

We will derive both this equation and an equation for the maximum group size consistent 
with a given level of risk.

An Additional Recommendation for Practice: A Caution about Relying 
on Positivity Alone

If pFP is held constant, Eq. 2 is a relationship between the surface positivity P/T, the prob-
ability of a false negative test pFN, and the estimate  f̂  of the incidence rate. Specifying any 
two of these will determine the third. It is natural and intuitive to specify the terms on the 
right-hand side of Eq. 2 and from that compute the estimate for the incidence rate. When 
pFP is held constant, it is clear from Eq. 2 that as pFN increases, the estimate of incidence 
rate for a given surface positivity increases, since the denominator on the right-hand side 
of Eq. 2 becomes smaller. Similarly, increasing surface positivity for given probability of 
a false negative test will increase the estimate of incidence rate because the numerator 
in Eq.  2 will increase. Thus, by holding pFP constant, we are able to create a heat map 
(Figure 1a) in which the x axis is surface positivity, the y axis is pFN, and the entries are  f̂  
from Eq. 2.

We intentionally drew Figure  1a using only 32 colors for the heat map, because doing 
so suggests that the estimate of incidence rate is constant along negatively sloping lines 
in the plane determined by surface positivity and the probability of a false negative test. 
This observation begs the question of how to compare surface positivity rates. That is, is 
a surface positivity of 8%, say, better than a surface positivity of 12% when the test errors 
are not known?

12 Brown and Mangel, Recommendations for Practice.
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= 0.053f̂

= 0.074f̂

= 0.032f̂
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(a)

(a) When pFP is held constant (in this case, pFP  =  0.05), Eq.  2 allows us to construct a heat map for the 
incidence rate as a function of the surface positivity (x axis) and probability of a false negative test pFN (y axis). 
As explained in the text, the estimate of incidence rate is highest when surface positivity and the probability of 
a false negative test are both high. (b) Lines of constant  f̂  when pFP = 0.05 and surface positivity is 12%, 10%, 
or 8% when there are no false negative tests. For any surface positivity smaller than the value corresponding to 
pFN = 0, by drawing a vertical line from the value of positivity to the line of constant  f̂  and then going across 
to the y axis, we determine the value of pFN giving the same estimate of incidence rate as when there is no 
chance of a false negative test.

Figure 1. Heat Map of Incidence Rate

We can also address this question using Eq. 2. To do so, we hold pFP constant and imagine 
a surface positivity p0 corresponding to the situation of no false negatives, so that we set 
pFN = 0 in Eq. 2 to obtain the estimate for incidence rate 

We can also address this question using Eqn 2. To do so, we hold pFP constant imagine

and a surface positivity p0 corresponding to the situation of no false negatives, so that

we set pFN = 0 in Eqn 2 to obtain the estimate for incidence rate f̂0 = p0−pFP

1−pFP
. We can We can obtain the 

value of pFN needed to give an incidence rate  f̂ 0 for surface positivity p < p0, by using  f̂ 0 on 
the left-hand side of Eq. 2 and p0 for P/T on the right-hand side of Eq. 2; that is,

 f̂0 =
p pFP

1 pFN  pFP

Solving this equation for pFN , we obtain

pFN = 1 pFP

p pFP

f̂0

�

. (5)

Solving this equation for pFN, we obtain

 

f̂0 =
p pFP

1 pFN  pFP

Solving this equation for pFN , we obtain

pFN = 1 pFP

p pFP

f̂0

�
. (6)

Eq. 6 allows us to draw lines of constant  f̂  in a plane in which surface positivity is on the 
x axis and pFN on the y axis (Figure 1b). For any surface positivity smaller than the value 
corresponding to pFN = 0, by drawing a vertical line from the value of positivity to the line 
of constant  f̂  and then going across to the y axis, we determine the value of pFN giving the 
same estimate of incidence rate as when there is no chance of a false negative test.
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Thus, to answer the question raised above (Is surface positivity of 8% better than 12%?), we 
draw a vertical line from 0.08 on the x axis to where it intersects the line corresponding to 

 f̂  = 0.074 and then draw a horizontal line to the y axis. In this case, the intersection is at 
pFN about 0.6. If pFN is this value, surface positivity of 8% is no better than 12%; if pFN is less 
than this value, surface positivity of 8% is better than 12%; if pFN is greater than this value, 
surface positivity of 8% is worse than 12%.

This example illustrates the danger of reporting surface positivity without reference to the 
test errors; since Eq. 6 is conditioned on knowing pFP, both test errors are relevant.

Overall Approach

We intend this report to be as accessible as possible, but there is no way to avoid equa-
tions and mathematical analysis. The great biologist and operations analyst Baron Solly 
Zuckerman is reputed to have said that when he came to an equation in a paper he “hummed 
through it,” which people often take as license to skip equations. But Zuckerman recognized 
the power of mathematical analysis and was no slouch in quantitative methods.13

We have structured the report to help a dedicated reader understand all the ideas, with the 
approach based on a dictum of Oliver Wendell Holmes Jr.: “I would not give a fig for the 
simplicity this side of complexity, but I would give my life for the simplicity on the other 
side of complexity.”

The Operational Situation and Analytical Approach
We assume that T tests are administered to a population in which a fraction f of individuals 
are antigen positive, that each individual tested provides either a positive or negative test 
result for coronavirus (Figure 2), and that a total of P positive tests are obtained. Infected 
individuals have a probability pFN of a false negative result in which the test reports no infec-
tion. We assume that the probability of a false negative test is known.14 Individuals who are 
not infected (i.e., are antigen negative) have a probability pFP of a positive test result. We also 
assume that the probability of a false positive test is known.15 The values of pFP and pFN will 
generally be both medically and operationally heterogeneous; we discuss how to approach 
heterogeneity in the section on accounting for heterogeneity in test errors.

The goal is to begin with the surface positivity P/T and obtain an estimate  f̂  for the fraction 
of coronavirus infections. We characterize  f̂  by accuracy—how close is  f̂  to the true but 

13 For example, Zuckerman, Scientists and War; and Beyond the Ivory Tower.
14 For example, Kucirka et al., “Variation in False-Negative Rate”; and Watson, Whiting, and Brush, “Interpret-
ing a Covid-19 Test Result.”
15 For example, He et al., “Diagnostic Performance,” Table 2.
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unknown value f?—and precision—what is a plausible range of estimates for the fraction of 
coronavirus infections?

The surface positivity (fraction of positive tests) is observed, and from that we want to infer the unobserved 
incidence rate f. See text for further details.

Figure 2. Visual Representation of the Operational Situation

The Analytical Approach

To have confidence in methods that allow one to infer incidence rate from surface positivity 
and test errors, we begin by modeling the process of testing in which one knows the true 
state of the world, rather than the data from testing in which such knowledge is lacking.16 
We do so using simulation and analytical methods in which we specify the true state of the 
environment, which is characterized by the (unknown) fraction ft of coronavirus infections 
in the population and the values of test errors pFNt

 and pFPt
 (where the subscript t denotes the 

true value). These are sufficient to simulate the number of positive tests P in a total of T tests.

Our approach is to first specify the true state of nature and use a simulation method to 
create the kind of data obtained in testing operations. We then develop methods to analyze 
those test data, when we know the true situation, and compare the predictions based on our 
methods with the true incidence rate. We do this because it is only when we know that the 
results of analyses are accurate that one can have confidence that the methods can be used 
to analyze test data for which we do not know the true state of nature.

16 Shelton and Mangel, “Variability in Fish Populations.”
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We use three analytical tools: the binomial distribution, the binomial likelihood, and the 
Gaussian or normal approximation to the binomial distribution.17 Although these are “ele-
mentary” tools of probability theory, such elementary tools when applied in mature ways 
can lead to novel and important insights.

We review these tools in the appendix, in which we delineate the distinction between the 
binomial probability and the binomial likelihood. This is an important conceptual distinc-
tion for our work.

The Risk Associated with Groups of Different Sizes and with 
Different Levels of Risk
To begin, assume that one has already constructed an estimate  f̂  for the incidence rate. 
Thus, the probability that a coronavirus-infected individual is joining a group is  f̂  and the 
probability that a noninfected individual is joining is 1 –  f̂  (with obvious extension to the 
lower and upper estimates of the incidence rate).

We define the estimated risk R(g,  f̂) associated with a group of size g when the estimated 
incidence rate is  f̂  to be the probability that at least one individual in the group is infected 
with coronavirus. Since the probability that none of the individuals is infected is (1 –  f̂)g, 
the probability that at least one of them is infected is

 R(g,  f̂) = 1 – (1 –  f̂)g, (7)

which is Eq. 4.

The inverse question is perhaps more relevant to health policy: given a specified level of 
tolerable risk, Racc, what is the maximum group size concordant with this level of risk? To 
find this group size, we set Racc =  1 – (1 –  f̂)g and solve for the group size, obtaining

 

R(g, f̂) = 1 (1 f̂)g

g(f̂ ,Racc) =
log(1Racc)

log(1 f̂)
, (8)

where log denotes the logarithm (natural, base  2, or base  10 are all fine as long as they 
are used consistently). Choosing Racc is the key policy decision, and once it is chosen the 
maximum group size for a given estimate of incidence rate emerges from Eq. 8.

Simulating and Analyzing Test Data with Known Test Errors
For computations, the base-case parameters are the fraction ft = 0.03 of coronavirus infec-
tions, and the probability of a false negative test is pFNt

 = 0.3 and of a false positive test, 
pFPt

 = 0.05. In the the supplementary figures,18 we explore other parameter choices.

17 Feller, Probability Theory; and Mangel, Theoretical Biologist’s Toolbox.
18 Available at https://www.jhuapl.edu/Content/figures/Mangel_Brown_SuppFigs.pdf.

https://www.jhuapl.edu/Content/figures/Mangel_Brown_SuppFigs.pdf
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Simulating the Test Data

We simulate the testing process N times for which the number of tests T is fixed. Each 
simulation generates a number of positive tests, denoted by P1, P2, ... PN where Pn is the 
number of positive results from T tests for the nth simulated test. Because the probability 
of a positive test is p+( ft ) (Eq. 1), Pn is binomially distributed with parameters T and p+( ft ), 
which we write as

 Pn = B(·, T, p+(ft)) (9)

4.2 The Likelihood of an Incidence Rate Given the Number of Positive Tests248

Given the number of positive tests Pn on the nth simulation, the likelihood of the data

for any value of f is

L(p+(f)|Pn, T ) / B(Pn, T, p+(f))

The Maximum Likelihood Estimate (MLE) for p+(f) (Mangel 2006) is

p̂+(f) =
Pn

T

Letting f̂n denote the MLE for incidence rate in the nth simulation, we write p̂+(f̂n) =

f̂n(1− pFN) + (1− f̂n)pFP so that

f̂n(1− pFN) + (1− f̂n)pFP =
Pn

T
(10)

f̂n =
Pn/T − pFP

1− pFN − pFP

(11)

. (9)

The Likelihood of an Incidence Rate Given the Number of Positive Tests

Given the number of positive tests Pn on the nth simulation, the likelihood of the data for 
any value of f is

 

Pn = B(·, T, p+(ft)) (9)

4.2 The Likelihood of an Incidence Rate Given the Number of Positive Tests248

Given the number of positive tests Pn on the nth simulation, the likelihood of the data

for any value of f is

L(p+(f)|Pn, T ) / B(Pn, T, p+(f))

The Maximum Likelihood Estimate (MLE) for p+(f) (Mangel 2006) is

p̂+(f) =
Pn

T

Letting f̂n denote the MLE for incidence rate in the nth simulation, we write p̂+(f̂n) =

f̂n(1− pFN) + (1− f̂n)pFP so that

f̂n(1− pFN) + (1− f̂n)pFP =
Pn

T
(10)

f̂n =
Pn/T − pFP

1− pFN − pFP

(11)

.

The maximum likelihood estimate (MLE) for p+( f )19 is

 

Pn = B(·, T, p+(ft)) (9)

4.2 The Likelihood of an Incidence Rate Given the Number of Positive Tests248

Given the number of positive tests Pn on the nth simulation, the likelihood of the data

for any value of f is

L(p+(f)|Pn, T ) / B(Pn, T, p+(f))

The Maximum Likelihood Estimate (MLE) for p+(f) (Mangel 2006) is

p̂+(f) =
Pn

T

Letting f̂n denote the MLE for incidence rate in the nth simulation, we write p̂+(f̂n) =

f̂n(1− pFN) + (1− f̂n)pFP so that

f̂n(1− pFN) + (1− f̂n)pFP =
Pn

T
(10)

f̂n =
Pn/T − pFP

1− pFN − pFP

(11)

.

Letting  f̂  n denote the MLE for incidence rate in the nth simulation, we write 

Pn = B(·, T, p+(ft)) (9)

4.2 The Likelihood of an Incidence Rate Given the Number of Positive Tests248

Given the number of positive tests Pn on the nth simulation, the likelihood of the data

for any value of f is

L(p+(f)|Pn, T ) / B(Pn, T, p+(f))

The Maximum Likelihood Estimate (MLE) for p+(f) (Mangel 2006) is

p̂+(f) =
Pn

T

Letting f̂n denote the MLE for incidence rate in the nth simulation, we write p̂+(f̂n) =

f̂n(1− pFN) + (1− f̂n)pFP so that

f̂n(1− pFN) + (1− f̂n)pFP =
Pn

T
(10)

f̂n =
Pn/T − pFP

1− pFN − pFP

(11)

  

Pn = B(·, T, p+(ft)) (9)

4.2 The Likelihood of an Incidence Rate Given the Number of Positive Tests248

Given the number of positive tests Pn on the nth simulation, the likelihood of the data

for any value of f is

L(p+(f)|Pn, T ) / B(Pn, T, p+(f))

The Maximum Likelihood Estimate (MLE) for p+(f) (Mangel 2006) is

p̂+(f) =
Pn

T

Letting f̂n denote the MLE for incidence rate in the nth simulation, we write p̂+(f̂n) =

f̂n(1− pFN) + (1− f̂n)pFP so that

f̂n(1− pFN) + (1− f̂n)pFP =
Pn

T
(10)

f̂n =
Pn/T − pFP

1− pFN − pFP

(11)

 so that

 

Pn = B(·, T, p+(ft)) (9)

4.2 The Likelihood of an Incidence Rate Given the Number of Positive Tests248

Given the number of positive tests Pn on the nth simulation, the likelihood of the data

for any value of f is

L(p+(f)|Pn, T ) / B(Pn, T, p+(f))

The Maximum Likelihood Estimate (MLE) for p+(f) (Mangel 2006) is

p̂+(f) =
Pn

T

Letting f̂n denote the MLE for incidence rate in the nth simulation, we write p̂+(f̂n) =

f̂n(1− pFN) + (1− f̂n)pFP so that

f̂n(1− pFN) + (1− f̂n)pFP =
Pn

T
(10)

f̂n =
Pn/T − pFP

1− pFN − pFP

(11)

. (10)

Solving Eq. 10 for  f̂  n gives

 

Pn = B(·, T, p+(ft)) (9)

4.2 The Likelihood of an Incidence Rate Given the Number of Positive Tests248

Given the number of positive tests Pn on the nth simulation, the likelihood of the data

for any value of f is

L(p+(f)|Pn, T ) / B(Pn, T, p+(f))

The Maximum Likelihood Estimate (MLE) for p+(f) (Mangel 2006) is

p̂+(f) =
Pn

T

Letting f̂n denote the MLE for incidence rate in the nth simulation, we write p̂+(f̂n) =

f̂n(1− pFN) + (1− f̂n)pFP so that

f̂n(1− pFN) + (1− f̂n)pFP =
Pn

T
(10)

f̂n =
Pn/T − pFP

1− pFN − pFP

(11), (11)

which is Eq. 2; we understand that  f̂  n = 0 if Pn/T < pFP. Thus, the estimate of incidence rate 
in our companion report20 is the MLE. We consider a method to be accurate if, on average, 
the MLE is close to the true value that generated the data.

We normalized the likelihood to obtain a probability density ϕn(f  |  Pn, T) for f given the test 
data from the nth simulation:21

 φn(f |Pn, T ) =
L(f |Pn, T )P1

f 0=0 L(f 0|Pn, T )

the mean and variance of a random variable X̃ and constant c: E(c) = c, E(cX̃) = cE(X̃),

V ar(c) = 0, and V ar(cX̃) = c2V ar(X̃).

, (12)

19 Mangel, Theoretical Biologist’s Toolbox.
20 Brown and Mangel, Recommendations for Practice.
21 The incidence rate is a continuous variable, ranging between 0 and 1. To avoid the more complicated mathe-
matics associated with integrating the likelihood, we work from the outset with a set of discrete values for f with 
increments of 0.001.
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The ϕn(f  | Pn, T)22 allow us to compute a range of values of f that are compatible with the 
model and data. We follow McElreath23 and call this the compatibility interval (CI), thus 
avoiding the undesired implications of words such as confidence or credible.24 We used the 
method of McElreath25 to compute 95% CIs that are symmetrical around the MLE. In brief, 
for each simulation we used the ϕn(f  |  Pn, T) to generate 100,000 samples of f and then the 
quantile tool in R to construct the symmetric 95% quantile. The test range is then the upper 
limit of the quantile (i.e., the 0.975 point of the sample) minus the lower limit (i.e., the 0.025 
point of the sample) of the quantile. We consider the 95% CI to be a measure of the preci-
sion of a method.

A method might be accurate (on average  f̂  is close to ft) but the 95% CI so wide that it is 
useless. Similarly, a method might be precise, with a very small 95% CI, but inaccurate in 
that  f̂  and ft are very far apart.

Gaussian Approximation for the Test Range

In this section, we suppress the subscript n on the number of positive tests, which 
we now denote by 

happen during testing as the pandemic wanes (although as shown in Figure 14 stochastic492

fluctuations may lead to P̃ = 0 even when ft is far from 0). In this case the MLE for493

incidence rate is 0 and although the 95% CI can be computed from the stochastic simu-494

lation, that method is not appropriate as a recommendation for practice. When P̃ = 0495

the likelihood function simplifies considerably (Eqn 38) and using a method for approx-496

imating the 95%CI directly from the likelihood, we derived a formula for the maximum497

incidence rate consistent with no positive tests (i.e. the right hand limit of the 95% CI;498

Figure 15, Eqn 39). This can then be used in risk calculations relating group size and the499

probability of including an infected individual when P̃ = 0 (Figure 16).500

There is a remaining question about how to develop recommendations for practice501

when surface positivity P/T  pFP in which case Eqn 2 can no longer be applied since502

the right hand side is 0, which we interpret as the MLE being 0 (Figure 14d). As in the503

case of surface positivity equal to 0, the the 95% CI can be computed from the stochastic504

simulation but a simpler recommendation for practice still needs to be discovered, unless505

a test with no false positive errors is developed.506

 to emphasize that it is a random variable. We use these results 
about the mean and variance of a random variable 

φn(f |Pn, T ) =
L(f |Pn, T )P1

f 0=0 L(f 0|Pn, T )

the mean and variance of a random variable X̃ and constant c: E(c) = c, E(cX̃) = cE(X̃),

V ar(c) = 0, and V ar(cX̃) = c2V ar(X̃).

 and constant c: E(c) = c,  
E(c

φn(f |Pn, T ) =
L(f |Pn, T )P1

f 0=0 L(f 0|Pn, T )

the mean and variance of a random variable X̃ and constant c: E(c) = c, E(cX̃) = cE(X̃),

V ar(c) = 0, and V ar(cX̃) = c2V ar(X̃).

) = cE(

φn(f |Pn, T ) =
L(f |Pn, T )P1

f 0=0 L(f 0|Pn, T )

the mean and variance of a random variable X̃ and constant c: E(c) = c, E(cX̃) = cE(X̃),

V ar(c) = 0, and V ar(cX̃) = c2V ar(X̃).

), Var(c) = 0, and Var(c

φn(f |Pn, T ) =
L(f |Pn, T )P1

f 0=0 L(f 0|Pn, T )

the mean and variance of a random variable X̃ and constant c: E(c) = c, E(cX̃) = cE(X̃),

V ar(c) = 0, and V ar(cX̃) = c2V ar(X̃).

) = c2Var(

φn(f |Pn, T ) =
L(f |Pn, T )P1

f 0=0 L(f 0|Pn, T )

the mean and variance of a random variable X̃ and constant c: E(c) = c, E(cX̃) = cE(X̃),

V ar(c) = 0, and V ar(cX̃) = c2V ar(X̃).

).

We multiply the numerator and denominator in Eq. 11 by the number of tests T to obtain

 f̂ =
P̃  TpFP

T (1 pFN  pFP )
(13)

We take the expectation of both sides of Eqn 13 and then use Eqn 1 to obtain

E(f̂) = E(P̃ ) pFP

T (1 pFN  pFP )

=
ftT (1 pFN) + (1 ft)TpFP  pFP

T (1 pFN  pFP )

=
ftT (1 pFN  pFP )

T (1 pFN  pFP )

= ft (14)

V ar(f̂) =
V ar(P̃ )

T 2(1 pFN  pFP )2
(15)

The number of positive tests P̃ is a binomial random variable with parameters T and

V ar(f̂) =
Tp+(ft)(1 p+(ft))

T 2(1 pFN  pFP )2

=
p+(ft)(1 p+(ft))

T (1 pFN  pFP )2
(16)

. (13)

We take the expectation of both sides of Eq. 13 and then use Eq. 1 to obtain

 E(f̂) = E(P̃ ) TpFP

T (1 pFN  pFP )

=
ftT (1 pFN) + (1 ft)TpFP  TpFP

T (1 pFN  pFP )

=
ftT (1 pFN  pFP )

T (1 pFN  pFP )

= ft . (14)

22 Readers familiar with Bayesian analysis will recognize Eq. 12 as a posterior given a uniform prior on f. Were 
we working with integrals rather than sums, this posterior would be a beta density.
23 McElreath, Statistical Rethinking, 54.
24 Morey et al., “Fallacy of Placing Confidence in Confidence Intervals.”
25 McElreath, Statistical Rethinking, 53ff.
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This demonstrates that, on average, Eq. 2 is the true value of the (unobserved) incidence 
rate.

It is immediately clear that Eqs. 2 and 11 are not always sensible: whenever Pn/T ≤ pFP, the 
right-hand side of these equations is ≤ 0. The appropriate interpretation is that the MLE for 
incidence rate is 0, with implication that a different set of tools is needed. We discuss this in 
the section The Coronavirus End Game: The Case of No Positive Tests on page 27.

Using Eq. 13 and the properties of variance given above,

 

f̂ =
P̃  TpFP

T (1 pFN  pFP )
(13)

We take the expectation of both sides of Eqn 13 and then use Eqn 1 to obtain

E(f̂) = E(P̃ ) pFP

T (1 pFN  pFP )

=
ftT (1 pFN) + (1 ft)TpFP  pFP

T (1 pFN  pFP )

=
ftT (1 pFN  pFP )

T (1 pFN  pFP )

= ft (14)

V ar(f̂) =
V ar(P̃ )

T 2(1 pFN  pFP )2
(15)

The number of positive tests P̃ is a binomial random variable with parameters T and

V ar(f̂) =
Tp+(ft)(1 p+(ft))

T 2(1 pFN  pFP )2

=
p+(ft)(1 p+(ft))

T (1 pFN  pFP )2
(16)

. (15)

The number of positive tests 
happen during testing as the pandemic wanes (although as shown in Figure 14 stochastic492

fluctuations may lead to P̃ = 0 even when ft is far from 0). In this case the MLE for493
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probability of including an infected individual when P̃ = 0 (Figure 16).500
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when surface positivity P/T  pFP in which case Eqn 2 can no longer be applied since502

the right hand side is 0, which we interpret as the MLE being 0 (Figure 14d). As in the503

case of surface positivity equal to 0, the the 95% CI can be computed from the stochastic504

simulation but a simpler recommendation for practice still needs to be discovered, unless505

a test with no false positive errors is developed.506

 is a binomial random variable with parameters T and p+( ft ), 
so that Var(
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imating the 95%CI directly from the likelihood, we derived a formula for the maximum497
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probability of including an infected individual when P̃ = 0 (Figure 16).500

There is a remaining question about how to develop recommendations for practice501
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) = Tp+( ft )(1 – p+( ft )). Thus, Eq. 15 becomes

 

f̂ =
P̃  TpFP

T (1 pFN  pFP )
(13)

We take the expectation of both sides of Eqn 13 and then use Eqn 1 to obtain

E(f̂) = E(P̃ ) pFP

T (1 pFN  pFP )

=
ftT (1 pFN) + (1 ft)TpFP  pFP

T (1 pFN  pFP )

=
ftT (1 pFN  pFP )

T (1 pFN  pFP )

= ft (14)

V ar(f̂) =
V ar(P̃ )

T 2(1 pFN  pFP )2
(15)

The number of positive tests P̃ is a binomial random variable with parameters T and

V ar(f̂) =
Tp+(ft)(1 p+(ft))

T 2(1 pFN  pFP )2

=
p+(ft)(1 p+(ft))

T (1 pFN  pFP )2
(16). (16)

In the Gaussian approximation for the binomial distribution, the distribution of  f̂  is normal 
with mean ft and variance given by Eq. 16. For a Gaussian distribution, 95% of the prob-
ability is contained in a region centered on the mean and of length about 3.92 times the 
standard deviation so that the test range in the Gaussian approximation to the binomial 
distribution is

 Range(f) = 3.92

s
p+(ft)(1 p+(ft))

T (1 pFN  pFP )2
. (17)

To obtain Eq. 3, we replace ft by  f̂ . We discuss this replacement in detail in the section on 
how the test range depends on the number of tests.

Results with Known Test Errors
We begin by illustrating results for 5,000 simulations generating data with T = 500 tests, 
and we subsequently explore the consequences of varying test numbers.

Surface Positivity and Estimates of Incidence Rate

In Figure 3, we show the first 200 replicates of testing T = 500 individuals for the base-case 
parameters ft = 0.03, pFNt

 = 0.3, and pFPt
 = 0.05. In both panels, the horizontal line is ft (i.e., 
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what we expect if there were no test errors). In the upper panel we show the surface positiv-
ity, which is strongly positively biased in this case (the bias depends on the true incidence 
rate and true test errors). In the lower panel we show the individual MLEs for incidence rate 
(Eq. 13). Although there is noticeable variation, it is symmetric around ft.

The results of testing T  =  500 individuals for the base-
case parameters ft =  0.03, pFNt

 =  0.3, and pFPt
 =  0.05. In 

both panels, the horizontal line is ft (i.e., what we expect 
if there were no test errors). In the upper panel we show 
the surface positivity, which is strongly positively biased 
(see text for an explanation). In the lower panel we show 
the individual MLEs for incidence rate (Eq. 13). Although 
there is noticeable variation, it is symmetric around ft.

Figure 3. Results of the First 200 of 5,000 Replicates of 500 Tests for the Base-Case Parameters

The bias in surface positivity can be understood in terms of the test errors and the expected 
number of coronavirus infections in the test sample. That is, for ft = 0.03 and 500 tests, we 
expect about 15 infected individuals in the sample; about 30% of the individuals will test 
negative, so that infected individuals provide about 10 positive tests. Of the remaining 485 
individuals, about 5% will test positive, providing on average about 25 positive tests. Thus, 
on average we expect surface positivity to be about (10 + 25)/500 =  0.07; note that the 
points in the upper panel are symmetrically distributed around 0.07.

It is clear from this figure that surface positivity is a greatly biased estimate of incidence rate. 
For the 5,000 simulations in this case, the mean difference between the surface positivity 
and ft is about 0.04—more than 100% of ft. On the other hand, the mean difference between 

 f̂  and ft is 0.0002.
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Likelihoods

Each  f̂  n has its own likelihood. In Figure 4, we show the likelihoods L(f  |  Pn, T) for repli-
cates n = 1, ... 9 for T = 500 tests. The blue line is  f̂  n, which must always fall at the peak of 
the likelihood; hence, it moves around according to the surface positivity. The red line is ft, 
which is stationary because it is the base-case true incidence rate. Sometimes  f̂  n is very close 
to ft and other times not—this is why computing the rest of the range is important.

The blue line is  f̂  n, which must always fall at the peak of the likelihood; hence, it moves around according to 
the surface positivity. The red line is ft and is stationary because it is the true incidence rate.

Figure 4. The First Nine Likelihoods from 5,000 Simulations with 500 Tests

Test Ranges

There are three possible versions of the test range: (1)  directly from the simulated data, 
so that each replicate produces a different test range based on the underlying but never 
observed incidence rate; (2) the Gaussian approximation for the test range using the true 
but never observed value of ft as in Eq. 17, and (3) the Gaussian approximation to the test 
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range using the  f̂  n as in Eq. 3 (this is the only method for which the unknown state of nature 
is not involved).

We first compare (Figure 5) the Gaussian approximation for the test range using the true 
but never observed value of incidence rate (shown as the red dotted line in Figure 5) and 
the test ranges obtained using the MLE for incidence rate in each replicate of the simulation 
(the points in Figure 5).

The simulated test ranges are symmetrically distributed around the test range using ft. The 
mean difference between the Range( f̂) and Range( ft ) is 0.006. We next explore how these 
approximations depend on the number of tests.

Each point is a replicate using Eq. 3 for the range (i.e.,  f̂n) The dotted red line 
shows the Gaussian approximation for the test range using Eq. 17 (i.e., ft).

Figure 5. The First 200 of 5,000 Replicates of Test Range with the Base-Case Parameters

Accuracy and Precision Depending on the Number of Tests

Thus far we fixed T = 500; we now explore the consequences of varying the number of tests 
in the simulations. We report results for 50, 100, 200, 300, 400, 500, 750, 1,000, 1,500, 2,000, 
2,500, 3,000, 3,500, 4,000, and 5,000 tests. Including 50 and 100 tests allows us to explore 
how and why the methods fail.

In Figure 6, we show the mean and one standard deviation of the MLEs for incidence rate 
as a function of the number of tests. We conclude that even with 50 or 100 tests, the mean 
MLE is quite accurate—note that the points in Figure 6 sit on the horizontal dotted line 
almost from the outset. However, for small numbers of tests, the standard deviation of the 
MLEs is so large that we conclude that the accurate estimate is woefully imprecise.
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Mean (points) and standard deviation (ft, dotted line) of the MLEs 
for incidence rate.

Figure 6. Mean and +/– One Standard Deviation of the MLEs 
 fn for the Incidence Rate as They Depend on the Number of Tests

It is also clear from Figure 6 that although the standard deviation of the  f̂  n decreases as 
the number of tests increases, the rate at which it decreases declines as the number of tests 
increases. We emphasize this point by showing just the standard deviation of  f̂  n as a func-
tion of the number of tests in Figure 7. This figure shows that the gain in precision as one 
goes from 2,000 to 5,000 tests is minimal and that after about 1,500 tests, there is little pre-
cision to gain from additional testing.

Figure 7. The Standard Deviation of the  fn Depending on the Number of Tests

How the Test Range Depends on the Number of Tests

We now more fully explore the test range, the Gaussian approximation to it, and how the 
test range depends on the number of tests.
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To begin, in Figure 8, we compare the test ranges from the simulation (filled points, based 
on the unknown incidence rate ft) with the test range from the Gaussian approximation 
(hatched diamonds). We see that after about 1,500 tests, the diamonds and points coincide. 
That is, the Gaussian approximation for test range using ft is excellent with more than about 
1,500 tests.

We show the mean test range from the simulation as solid points and 
test range from the Gaussian approximation using ft to the binomial 
as hatched diamonds.

Figure 8. Test Range as It Depends on the Number of Tests

Figures 7 and 8 have a profound implication for the operational allocation of tests across 
space. Clearly, one wants to do many tests to identify who is and is not carrying antibodies 
so that contact tracing is possible. However, from the perspective of estimation and cost, 
it appears unnecessary to do more tests than the figures imply for estimating incidence. In 
particular, for the base-case parameters, doing more than 1,500 to 2,000 tests for estimating 
the incidence rate will have very little marginal effect on precision of the test results.

The remaining question about test range is whether the error introduced by replacing ft 
by the estimate  f̂  is acceptable. To address this question, in Figure 9, we show mean test 
range from the simulation and mean test range from the Gaussian approximation (Eq. 3) 
using the MLEs rather than ft and the 1:1 line. The far right-hand point corresponds to 50 
tests and the far left-hand point to 5,000 tests. The points start falling onto the line after 
1,000 tests, showing that for more than about 1,000 tests the Gaussian approximation to test 
range using the MLEs is highly accurate. The particular value of 1,000 tests is conditioned 
on the parameters; in the supplementary figures,26 we show that the qualitative patterns in 
Figures 6–9 do not change as parameters change but the quantitative details may.

26 Available at https://www.jhuapl.edu/Content/figures/Mangel_Brown_SuppFigs.pdf.

https://www.jhuapl.edu/Content/figures/Mangel_Brown_SuppFigs.pdf
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The mean test range from the simulation is shown on the x axis. The 
mean test range from the Gaussian approximation (Eq. 3) is shown 
on the y axis. The number of tests decreases as one goes from left to 
right on the x axis.

Figure 9. Mean Test Range from the Simulation and the Gaussian 
Approximation Using the MLEs Rather Than ft and the 1:1 Line

The Consequences of Uncertainty Test Errors
To explore the consequences when pFNt

 and pFPt
 that generate the observed number of 

positive tests differ from the test errors that are assumed when constructing  f̂ , we let  
 f̂  n(pFN, pFP  |  Pn, T, pFNt

, pFPt
) denote the estimate of incidence rate on the nth simulation 

when the assumed test errors are pFN and pFP but the true test errors are pFNt
 and pFPt

.

We evaluate the consequence of not knowing the test error probabilities by the relative error 
(RE) of the average of the MLEs and true value of the incidence rate used to generate the 
data ft. Suppressing the dependence of the RE on the Pn, it is

 RE(f̂(pFN , pFP |pFNt , pFPt)) =
1
N

P
N

n=1 f̂n(pFN , pFP |Pn, T, pFNt , pFPt) ft

ft

6.1 Simulation Results366

. (18)

Simulation Results

In Figure 10, we show the RE for T = 3,000 tests; the qualitative pattern is insensitive to the 
number of tests, although the numerical scale of the axis varies with the number of tests. 

Note these properties:

(1) RE( f̂(pFN, pFP  |  pFNt
, pFPt

)) has a minimum when the assumed test errors are the true 
values of the test errors. However, there is a diagonal swath in the test error plane in 
which this RE is small.
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(2) As the assumed value of pFN increases, the RE increases, as seen by following a horizontal 
line from the y  axis. The reason for this is that given a number of positive tests, as 
pFN increases but pFP is held constant, a higher value of incidence rate is required to 
generate the observations. A simple way of seeing this is to set pFP = 0 in Eq. 11, so that 

• RE(f̂(pFN , pFP |pFNt , pFPt)) has a minimum when the assumed test errors are the

true values of the test errors. However there is a diagonal swath in the test error

plane in which this relative error is small.

• As the assumed value of pFN increases, the RE increases, as seen by following a

horizontal line from the y-axis. The reason for this is that given a number of positive

tests, as pFN increases but pFP is held constant, a higher value of incidence rate is

required to generate the observations.

A simple way of seeing this is to set pFP = 0 in Eqn 11, so that f̂n = Pn/T

1−pFN
. It is

clear that increasing pFN increases the estimate of the incidence rate.

• Similarly, as pFP increases, RE decreases, as seen by following a vertical line from

the x-axis. The reason for this is that given a number of positive tests, as the

probability of false positive test pFP increases but the pFN is held constant, a lower

value of the incidence rate is required to generate the data.

Setting pFN = 0 in Eqn 11 does not allow a simplification that has obvious implica-

tion because pFP appears in both the numerator and denominator of the estimate

. It is clear that increasing pFN increases the estimate of the incidence rate.

(3) Similarly, as pFP increases, RE declines and becomes negative, as seen by following a 
vertical line from the x  axis. The reason for this is that given a number of positive 
tests, as the probability of false positive test pFP increases but the pFN is held constant, a 
lower value of the true incidence rate is required to generate the data. Setting pFN = 0 in 
Eq. 11 does not allow a simplification that has obvious implication because pFP appears 
in both the numerator and denominator of the estimate for incidence rate. However, in 
the next section we analytically demonstrate that increasing pFP decreases the estimate 
of incidence rate.

(4) The diagonal swath of small values of RE in Figure 10 is a result of the counterbalancing 
factors in points 2 and 3.

True test errors are denoted by the white circle.

Figure 10. The Relative Error, Eq. 17, of Assuming Test 
Errors That Differ from the True Test Errors
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The Certainty Equivalent (CE) Approximation and the Analytical 
Verification of the Patterns of Error

In the CE approximation, random variables are replaced by their means.27 When the true 
values of the incidence rate and test errors are ft, pFNt

, and pFNt
, the mean of Pn/T is

 pCE(ft, pFNt , pFPt) = ft(1 pFNt) + (1 ft)pFPt . (19)

Substituting into Eq. 11, we obtain a fully deterministic function of the assumed test errors, 
conditioned on the true test errors. We replace the subscript n by the subscript CE and write

 

pCE(ft, pFNt , pFPt) = ft(1 pFNt) + (1 ft)pFPt (19)

f̂CE =
pCE(ft, pFNt , pFPt) pFP

1 pFN  pFP

(20)

6.2.1 Patterns with Test Errors Using the Certainty Equivalent Approximation

pFP =
c

1 c
pFN +


pCE(ft, pFNt , pFPt) c

1 c

�
. (21)

. (20)

Patterns with Test Errors Using the CE Approximation

In Figure 11 we show a sensitivity analysis of the RE as the true test errors vary using the 
CE approximation.

We use Eq. 20 to explore the patterns in Figures 10 and 11 and demonstrate the following:28

 • The rate of change of  f̂  CE with pFN is positive. That is, for the same value of fraction of 
positive tests, increasing pFP leads to an overestimation of the fraction of coronavirus 
infections.

 • The rate of change of  f̂  CE with pFP is negative. That is, for the same value of fraction of 
positive tests, increasing pFP leads to an underestimation of the fraction of coronavirus 
infections.

 • The contours of  f̂  CE are straight lines. That is,  f̂  CE = c implies

 

pCE(ft, pFNt , pFPt) = ft(1 pFNt) + (1 ft)pFPt (19)

f̂CE =
pCE(ft, pFNt , pFPt) pFP

1 pFN  pFP

(20)

6.2.1 Patterns with Test Errors Using the Certainty Equivalent Approximation

pFP =
c

1 c
pFN +


pCE(ft, pFNt , pFPt) c

1 c

�
. (21). (21)

The rate of change of  fCE with pFN is positive. We assume (perfectly reasonably because 
otherwise there is no point in conducting testing) that pFN + pFP < 1. To simplify the sym-
bology, we set x = pFN, y = pFP, suppress the dependence of the surface positivity on the true 
test errors, and rewrite Eq. 20 as

 f̂CE(x, y) =
pCE  y

1 x y
= [pCE  y][1 x y]−1

@f̂CE(x, y)

@x
= [pCE  y](1)[1 x y]−2(1)

= [pCE  y][1 x y]−2

=


f̂CE(x, y)

1 x y

�

@f̂CE(x, y)

@y
= [1 x y]−1 + [pCE  y][1 x y]−2

=
1

1 x y
[1 + f̂CE(x, y)], which is always < 0 since f̂CE < 1

. (22)

27 Mangel, Decision and Control in Uncertain Resource Systems.
28 The analysis that follows is identical if one works with the stochastic function given by Eq. 11 but considers 
that the results are conditioned on the value of Pn/T.
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The rate of change of  f̂CE with respect to pFN is the same as the rate of change of fCE(x, y) 
with respect to x. Since only the second term on the right-hand side of Eq. 22 depends on x,

 

@f̂CE(x, y)

@x
= [pCE  y](1)[1 x y]−2(1)

= [pCE  y][1 x y]−2

=


f̂CE(x, y)

1 x y

�
, which is always > 0 . (23)
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We investigate three values of the true probability of a false negative test (rows) and three values of the true 
probability of a false positive test (columns). In each heat plot, the x axis is pFN, and the y axis is pFP. We let 
these range between 50% and 150% of the true values, so that the numerical values on the axes differ across 
plots. The entry in each heat plot is the corresponding RE in the estimate of fraction of coronavirus infections 
in the population, which varies. In the first row, the hottest values are approximately 0.4, 0.6, and 0.7 (left, 
middle, and right columns); in the second row they are approximately 0.4, 0.8, and 1.0 (left, middle, and right 
columns); in the third row they are approximately 0.6, 1.0, and 1.5 (left, middle, and right columns).

Figure 11. Sensitivity Analysis of the Relative Error for a Wider 
Range of True Test Errors Using the CE Approximation
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The intuition underlying this result is the following. The surface positivity is given. False 
negative tests mean that infected individuals are not counted as such, so that to obtain the 
data one is forced to estimate an incidence rate that is larger than the true incidence rate.

The rate of change of  f  CE with pFP is negative. The rate of change of  f̂  CE with respect to pFP 
is the same as the rate of change of  f̂  CE(x, y) with respect to y. Since both terms on the right-
hand side of Eq. 22 depend on y,

 

f̂CE(x, y) =
pCE  y

1 x y
= [pCE  y][1 x y]−1

@f̂CE(x, y)

@x
= [pCE  y](1)[1 x y]−2(1)

= [pCE  y][1 x y]−2

=


f̂CE(x, y)

1 x y

�

@f̂CE(x, y)

@y
= [1 x y]−1 + [pCE  y][1 x y]−2

=
1

1 x y
[1 + f̂CE(x, y)], which is always < 0 since f̂CE < 1 . (24)

The intuition behind this result mirrors that in the previous section. False positive tests 
mean that uninfected individuals are counted in the infected pool. Thus, to obtain the data 
one estimates an incidence rate that is smaller than the true incidence rate.

The contours of  f  CE are straight lines. When  f̂  CE(x, y) is constant, we set  f̂  CE(x, y) = c, 
where c < 1 and solve the resulting equation,

 
pCE  y

1 x y
= c

y =
c

1 c
x+

pCE  c

1 c

Thus, estimate for the fraction of coronavirus infections will be constant on lines with409

f̂CE =
ft(1 pFNt) + (1 ft)pFPt  pFP

1 pFN  pFPt

If we set pFP = pFPt , this equation becomes

f̂CE =
ft(1 pFNt  pFPt)

1 pFN  pFPt

(26)

f̂CE

ft
=

1 pFNt  pFPt

1 pFN  pFPt

(27)

,

for y in terms of x. Straightforward algebra gives

 

pCE  y

1 x y
= c

y =
c

1 c
x+

pCE  c

1 c

Thus, estimate for the fraction of coronavirus infections will be constant on lines with409

f̂CE =
ft(1 pFNt) + (1 ft)pFPt  pFP

1 pFN  pFPt

If we set pFP = pFPt , this equation becomes

f̂CE =
ft(1 pFNt  pFPt)

1 pFN  pFPt

(26)

f̂CE

ft
=

1 pFNt  pFPt

1 pFN  pFPt

(27)

.

Thus, the estimate for the fraction of coronavirus infections will be constant on lines with 
slope c/(1 – c), which is always positive, since c < 1 because it is the estimate of the fraction 
of infected individuals.

Important Analytical Gains by Assuming That pFP = pFPt

Using Eq. 19 in Eq. 20 allows us to write

 

pCE  y

1 x y
= c

y =
c

1 c
x+

pCE  c

1 c

Thus, estimate for the fraction of coronavirus infections will be constant on lines with409

f̂CE =
ft(1 pFNt) + (1 ft)pFPt  pFP

1 pFN  pFPt

If we set pFP = pFPt , this equation becomes

f̂CE =
ft(1 pFNt  pFPt)

1 pFN  pFPt

(26)

f̂CE

ft
=

1 pFNt  pFPt

1 pFN  pFPt

(27)

. (25)

If we set pFP = pFPt
, this equation becomes

 

pCE  y

1 x y
= c

y =
c

1 c
x+

pCE  c

1 c

Thus, estimate for the fraction of coronavirus infections will be constant on lines with409

f̂CE =
ft(1 pFNt) + (1 ft)pFPt  pFP

1 pFN  pFPt

If we set pFP = pFPt , this equation becomes

f̂CE =
ft(1 pFNt  pFPt)

1 pFN  pFPt

(26)

f̂CE

ft
=

1 pFNt  pFPt

1 pFN  pFPt

(27)

. (26)
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Dividing both sides of Eq. 26 by ft gives a measure of the error in incidence rate that is inde-
pendent of the true incidence rate and depends only on the true test errors and the assumed 
value of pFP:

 

pCE  y

1 x y
= c

y =
c

1 c
x+

pCE  c

1 c

Thus, estimate for the fraction of coronavirus infections will be constant on lines with409

f̂CE =
ft(1 pFNt) + (1 ft)pFPt  pFP

1 pFN  pFPt

If we set pFP = pFPt , this equation becomes

f̂CE =
ft(1 pFNt  pFPt)

1 pFN  pFPt

(26)

f̂CE

ft
=

1 pFNt  pFPt

1 pFN  pFPt

(27). (27)

In Figure 12, we show regions in the pFNt
 (x axis)-pFN (y axis) plane in which  f̂  CE/ft varies 

by no more than 20%. For ease of presentation, values of the ratio outside this region are 
colored brown for values greater than 1.2 and blue for values less than 0.8. In Figure 13, we 
show analogous results in which  f̂  CE/ft varies by no more than 30%.
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are colored brown for values greater than 1.2 and blue for values less than 0.8.

Figure 12. Regions That Vary By No More Than 20%

Figures 12 and 13 provide an operational context for how much one can be wrong in setting 
pFN and still have estimates of the incidence rate that are not too bad.
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Figure 13. Regions That Vary By No More Than 30%

Accounting for Heterogeneity in Test Errors

To account for heterogeneity in test errors, we assume that the means, variances, and cova-
riance of test errors are known and denote these by pFN and pFP (mean test errors), VpFN, 
VpFP (variance in test errors), and Cov(pFN, pFP) (covariance between test errors), respec-
tively. For ease of notation, we let
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where E(·) denotes the expectation over the distribution of the test errors.419
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1−x−y
420

denote partial derivatives (i.e fx = @f

@x

E{f(x, y)} = E{f(x, y) + fx(x x) + fy(y  y)

+
1

2
[fxx(x x)2 + 2fxy(x x)(y  y)2 + fyy(y  y)2]}

.

We now demonstrate that

f
CE

(p
FN

, p
FP

) =
pCE  p

FP

1 p
FN

 p
FP

E(f̂CE) = f
CE

(p
FN

, p
FP

) +
f
CE

(p
FN

, p
FP

)

(1 p
FN

 p
FP

)2
VpFN

+
f
CE

(p
FN

, p
FP

) 1

(1 p
FN

 p
FP

)2
VpFP

+
2f

CE
(p

FN
, p

FP
) 1

(1 p
FN

 p
FP

)2
Cov(pFN , pFP )
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where E(∙) denotes the expectation over the distribution of the test errors.

We suppress the subscript on pCE and now write 
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The first term in the first line on the right-hand side of Eq. 29 is a constant, so comes out 
of the expectation, and the next two terms are identically zero because they are linear in x 
and y, which have expectations x and y. In the second line on the right-hand side of Eq. 29, 
E{(x – x)2}, E{(y – y)2}, and E{(x – x)(y – y)} are the variances of x and y and the covari-
ance between them, so that:
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The partial derivative with respect to y is (Eq. 24)
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29 Hilborn and Mangel, Ecological Detective.
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The mixed partial derivative is found from either differentiating Eq. 31 or 33:
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Combining these in Eq. 29 we obtain
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Replacing x and y in Eq. 36 by pFN and pFP gives Eq. 28, which is a beautiful equation (sensu 
Farmelo30).

To make use of Eq. 28, one requires the means, variances, and covariance of the test errors. 
To our knowledge, those data have not yet been published, but doing so is a future valuable 
endeavor.

The Coronavirus End Game: The Case of No Positive Tests
As the pandemic wanes, we expect that no positive results from T tests will become more 
common. It is clearly wrong to infer that surface positivity being 0 means that the incidence 
rate is 0. However, since 
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It is clear that the MLE for the incidence rate is 0, with maximum value of the likelihood
L̂max = T · log(1 pFP ).

It is also clear that the 95% CI will be bounded on the left at f = 0 and have a right

hand limit that depends upon the number of tests and the test errors. We find it using

the method of Hudson (1971), who shows that a good approximation to the 95.4% CI is

fH for which

.

30 Farmelo, It Must Be Beautiful.
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It is also clear that the 95% CI will be bounded on the left at f = 0 and have a right-hand 
limit that depends on the number of tests and the test errors. We find it using the method of 
Hudson,31 who shows that a good approximation to the 95.4% CI is the value fH for which

 

The probability that P̃ = 0 when the incidence rate is f and T tests are given is

Pr{P̃ = 0|T, f}=(1 p+(f))
T

L̂(f |T ) = T · log(1 p+(f)) = T · log(1 pFP  f [1 pFP  pFN ])

L̂(fH |T ) = L̂max  2

T · log(1 pFP  fH [1 pFP  pFN ]) = T · log(1 pFP ) 2

. (39)

The solution of Eq. 39 can be obtained graphically (Figure 15), but with a few steps fH can 
also be determined analytically.

31 Hudson, “Interval Estimation.”
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In all panels, ft = 0.03 is the red dotted line and the MLE is the blue dotted line. Panels a and b show that the 
MLE can be close to ft but on either side of it. Panels c and d show that the MLE can also be close to 0 and 
also on either side of it. (For purposes of illustration, in the lower right-hand panel we have left the MLE as a 
negative number, but as explained above, in all analyses we set such values to 0). For the vast majority of the 
simulations with the base-case parameters, the likelihoods are similar to panels a and b.

Figure 14. Four Deliberately Chosen Likelihoods for the Base-Case Parameters 
Showing How the MLE  f  Can Be Close to the True Incidence Rate ft or Close to 0
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Using Eq. 38, Eq. 39 becomes

 

The probability that P̃ = 0 when the incidence rate is f and T tests are given is

Pr{P̃ = 0|T, f}=(1 p+(f))
T

L̂(f |T ) = T · log(1 p+(f)) = T · log(1 pFP  f [1 pFP  pFN ])

L̂(fH |T ) = L̂max  2

T · log(1 pFP  fH [1 pFP  pFN ]) = T · log(1 pFP ) 2 , (40)

from which it is straightforward to solve for fH; we obtain

 fH =
(1 pFP )(1 e−

2
T )

1 pFP  pFN

(41). (41)

Once fH is obtained, we can apply Eq. 4 to estimate the risk of including an infected indi-
vidual in groups of different sizes, given that no positive results were obtained in T tests 
(Figure 16).
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In a graphical solution of Eq. 39, (a) one plots the log-likelihood, Eq. 38, as a function of incidence rate, (b) 
then draws a horizontal line at two units below the maximum value of the likelihood until it intersects the 
likelihood plot, and (c) draws a vertical line from that intersection to the x axis, which gives the value of fH.

Figure 15. Graphical Illustration of Hudson’s Method for Finding the 95% CI
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Figure 16. The Risk (Probability of Including At Least One Infected 
Individual) in Groups of Different Sizes, Given That No Positive Results 

were Obtained in T Tests for the Baseline Values of pFN and pFP

Discussion
We have provided supporting analysis for the recommendations for practice given in our 
companion report32 and summarized in Eqs. 1–4 here. The key messages of our companion 
report and the additional recommendation for practice given in this report are as follows:

 • Positivity rate is not incidence rate.

 • Increasing the probability of a false negative test increases the estimate of incidence 
rate, and increasing the probability of a false positive test decreases the estimate of 
incidence rate.

 • Risk (defined as the probability of including an infected individual in a group of a 
given size) is not either/or. That is, “safety is not binary”33—but is a function of both the 
incidence rate and the group size.

To assess the quality of the recommendations for practice in our companion report,34 we 
modeled the process of generating test data in which the true state of the world (incidence 
rate ft, probability of a false negative test pFNt

, and probability of a false positive test pFPt
) is 

known. This allows us to compare analytical predictions with the true state of the world.

32 Brown and Mangel, Recommendations for Practice.
33 Carroll, “Pandemic Decisions.”
34 Brown and Mangel, Recommendations for Practice.
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When test errors are known, we showed that surface positivity is a very poor proxy for 
the underlying incidence rate (Figure 3) and that Eq. 2 is the MLE for the incidence rate 
(Eq. 11, illustrated in Figure 3). The test range given by Eq. 3 is a very good approximation 
to the true test range determined from the stochastic simulation (Figure 9). In particular, 
we demonstrated that with more than about 1,500 tests (for the base-case parameters; see 
the supplementary figures35 for other parameter values) the Gaussian approximation to the 
95% CI is virtually identical to the CI obtained from the stochastic simulation (Figure 8).

By sweeping over the number of tests, we showed that the mean of the MLE is an accurate 
estimate for even a modest number of tests, but that its variance is so great for a modest 
number of tests that the MLE is very imprecise (Figure 6). However, the standard deviation 
of the MLEs declines as the reciprocal of the square root of the number of tests (Figure 7) 
and the test range has the same characteristic (Figure 8). This result has important implica-
tions for distributing tests in space since it means that it is possible to oversample regions 
by allocating too many tests.

We then turned to the case in which the test errors are not known. To investigate this case, 
we generated data using ft, pFNt

, and pFPt
 but applied Eq. 3 assuming test errors that may 

differ from the true ones and computed the relative error between the mean of the MLEs 
and the true incidence rate (Eq. 18). Using simulation, we showed (Figures 10 and 11) that 
when the choice of pFN used in computing  f̂  exceeds the true value, one overestimates the 
true incidence rate and that when the choice of pFP used in computing  f̂  exceeds the true 
value, one underestimates the true incidence rate.

Using a certainty equivalent (CE) approximation, in which we replace stochastic surface 
positivity by its mean, we confirmed the observations from the simulation analytically 
(Eqs. 23 and 24). In addition, using the CE approximation, we showed how to include dis-
tributions of test errors in the construction of  f̂  (Eq. 29); we previously reported this in our 
companion report (appendix).36

We also explicitly considered the case in which surface positivity is 0, which is likely to 
happen during testing as the pandemic wanes (although, as shown in Figure 14, stochastic 
fluctuations may lead to 

happen during testing as the pandemic wanes (although as shown in Figure 14 stochastic492

fluctuations may lead to P̃ = 0 even when ft is far from 0). In this case the MLE for493

incidence rate is 0 and although the 95% CI can be computed from the stochastic simu-494

lation, that method is not appropriate as a recommendation for practice. When P̃ = 0495

the likelihood function simplifies considerably (Eqn 38) and using a method for approx-496

imating the 95%CI directly from the likelihood, we derived a formula for the maximum497

incidence rate consistent with no positive tests (i.e. the right hand limit of the 95% CI;498

Figure 15, Eqn 39). This can then be used in risk calculations relating group size and the499

probability of including an infected individual when P̃ = 0 (Figure 16).500

There is a remaining question about how to develop recommendations for practice501

when surface positivity P/T  pFP in which case Eqn 2 can no longer be applied since502

the right hand side is 0, which we interpret as the MLE being 0 (Figure 14d). As in the503

case of surface positivity equal to 0, the the 95% CI can be computed from the stochastic504

simulation but a simpler recommendation for practice still needs to be discovered, unless505

a test with no false positive errors is developed.506

 = 0 even when ft is far from 0). In this case the MLE for incidence 
rate is 0, and although the 95% CI can be computed from the stochastic simulation, that 
method is not appropriate as a recommendation for practice. When 

happen during testing as the pandemic wanes (although as shown in Figure 14 stochastic492

fluctuations may lead to P̃ = 0 even when ft is far from 0). In this case the MLE for493

incidence rate is 0 and although the 95% CI can be computed from the stochastic simu-494

lation, that method is not appropriate as a recommendation for practice. When P̃ = 0495

the likelihood function simplifies considerably (Eqn 38) and using a method for approx-496

imating the 95%CI directly from the likelihood, we derived a formula for the maximum497

incidence rate consistent with no positive tests (i.e. the right hand limit of the 95% CI;498

Figure 15, Eqn 39). This can then be used in risk calculations relating group size and the499

probability of including an infected individual when P̃ = 0 (Figure 16).500

There is a remaining question about how to develop recommendations for practice501

when surface positivity P/T  pFP in which case Eqn 2 can no longer be applied since502

the right hand side is 0, which we interpret as the MLE being 0 (Figure 14d). As in the503

case of surface positivity equal to 0, the the 95% CI can be computed from the stochastic504

simulation but a simpler recommendation for practice still needs to be discovered, unless505

a test with no false positive errors is developed.506

 = 0, the likelihood 
function simplifies considerably (Eq. 38), and using a method for approximating the 95% 
CI directly from the likelihood, we derived a formula for the maximum incidence rate con-
sistent with no positive tests (i.e., the right-hand limit of the 95% CI; Figure 15, Eq. 41). This 
can then be used in risk calculations relating group size and the probability of including an 
infected individual when 

happen during testing as the pandemic wanes (although as shown in Figure 14 stochastic492

fluctuations may lead to P̃ = 0 even when ft is far from 0). In this case the MLE for493

incidence rate is 0 and although the 95% CI can be computed from the stochastic simu-494

lation, that method is not appropriate as a recommendation for practice. When P̃ = 0495

the likelihood function simplifies considerably (Eqn 38) and using a method for approx-496

imating the 95%CI directly from the likelihood, we derived a formula for the maximum497

incidence rate consistent with no positive tests (i.e. the right hand limit of the 95% CI;498

Figure 15, Eqn 39). This can then be used in risk calculations relating group size and the499

probability of including an infected individual when P̃ = 0 (Figure 16).500

There is a remaining question about how to develop recommendations for practice501

when surface positivity P/T  pFP in which case Eqn 2 can no longer be applied since502

the right hand side is 0, which we interpret as the MLE being 0 (Figure 14d). As in the503

case of surface positivity equal to 0, the the 95% CI can be computed from the stochastic504

simulation but a simpler recommendation for practice still needs to be discovered, unless505

a test with no false positive errors is developed.506

 = 0 (Figure 16).

35 Available at https://www.jhuapl.edu/Content/figures/Mangel_Brown_SuppFigs.pdf.
36 Brown and Mangel, Recommendations for Practice.

https://www.jhuapl.edu/Content/figures/Mangel_Brown_SuppFigs.pdf
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There is a remaining question about how to develop recommendations for practice when 
surface positivity P/T ≤ pFP, in which case Eq. 2 can no longer be applied since the right-
hand side is 0, which we interpret as the MLE being 0 (Figure 14d). As in the case of surface 
positivity equal to 0, the 95% CI can be computed from the stochastic simulation, but a 
simpler recommendation for practice still needs to be discovered, unless a test with no false 
positive errors is developed.
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Supplementary Figures

In the main text, we used base-case parameters ft  =  0.03, pFN  =  0.3, and pFP  =  0.05. In 
this section, we reproduce Figures 6–9 for different parameters that bracket the base-case 
parameters of the text: ft = 0.01, 0.03, 0.09; pFN = 0.2, 0.3, 0.4; and pFP = 0.025, 0.05, 0.1. 
Including the base-case parameters, there are 27 combinations of parameters. For ease of 
presentation, we show one four-panel figure (corresponding to Figures 6–9) for each of the 
parameter combinations.37

Examination of these figures shows that

 • All of the qualitative patterns described for the base-case parameters are present for 
each of the alternative parameter sets.

 • The methods we developed perform most poorly when ft = 0.01. This is the result of the 
infection being rarer, and consequently harder to detect.

 • Similarly, the method performs most poorly for the largest values of false negative and 
false positive tests because the information obtained via testing is most degraded.

However, the main conclusions remain intact.

37 Available at https://www.jhuapl.edu/Content/figures/Mangel_Brown_SuppFigs.pdf.

https://www.jhuapl.edu/Content/figures/Mangel_Brown_SuppFigs.pdf
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Appendix The Binomial Probability Distribution and Likelihood 
and the Gaussian Approximation to the Binomial

The Binomial Distribution

The binomial distribution arises in coin flipping. Imagine that a coin, for which the prob-
ability of landing on heads is p, is flipped N times. The number of times the coin lands on 
heads is then 0, 1, 2, ... N; the binomial distribution gives the probability of obtaining k 
heads in the N flips.

We denote this probability by B(k, N, p).

The analogy with coronavirus testing is clear: instead of the number of flips, we have the 
number of tests T; the probability of a positive test given by Eq. 1; and instead of the number 
of times landing on heads, we have the number of positive tests P.

For the binomial distribution in coin flipping, we let K denote a random variable corre-
sponding to the number of times the coin lands on heads. The probability that K = k is

 Pr{K = k|N, p} =
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N

k

◆
pk(1− p)N−k (42)
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. We write K ~ B(∙, N, p) to denote that K, which may take specific 
values from 0 to N, has probabilities generated by a binomial distribution with parameters 
N and p.

Since B(k, N, p) is the probability of k heads in N flips and the outcome of each flip must be 
either heads or tails, when we sum these probabilities over all values of k we must obtain 1. 
That is, 

Pr{K = k|N, p} =
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The expected or mean number of times the coin lands on heads is E(K | N, p) = Np, and the 
variance in the number of times it lands on heads is Var(K  |  N, p) = Np(1 – p).38 Thus, the 
coefficient of variation (standard deviation divided by the mean) in the number of flips is
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The coefficient of variation of K, a measure of dispersion around the mean value, scales as 
N–0.5; this is relevant in our discussion of test precision.

38 Feller, Probability Theory.
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The Binomial Likelihood

Our second analytical tool is the binomial likelihood. Instead of asking about the chances 
of a certain number of times a coin will land on heads given the number of flips and the 
chance of landing on heads on a single flip, we begin with the observation of K heads in N 
flips and ask what inferences can be made about the probability that the coin will land on 
heads on a single flip.

The likelihood of p given K and N, which we write as L(p  |  K, N) where the vertical line is 
used to separate the quantity about which we wish to make inference (p) and the observa-
tions (K and N), is

 L(p|K,N) =

✓
N

k

◆
pk(1 p)N−k

φ(p|K,N) =
L(p|K,N)

P1
p0=0 L(p0|K,N)

. (44)

Intuition suggests that a good estimate for the probability of heads is K/N; the likelihood 
allows us to quantify that intuition and characterize the uncertainty of the estimate.39

The right-hand side of Eq. 44 is exactly the same as the right-hand side of Eq. 42 except that 
now p is the variable and K is fixed. Three important points about the binomial likelihood 
are (1) p is a continuous variable ranging from 0 to 1;40 (2) since the binomial coefficient 
is independent of p we can write L(p | K, N) ∝ pk(1 – p)N – k; and (3) unlike the binomial 
distribution that sums to 1 as k ranges between 0 and N, the binomial likelihood does not 
integrate to 1 over p ranges from 0 to 1.

To convert the binomial likelihood to a probability distribution, we normalize the likeli-
hood by its weighted sum. If all values of p are considered equally likely, the appropriate 
probability density, denoted by ϕ(p | K, N), is

 

L(p|K,N) =
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N

k

◆
pk(1 p)N−k

φ(p|K,N) =
L(p|K,N)

P1
p0=0 L(p0|K,N)

, (45)

where we have replaced what is more properly an integral (since p is continuous) by the 
summation that we used in the computations, and we use p to reduce confusion about 
where p appears on the right-hand side of Eq. 45. That is, the denominator in this equation 
is a normalization constant.

39 It is straightforward to show (Mangel, Theoretical Biologist’s Toolbox) that the value of p that makes the likeli-
hood its maximum is pMLE(K, N) = K/N, according to the intuition described above.
40 Thus, instead of summing, one should integrate. For the results presented here, we discretized the interval 
between 0 and 1 into increments of 0.001 and replaced integration by summation.
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In the upper left-hand panel we show the probability of a coin landing on heads k times in N = 20 flips when 
the probability of heads is ptrue = 0.4. Because we can observe only an integer number of the times the coin 
lands on heads, we show the probabilities as points. The most likely number of heads, the value of k giving 
the peak of the points, is 8, which accords with our intuition of having 40% of the 20 flips as heads and is the 
maximum likelihood estimate (MLE). As k moves away from this most likely value of 8, the probability of 
observing a given number of heads declines. In the remaining five panels we show the normalized likelihood 
of different values of the probability of heads p when the observed number of heads is 6 (upper right), 8 
(middle left), 10 (middle right), 12 (lower left), or 14 (lower right). Each of these values of the observation is 
possible, but they have different probabilities of occurring. But once they have occurred, those are the data 
and we must make inferences about the possible values of p from them. In the panels showing likelihood, we 
have plotted a vertical line at the true value of the probability of heads. Note that as the value of K increases 
from 6 to 14, the value of p giving the maximum value of the likelihood increases and accords with our 
intuition that pMLE(K, N) = K/N. If we were to repeat the process of flipping the coin 20 times over and over 
again, because of the upper left-hand panel we expect that curves similar to the that in the middle left-hand 
panel will occur more frequently than some of the others.

Figure A-1. Illustration of the Binomial Distribution and Associated Likelihood
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If one had prior information about possible values of p, denoted by ϕ0(p), then according 
to Bayes’ theorem of conditional probability, the probability density of p given the data is

 φ(p|K,N) =
L(p|K,N)φ0(p)P1

p0=0 L(p0|K,N)φ0(p0)

B(k,N, p) =
1p

2⇡Np(1− p)
exp


− (k −Np)2

2Np(1− p)

�

. (46)

In Figure A-1, we give an example of the binomial distribution and associated normalized 
binomial likelihood.

The Gaussian Approximation to the Binomial Distribution

When the mean of a binomial distribution Np is bounded away from 0 and N, a normal 
distribution with mean Np and variance Np(1 – p) provides a very good approximation to 
the binomial distribution.41 That is, we can then write

 B(k,N, p) u
1p

2⇡Np(1− p)
exp


− (k −Np)2

2Np(1− p)

�
. (47)

41 Feller, Probability Theory, 179–186.
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