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Abstract

Light is a central driver of biological processes and systems. Receding sea ice

changes the lightscape of high-latitude oceans and more light will penetrate into the

sea. This affects bottom-up control through primary productivity and top-down con-

trol through vision-based foraging. We model effects of sea-ice shading on visual

search to develop a mechanistic understanding of how climate-driven sea-ice retreat

affects predator–prey interactions. We adapt a prey encounter model for ice-cov-

ered waters, where prey-detection performance of planktivorous fish depends on

the light cycle. We use hindcast sea-ice concentrations (past 35 years) and compare

with a future no-ice scenario to project visual range along two south–north tran-

sects with different sea-ice distributions and seasonality, one through the Bering

Sea and one through the Barents Sea. The transect approach captures the transition

from sub-Arctic to Arctic ecosystems and allows for comparison of latitudinal differ-

ences between longitudes. We find that past sea-ice retreat has increased visual

search at a rate of 2.7% to 4.2% per decade from the long-term mean; and for high

latitudes, we predict a 16-fold increase in clearance rate. Top-down control is there-

fore predicted to intensify. Ecological and evolutionary consequences for polar mar-

ine communities and energy flows would follow, possibly also as tipping points and

regime shifts. We expect species distributions to track the receding ice-edge, and in

particular expect species with large migratory capacity to make foraging forays into

high-latitude oceans. However, the extreme seasonality in photoperiod of high-lati-

tude oceans may counteract such shifts and rather act as a zoogeographical filter

limiting poleward range expansion. The provided mechanistic insights are relevant

for pelagic ecosystems globally, including lakes where shifted distributions are sel-

dom possible but where predator–prey consequences would be much related. As

part of the discussion on photoperiodic implications for high-latitude range shifts,

we provide a short review of studies linking physical drivers to latitudinal extent.
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1 | INTRODUCTION

The effects of environmental change are mediated through

responses of individuals. Besides physiological responses, predator–

prey interactions are a key mechanism through which climate-driven

change affects populations and ecosystems (Sydeman, Poloczanska,

Reed, & Thompson, 2015). Foraging behaviour and predator–prey

interactions affect structure and function of ecological systems (Rip-

ple & Beschta, 2012; Schmitz, Krivan, & Ovadia, 2004). Global and

local climate change will modify physical foraging constraints, some

will be relieved or become void, others will be strengthened and

novel ones are likely to arise. Foraging constraints in animal systems

operate via restricted or time-limited access, reduced ability to locate

food, or trade-offs between acquired and spent energy during forag-

ing. Many studies have reported altered foraging performance and

reconfiguration of trophic interactions in response to climate-driven

change of the physical habitat. Ungulates encounter ice-locked pas-

tures (Hansen, Aanes, Herfindal, Kohler, & Sæther, 2011), murkier

water caused by increased river run-offs limit visual prey detection

in fish (J€onsson et al., 2011), sea level rise narrows the temporal

exposure of tidal flats to foraging waders (Galbraith et al., 2002),

change in wind speed and patterns paralleled by change in wave

action affects foraging effort in seabirds (Lewis, Phillips, Burthe,

Wanless, & Daunt, 2015), while sea-ice loss deprives mammalian

predators of access to their prey (Stirling & Derocher, 2012). These

examples highlight the importance of trophic interactions as link

between environmental changes, individual fitness and population

and community level patterns and processes.

Climate change effects are exacerbated in polar marine ecosys-

tems (Hoegh-Guldberg & Bruno, 2010), where the highly seasonal

light environment is a key characteristic and a driver of many adap-

tations and ecological interactions (Berge et al., 2015; Regular, Davo-

ren, Hedd, & Montevecchi, 2010). Most prominently, Arctic

temperatures rise at twice the global average (Hoegh-Guldberg &

Bruno, 2010; P€ortner et al., 2014), paralleled by a significant long-

term reduction in sea-ice extent (SIE) and thickness (Comiso, 2012;

Stroeve et al., 2012), and much altered sea-ice phenology. Without

the shading effect of sea ice, more light will reach the water column

(Varpe, Daase, & Kristiansen, 2015; Figure 1), affecting both bottom-

up control through primary productivity (Arrigo, van Dijken, & Pabi,

2008) and top-down control through visual foraging (Aksnes, Nejst-

gaard, Saedberg, & Sørnes, 2004). Increased light due to less ice can

change polar benthic communities towards autotrophic and macroal-

gae dominance (Clark et al., 2013; Kortsch et al., 2012). The under-

pinning mechanism of climate-induced pelagic regime shifts

(Beaugrand et al., 2014) and the role of top-down control by visual

predators (Varpe et al., 2015) is however elusive. Seasonality in pho-

toperiod is, in contrast to temperature, decoupled from climate

change and constitutes a stable abiotic environmental factor but

with a marked latitudinal gradient. Hence, the Arctic light regime

provides the unique opportunity to disentangle the dynamic effects

of climate change from underlying static mechanisms.

With this study, we merge several recent conceptual ideas on

high-latitude fish foraging and distributions (Kaartvedt, 2008; Saikko-

nen et al., 2012; Sundby, Drinkwater, & Kjesbu, 2016; Varpe et al.,

2015) and advance from the stage of conceptual work to a mechanis-

tic and fully parameterized model framework. We quantify, for the first

time, the potential increase in visual search efficiency in a generic

high-latitude pelagic fish over the annual photic cycle, along gradients

of latitude and intra- and interannual sea-ice cover. Estimates of

change in visual search are provided for sea-ice conditions over the

period 1978–2015 and compared to an Arctic Ocean (AO) void of sea-

ice. We contextualize our findings by discussing light as a biological

mechanism defining species range margins in a changing climate and

tie it to the ongoing borealization of Arctic fish communities (Fossheim

et al., 2015). Climate driven sea-ice retreat, and the resultant change

to the amount of light reaching the waters below includes a range of

known nonlinear dynamics (i.e. ice-albedo feedbacks and exponential

F IGURE 1 Visual search in a changing Arctic Ocean: (a) Less sea ice means increased light, which results in more efficient visual search.
Sea-ice extent has retreated in the past (turquoise line) and is projected to continue in the future (extended linear trend line, grey) with
consequences for the pelagic lightscape (dashed white line). Prey items, here depicted as a copepod of equal size and distance to the predator,
will become more likely to be visually detected with decreasing sea-ice thickness because the visual range of predators scales with incoming
light. (b) The distance at which a predator can spot its prey depends on many factors, including incoming light and the optical properties of
prey and water. For visual purposes, visual range and fish size are not drawn to scale [Colour figure can be viewed at wileyonlinelibrary.com]
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light transmission with decreasing ice and snow thickness, Fig S5).

Therefore, we expect strongly nonlinear responses of visual search,

both in space and time, with effects likely to propagate through the

food web.

2 | MATERIALS AND METHODS

2.1 | Model framework

We model the visual prey detection range of planktivorous fish over

the annual cycle and along gradients of latitude and sea-ice condi-

tions. Visual range was modelled as described by Aksnes and Giske

(1993) and Aksnes and Utne (1997), except that the model was

forced by photosynthetically available solar radiation (PAR), in the

range of visible light between 400-700 nm, under clear sky condi-

tions (Figs. S1–S3). PAR calculations (W m�2) for solar irradiance at

the ocean surface, accounting for the angle of incidence, are based

on an analytical formula by Frouin, Lingner, Gautier, Baker, and

Smith (1989), implemented for R in the “fishmethods” package (Nel-

son, 2016). Details can be found in the “astrocalc4r” documentation

by NOAA (Jacobson, Seaver, & Tang, 2011). Transmission calcula-

tions for light availability at depth, applying the Lambert-Beer law,

were made in relation to the sea-ice cover (Fig. S4). A similar model

set-up has previously been used to study the effects of light on pre-

dation-related zooplankton mortality (Aksnes et al., 2004), energy

flux in marine food chains and seasonal foraging by migratory fish

(Varpe & Fiksen, 2010). Therefore, we limit the model description

here to a summary of all equations and parameters (Table 1), and

refer to Aksnes and Giske (1993), Aksnes and Utne (1997), Huse

and Fiksen (2010), Varpe and Fiksen (2010), van Deurs, Jørgensen,

and Fiksen (2015) for detailed model descriptions. See also studies

by O’Brien and Evans (1992) and Eggers (1977) for pioneering work

on the visual ecology of planktivorous fish. Our model provides

hourly estimates of visual range as a function of sea-ice conditions

and latitude. The underlying principle is that ambient light scales the

distance at which a visual predator can locate its prey, termed visual

range. With less sea ice, more light will reach the water and prey

becomes detectable at larger distance for fish, increasing foraging

efficiency (Figure 1a).

Prey and predator size act only as scaling parameters without

affecting the relative integrity of model estimates. We parameter-

ized the model to represent a generic forage fish of 20 cm body

length (BL), selectively preying on planktonic copepods with total

body length of 4 mm (image area of 3 9 10�6 m2). The selected

size exceeds the body size of Calanus finmarchicus (Leinaas, Jalal,

Gabrielsen, & Hessen, 2016) dominating total copepod biomass in

the sub-Arctic North Atlantic Ocean (Planque & Batten, 2000), but

represents a conservative size estimate in respect of some larger

high-Arctic copepods, such as Calanus hyperboreus (Leinaas et al.,

2016).

2.2 | Scenario building

We compiled daily sea-ice concentration scenarios based on a time

series from the National Snow and Ice Data Center (NSIDC) that

provides satellite-derived daily sea-ice concentration (SIC) on a grid

of 25 9 25 km from 1978 to 2015 (Cavalieri, Parkinson, Gloersen, &

Zwally, 1996). We excluded 1978, 1987, 1988 as they lack full sea-

sonal coverage. From 1978 to 1987, SIC is only available for every

second day. We extracted SIC for intervals of 1° latitude along two

transects, a North Pacific transect (55–85°N, 169°W) and a North

Atlantic transect (70–85°N, 35°E). The former spanning from the

TABLE 1 Model summary, including a list of all equations, units and references, used to describe visual range of pelagic fish along latitudinal
gradients that include sea ice in the north

# Explanation (units) Equations Parameter description

1 Visual range (m)a R2
t;dð Þexp

ðcR t;dð Þ Þ ¼ eCpApE0
I t;dð Þ

KeþI t;dð Þ
or if R <~

0.05 mRt;d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CpApE0e Iðt;dÞ

KeþIðt;dÞ

q
c = beam attenuation coefficient = 0.3b

Cp = prey contrast = 0.3b

Ap = prey image area (m2) = 3 9 10�6 b

t, d = time (h) and Julian day

I = ambient irradiance (Eq. 3)

E0 = visual capacity

Ke (lE m�2 s�1) = composite saturation parameter

E0 and K are scaled such that R = 1 BL

when light is not limiting and prey image area

(Prey length 9 prey width 9 0.75) = 3 9 10�6 m2

I0 = irradiance at the water surface

2 Irradiance corrected for

local surface albedo (W m�2)

Iaðt;dÞ ¼ eI0 t;dð Þ ð1� aÞ a = local surface albedo = 0.5 for sea icec, 0.9 for

fresh snowc and 0.06 for open ocean waterc

3 Ambient irradiance (W m�2) I ¼ eIaðt;dÞexpð�k�zÞ k = diffuse attenuation coefficients (m�1) = 20 for snowd,

5 for upper 10cm of sea iced, 1 for sea ice interiord

and 0.1 for ocean waterb.

z = light path length in medium

aAksnes and Utne (1997).
bVarpe and Fiksen (2010).
cPerovich (1996).
dGrenfell and Maykut (1977).
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Bering Sea, through the Bering Strait into the Arctic proper and the

latter crossing the Barents Sea and entering the AO between Sval-

bard and Franz Josef Land (Figure 2). The choice of transects

attempts to capture the large-scale contrast between the Pacific and

Atlantic side of the AO. Sea ice occurs at higher latitudes and thus

in a more extreme light environment, in the Atlantic than the Pacific

Arctic (Barnhart, Miller, Overeem, & Kay, 2015; Parkinson, 2014).

For each transect, daily, empirical pan-arctic sea-ice concentra-

tion scenarios over a period of 35 years were established. We

excluded latitudes above 85°N as accurate coverage within this sec-

tor cannot be warranted (Cavalieri et al., 1996).

To explore the change in visual range in response to a changing

physical environment, we compared hindcast estimates under past

sea-ice conditions against the extreme—yet predicted—scenario of

an ice-free AO. Arguments are developed for an all-else-equal sce-

nario, omitting feedback loops of increased light transmission, subse-

quent phytoplankton growth and hence increased turbidity. Here,

we consider the conservative case of uniform, 120 cm thick sea ice,

covered by 10 cm of fresh snow (see Fig. S5 for the effect of snow

and ice thickness), representative for a first-year ice (FYI) situation

(Tilling, Ridout, & Shepherd, 2016) along the transects. All calcula-

tions were made for fish foraging at 30 m depth.

3 | RESULTS

3.1 | Latitudinal variability in visual range under a
no-ice scenario

In the absence of sea ice, our model predicts a sattle-shaped pattern

where interannual variation of the average visual range increased

with increasing latitude; reflecting the transition from a predomi-

nantly circadian lightscape at low latitudes to a more seasonal, and

less circadian, light regime at higher latitudes (Figure 3). At high lati-

tudes (~75–85°N), visual range peaked around summer solstice with

a daily average of 6 cm and declined to an average of <1 cm during

the polar night. At low latitudes (0°–20°N), average visual range is only

marginally influenced by the seasonality in solar radiation (Figure 3).

3.2 | Seasonal effects of sea ice on visual range

We found sea ice to fundamentally restructure the visual foraging

landscape, and because sea-ice properties (phenology, concentration

and lowest-latitude of occurrence) differ across the Arctic (see Fig-

ure 2 for reference), the light environment is spatially variable

beyond the constraints dictated by photoperiod (Figure 4). Along the

F IGURE 2 Exemplary map of Arctic sea ice (in 2015) illustrating
the seasonal range in sea-ice extent. Sea ice at its maximum annual
extent (mid-March) is colour-coded based on 10% concentration
increments from ice-free (black) to total cover (white). The hatched
area marks the minimal annual extent (<75% sea-ice concentration)
during mid-September. Circles along two transects (Bering Sea and
Barents Sea) indicate point source location of sea-ice concentrations
used to build daily sea ice. Sea-ice concentrations are based on
satellite-born Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive
Microwave Data (Cavalieri et al., 1996) [Colour figure can be viewed
at wileyonlinelibrary.com]

F IGURE 3 Mean visual range (cm) varies by day of the year and
latitude (°N) in relation to the surface light regime, here plotted as
day length in hours when the sun reaches above the horizon. For
this no-ice scenario, there are smooth latitudinal transitions [Colour
figure can be viewed at wileyonlinelibrary.com]
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Bering Sea transect, sea ice extends to latitudes below the Arctic

Circle. Ice retracts by about 20° latitude during the melting season,

with a window of about 330 ice-free days (<10% ice cover) at its

southern margin. The window of sea-ice minimum gradually narrows

towards the pole until 80–85°N where >90% ice cover reigns for

nearly three quarters of the year (Figure 4a). Along the Barents Sea

transect, sea ice exhibits a similar phenology as in the Bering Sea,

but with a less pronounced amplitude and therefore with a steeper

spatial gradient at higher latitudes and ice extending less far south

onto the shelf (Figures 4b and 2).

Importantly, the seasonal window of sea ice minimum is not syn-

chronized with the window of available solar light. Whereas surface

irradiance is at its minimum at the winter solstice, the lid as repre-

sented by sea ice can last far into the light season, in particular at

high latitudes (Figure 4a, b). Sea-ice minimum and maximum were

found on average to be offset from summer solstice by 73 (�7 SD)

and -110 (�24 SD) days across both transects. Sea-ice melt past

summer solstice causes peak light availability at depth to be delayed

relative to surface irradiance, which translates into a shift of the pre-

dation landscape towards later in the season.

3.3 | Temporal and spatial variability in hindcast
visual range estimates

In an ice-free future, our model predicts a gradual decrease of yearly

averages in visual range towards the pole. Hindcast estimates of

visual range fall below future projections. Towards higher latitudes,

the divergence between projections and hindcast estimates

increases, as the period of seasonal ice-cover lengthens (Figure 5a).

Changes in ice cover from 1979 to 2015 have already resulted in an

increased visual range, except for around 60°N along the Bering Sea

transect where visual range has slightly decreased. Year-to-year

change in visual range is spatially variable, but highest percent

change per decade is found around 76°N in the Pacific Arctic and

around 81°N in the Atlantic Arctic (Figure 5b). In the Barents Sea,

changes in visual range have accelerated during the last decade (Fig-

ure 5a). With receding sea ice, visual range is eventually bound to

converge with projected values made under an ice-free scenario,

representative for the terminal stage of observed sea-ice loss. In the

central Arctic basin, this will result in a fourfold increase of current

visual range (Figure 5b).

The visual range of planktivorous fish is predicted to have chan-

ged significantly over the past 35 years (Figure 6) at a similar rate

between the Atlantic and Pacific side of the AO.

4 | DISCUSSION

We demonstrate for the first time through mechanistic modelling

how a new subaqueous lightscape, emerging as Arctic sea ice decli-

nes, should seasonally boost visual search of planktivorous fish. We

show conclusively that seasonal sea-ice occurrence and its timing

(a)

(c) (d) (e)

(b)

F IGURE 4 Sea-ice extent and phenology (a and b), here averaged for the period 2010–2015, dictates visual range of fish below the sea ice
(c and d). Comparison to visual range under a no-ice scenario (e) (see also Figure 3) reveals that shadowing of the water column by sea ice
impedes vision in fish and shifts peak visual range towards later in the season. Grey lines mark summer solstice, black dots the annual
maximum in visual range and upward and downward pointing white triangles sea-ice maximum and minimum respectively. Maximum or
minimum sea ice values were calculated as median of values falling within a 10% increment around the minimum and maximum value. [Colour
figure can be viewed at wileyonlinelibrary.com]
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relative to photoperiod affects visual foraging efficiency, and that

sea ice creates a heterogenic pan-arctic landscape of foraging oppor-

tunities. In its current state, sea ice acts as a lid that shields the

water below and thus constrains vision-dependent prey search in

high-latitude oceans. The shading effect is particularly strong when

sea ice is consolidated and prevalent for extended periods during

the light season. Hindcasting visual range over the past four decades

exposes that climate-driven sea-ice retreat has already begun to

release visual foraging constraints. Here, we provide quantitative

predictions under an all-else-equal scenario, which suggest that the

Arctic pelagic ecosystem is on a nonlinear trajectory to become a

hot-spot for high latitude summer feeding (Figure 7).

4.1 | The sea-ice lid and consequences for fish
performance and distributions

Our results show that sea ice is an important contributor in shaping

the pelagic lightscape, and that ice causes constraints beyond the

scope of photoperiod (Figure 4). Therefore, sea-ice phenology is piv-

otal to the visual predation landscape. Earlier ice break-up, or a shift

in ice-free days towards midsummer, means that light at depth is

available over a period with more daylight hours. The nonlinearity of

this relationship increases towards the poles, making ice-free days

around summer solstice at high latitudes increasingly beneficial to

visual predators, whereas the role of ice-cover closer to winter sol-

stice loses in importance towards the poles (see Clark et al., 2013

for a detailed graphical derivation).

Based on hindcast estimates of visual range, we present evidence

that declining sea ice eliminates those limitations (Figure 5), opening

a window for much improved summer feeding (Figure 3). Feeding

migrations into the high Arctic are then expected, given sufficient

food availability. Current projected changes of AO primary produc-

tion (PP) are inconsistent regarding the sign of change, yet the

underpinning mechanisms are consistent (Vancoppenolle et al.,

2013). While increased light transmission due to reduced and thin-

ning sea-ice cover is expected to increase PP (Arrigo et al., 2008)

but also to change the timing (Ji, Jin, & Varpe, 2013) and the extent

of (sub-ice) phytoplankton blooms (Horvat et al., 2017), depletion of

nitrate and enhanced stratification may increasingly limit productivity

towards the end of the century (Slagstad, Wassmann, & Ellingsen,

2015; Vancoppenolle et al., 2013). However, sea-ice retreat off the

Arctic shelf may cause winter upwelling at the shelf-break, which in

combination with a prolonged growth season can fuel production

(Falk-Pedersen et al., 2015). Despite the general agreement that PP

in the central AO will remain low (Slagstad et al., 2015), key meso-

zooplankton species might benefit on a pan-arctic scale. Particular

increases of C. finmarchicus are expected along the Eurasian perime-

ter of the AO, while C. glacialis is predicted to expand its distribution

F IGURE 5 Climate-driven sea-ice decline unlocks potential for visual predation at high latitudes. (a) Hindcast visual range, given as yearly
averages by increments of 1° latitude, for the years 1979–2015 are depicted by coloured lines, in comparison to projected estimates of visual
range made for a future ice-free AO, marked by grey lines with open circles. (b) The potential for increase in visual range was calculated as the
ratio between estimates derived under the ice-free scenario and the average of hindcast estimates across the past 35 years, marked by black
line with open circles. Underlying maps serve the orientation and are centred around the transect longitudes [Colour figure can be viewed at
wileyonlinelibrary.com]
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poleward (Feng, Ji, Campbell, Ashjian, & Zhang, 2016; Slagstad et al.,

2015).

Besides fish, receding sea ice will change the foraging habitat for

most Arctic seabirds and whales. Ice can act as a barrier for air

breathers and shelter to their prey, limiting foraging to the ice edge

environment (Brierley, 2002). Given the nonlinear latitudinal distribu-

tion of the foraging landscape (Figure 3), mobile, fast swimming

predators able to cover long distances will have most to gain from

feeding forays into high latitudes oceans. These predictions coincide

with increased high-latitude incidences of known pelagic migrants

with temperate or boreal biogeographic affinities such as Atlantic

Salmon Salmo salar (Jensen et al., 2014), Chinook Salmon Oncor-

hynchus tshawytscha (Logerwell et al., 2015), Atlantic mackerel Scom-

ber scombrus and Atlantic herring Clupea harengus (Berge et al.,

2015). In the south-eastern Bering Sea, the migration of Pacific her-

ring (Clupea pallasii) closely tracks the ice edge, and winter feeding

grounds have shifted north-westward during recent years. Tojo,

Kruse, and Funk (2007) suggest predator avoidance and reduced

basal metabolic rates as likely explanations. In general, an overall

northward displacement of pelagic traits has been observed in Arctic

shelf-seas (Fossheim et al., 2015; Kortsch, Primicerio, Fossheim, Dol-

gov, & Aschan, 2015). This community change is further reflected in

the dietary shift from invertebrates to fish in some Arctic top-preda-

tors (Crawford, Quakenbush, & Citta, 2015).

4.2 | Photoperiodic implications for high-latitude
range expansion

Species respond to changing climate by changes in their distribution

range (Lenoir & Svenning, 2015). This pattern is global, largely coher-

ent and observed across a wide range of taxa (Hickling, Roy, Hill,

Fox, & Thomas, 2006; Sorte, Williams, & Carlton, 2010). Climate-

induced shifts in distribution are generally assumed to occur unidi-

rectionally along gradients of temperature, due to thermal control of

physiological processes (Clark, Sandblom, & Jutfelt, 2013; P€ortner,

2012). Therefore, range shifts are typically poleward (Parmesan &

Yohe, 2003; Perry, Low, Ellis, & Reynolds, 2005; Poloczanska et al.,

2013) or towards higher altitudes in terrestrial systems, and towards

greater depth in the case of global ocean warming (Dulvy et al.,

2008; Fossheim et al., 2015).

The logic of latitudinal range shifts driven by thermal limits dictates

that under continuous warming the tropics face a net loss of species

(as local extinction > local invasion) while the polar regions will experi-

ence high invasion rates paralleled by local extinction of the endemic

cold stenotherm fauna (Cheung et al., 2009). However, this concept

neglects the role of photoperiod as part of a species fundamental

niche. For phototrophs, light is inherently accepted as part of their

environmental niche and an acknowledged driver of their latitudinal

distribution (Muir, Wallace, Done, & Aguirre, 2015), the same practice

is generally not adopted for heterotrophs. Marine range shift theory is

largely informed by studies from temperate regions where seasonality

in light is minor (Figure 3) but seasonality in temperature is major

(Mackas et al., 2012). Temperature is the most common explanation

suggested for observed range shifts (Table 2).

However, light is a central driver of biological systems at high

latitudes. As the seasonality of light increases with latitude, so does

its relevance as a structuring factor, and in high latitude oceans, the

extreme photoperiod may synergistically with temperature act as the

key factor defining species range margins (Kaartvedt, 2008; Sundby

et al., 2016; Varpe et al., 2015). Biological rhythms and activity pat-

terns of polar organisms are highly influenced by the light regime

(van Oort et al., 2005) and photoperiodic responses are central to

fitness (Varpe, 2012). The shorter the favourable season, the more

important does the precise timing of crucial life-history events such

as migration, growth and reproduction become (Conover, 1992), all

of which at some stage depend on successful foraging in order to

have energy and resources to allocate to vital body functions (Fig-

ure 2 in Enberg et al., 2012). Therefore, the failure to account for

light seasonality in climate-niche models might yield unrealistic pro-

jections for species distributions at high latitudes. Yet, recent work

concludes a moderate to high likelihood for several sub-Arctic pela-

gic species (e.g. Atlantic herring and capelin) to expand into the AO

with unlimited extent beyond the shelf edge (Haug et al., 2017).

Although built upon life-history considerations, vision-based feeding

and vision-based predation risk (sensu Kaartvedt, 2008) are still

being disregarded.

In contrast to temperature, seasonality in surface light is

detached from climate change. Hence, photoperiod will persist to be

F IGURE 6 Modelling results predict a significant change in visual
range of fish in the period 1979–2015, with a similar rate of change
in the Pacific and Atlantic Arctic. Yearly averages of visual range
(coloured dots) are shown as deviation from the long-term mean
across all study years (grey horizontal line). Decadal rate of change is
2.7% and 4.2% for the Bering Sea and Barents Sea transect,
respectively. The linear fit (black line) had slopes different from 0
(p < .001) for both transects. [Colour figure can be viewed at
wileyonlinelibrary.com]
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a stable abiotic ecological filter (Saikkonen et al., 2012) selecting

against nonadapted life histories. Clearly, seasonal environments

require different strategies as they impose a different selection

regime (e.g. sufficient energy storage to overcome starvation peri-

ods) than nonseasonal environments. Only species with behavioural

strategies and life histories adapted to complete a full life cycle

under the constraints of seasonally varying food availability, foraging

environment, predation pressure and abiotic conditions will be able

to pass that filter and colonize high latitudes. Behavioural strategies

will affect to what extent different fish species can benefit from the

boost in light. Any substantial foraging gains from the boost in light

will be limited to the summer months as the polar night persists to

be relatively dark and visual foraging is consequently expected to

remain low, regardless of sea-ice loss. Although, some native polar

organisms are able to detect and utilize low levels of irradiance dur-

ing the polar night (Cohen et al., 2015). Planktivores also have

predators, some of them being visual. In accordance with the

antipredation window hypothesis (Clark & Levy, 1988), summer for-

aging gains of planktivores related to sea-ice loss are traded-off

against an increase in predation risk through larger visual predators.

In this case, fish that perform diel vertical migrations do not gain an

adaptive advantage, as they have to minimize the time at the surface

to reduce predation risk, which will consequently limit prey encoun-

ter. Schooling fish on the other hand, such as herring or capelin, can

forage more safely even in the presence of piscivores, and therefore

make better use of the long days.

The life histories and behavioural strategies of some boreal

species may be maladapted to the change in day length associated

with a relatively small latitudinal shift from the sub-Arctic to the

Arctic (Figure 4 in Poloczanska et al., 2016). Limited prey encoun-

ter on copepods during winter time and increased predation risk

during summer, as supported by our findings and as argued for

mesopelagic fish by Kaartvedt (2008), are the main regulatory

mechanisms making the seasonal light regime of the Arctic a pos-

sible zoogeographical filter. If seasonal light is slowing or con-

straining further poleward range expansions at high-latitude,

longitudinal distribution-shifts towards comparable habitats with

colder temperatures but at similar latitudes are conceivable

F IGURE 7 Visual range is the fundamental metric of visual search. Moving from visual range to more complex descriptors of visual search
(visual search area [m�2] ➝ search volume [m�3] ➝ clearance rate [m�3 s�1] ➝ feeding rate [prey items s�1]), ecological relevance and
interpretability comes with an increased number of model parameters and related assumptions, both of which are often uncertain. (a) The
dependencies of visual search area (relevant for cruising predators) and search volume (relevant for ambush predators) on visual range are
nonlinear. Visual area (m�2) scales to the power of two and search volume (m�3) to the power of three with visual range. A fourfold increase
in visual range (marked by grey dotted vertical lines) as projected for the Arctic Ocean at latitudes >80°N (but see Figure 5) will result in a
16-fold increase in visual search area and a 64-fold increase in search volume. (b) Feeding rates at low prey densities are not constrained by
handling time and thus scale with visual range. With increasing prey densities, prey handling limits feeding and increasing visual range will
not increase predation rates any further. Here, we consider the case of a predator swimming at a speed of 2 BL s�1, with a prey handling time
of 1 s�1 and a prey capture success of 0.5, for prey densities between 0 and 2000 ind. m�3. We refer to Aksnes and Utne (1997) and Varpe
and Fiksen (2010) for calculations of clearance rates and feeding rates [Colour figure can be viewed at wileyonlinelibrary.com]
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(Saikkonen et al., 2012). The Fram Strait as a likely invasion gate-

way to the Arctic provides an illustrative example for such a sce-

nario with two closely linked systems, the Northeast Greenland

shelf and the coastal waters of Svalbard, but differentiated by a

steep gradient in temperature (Christiansen et al., 2016). In this

case, a northward shift west of Svalbard would allow species to

track ocean temperature changes, but require them to cope with

a more seasonal environment; an equidistant shift westward how-

ever would maintain seasonality and keep experienced tempera-

tures below critical limits.

4.3 | Ecological interactions, evolution and
ecosystem effects

Our findings show a large, yet unrealized potential for visual preda-

tors at high latitudes related to sea-ice decline (Figure 5). Small

changes in Arctic sea-ice conditions invoke complex nonlinear

responses: Ice-albedo feedbacks accelerate the melt process nonlin-

early (Curry, Schramm, & Ebert, 1995; Landy, Ehn, & Barber, 2015),

reduced snow cover and ice thickness will increase light penetration

exponentially (Fig. S5), the contribution of daily irradiance to the

annual light budget becomes increasingly nonlinear at high latitudes

(Clark et al., 2013) and visual search scales nonlinearly with increas-

ing visual range (Figure 7). Hence, a quadrupling of the visual range

following the loss of the high-Arctic perennial ice cover (Figure 5)

will increase clearance rate of cruise predators by a factor of 16.

Increased search efficiency, especially at low prey densities, is there-

fore very likely to increase zooplankton mortality.

Consequently, the ecological impacts of minor changes in light

can be expected to be disproportionately large and are tightly inter-

woven with prey availability. Hence, we argue that a basin wide

change to the visual foraging landscape following sea-ice loss can

contribute to climate-driven regime shifts in the Arctic marine

ecosystem. Projections foresee a transition to a nearly ice-free

(SIE < 1 M km2) AO during summer before mid of the century. But

sea-ice extent is declining even faster than models predict (Overland

& Wang, 2013). Therefore, not only the effect of increased light on

productivity but also top-down effects of visual foraging should be

TABLE 2 Examples of contemporary distribution changes in marine fish and associated physical drivers

Suggested
physical driver Max. lat.

Studied system
and species Type of range shift References

61°N Anchovies and sardines Leading edge range Alheit et al. (2012)

62°N North and Baltic Seas Expansion Beare et al. (2004)

61°N Demersal North Sea fish

assemblage

Shift of community centre

of distribution, northward

boundary shifts

Perry et al. (2005)

62°N Demersal North Sea fish

assemblage

Deepening of the North Sea

fish assemblage

Dulvy et al. (2008)

D Temperature 82°N Fish communities of the

Barents Sea

Shift of community centre

of distribution

Fossheim et al. (2015)

46°N 36 fish stocks on the Northeast

United States continental shelf

Poleward shift in their

centre of biomass,

deepening

Nye, Link, Hare, and

Overholtz (2009)

44°N 7 fish species of the Northwest

Atlantic Ocean

Poleward shift of maximum

latitude of occurrence

Murawski (1993)

61°N Marine assemblages from North

American seas

Species track local climate

velocities

Pinsky, Worm, Fogarty,

Sarmiento, and Levin (2013)

D TemperatureSIE 61°N Bering Sea Arctic-sub-Arctic

ecotone

Increases in total biomass,

species richness, and

average trophic level

Mueter and Litzow (2008)

D SalinityT 45°N 6 most common juvenile marine

species in the Gironde estuary

Increase in abundance Pasquaud et al. (2012)

D WindT 62°N North Sea cod stock Northward shift in

distribution of juveniles and

centre of gravity

Rindorf and Lewy (2006)

D Ocean currents Global Larval dispersal through means

of advection

Flow direction can hinder or

assists species dispersal at

poleward range edges

van Gennip et al. (2017)

D LightSIE High latitudes Pelagic fish Suggested mechanisms are

limits to visual search and

life histories not adapted to

pulsed food availability

Varpe et al. (2015)

Sundby et al. (2016)

this study

Superscript letters indicate covariance with other drivers, T, Temperature; SIE, Sea-ice extent.
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regarded as a candidate mechanisms along with the range of identi-

fied environmental and biological tipping elements (Duarte et al.,

2012).

A reorganizations of the Arctic marine food web seems immi-

nent, given the anticipated phenological shifts (Ji et al., 2013) the

potential for ecological mismatches (Søreide, Leu, Berge, Graeve, &

Falk-Pedersen, 2010), the large-scale loss of the sea-ice habitat (Stir-

ling & Derocher, 2012), and the changes in species interaction

strength as boreal species are shifting northwards (Fossheim et al.,

2015). In the Arctic and sub-Arctic pelagic ecosystems, planktivorous

fish such as polar cod Boreogadus saida and capelin Mallotus villosus

are central to the food web (Kortsch et al., 2015), because they

channel the energy transfer from lipid-rich invertebrates at the base

of the food chain, to higher trophic levels (Hop & Gjøsæter, 2013).

Therefore, any change in forage fish abundance and distribution, or

change in interaction strength, is thought to redirect energy flows

(Stempniewicz, Błachowiak-Samołyk, & Wezsławski, 2007) with cas-

cading effects along the food chain (Frank, 2005; Kortsch et al.,

2015). In the pacific Arctic, the northward shift of the pelagic-domi-

nated ecosystem of the southern Bering-Sea has been linked to a

weakened pelagic-benthic coupling (Grebmeier et al., 2006). This

change in energy fluxes highlights the importance to understand the

role of visual predation in the pelagic to anticipate the complex evo-

lution of future food webs in a changing AO.

Predation by visual planktivores affects the size structure and trait

distribution of zooplankton communities, both on short time-scales,

such as after introductions to fish-less lakes, and on evolutionary time-

scales. Large-bodied and conspicuous individuals are vulnerable to

predation from planktivorous fish (Brooks & Dodson, 1965). Copepod

species within the Arctic Calanus complex exhibit intra- and interspeci-

fic Bergmann clines (Leinaas et al., 2016) accompanied by life-history

differences for traits such as generation time and energy reserves

(Sainmont, Andersen, Varpe, & Visser, 2014). Kaartvedt (2000)

relates the success of large Arctic copepods with slow life histories

(e.g. C. hyperboreus with a 5-year life cycle) to a reduced visual

predation pressure at high latitudes. While further south, under higher

predation pressure from abounding visual predators, the smaller sized

congeneric C. glacialis and C. finmarchicus with shorter life cycles per-

form better. If boreal planktivores enforce a size selective predation

regime, this will be to the detriment of the large native copepods,

while small boreal newcomers might expand northwards under preda-

tory release. Life histories preadapted to a lengthening of the ice-free

season and increasing temperatures might further facilitate the

northward expansion of the boreal zooplankton community.

4.4 | Outlook and concluding remarks

Our mechanistic reasoning and modelling can also be applied to

investigate the inverse effect on optical conditions under climate

change, namely an increase in turbidity, as it might be expected due

to higher chlorophyll concentrations (Arrigo et al., 2008) or changes

in water clarity related to river discharge as discussed in Dupont and

Aksnes (2013). Further, the insights of this study can be generalized

and applied to other visual predators in the pelagic realm, such as

large zooplankton (krill and amphipods) and seabirds. The mechanis-

tic link between changed optical conditions, light and foraging is

equally relevant to other aquatic systems (e.g. Hedstr€om, Bystedt,

Karlsson, Bokma, & Bystr€om, 2017). Alpine and high latitude lakes,

where species across several trophic levels also are governed by

extreme light regimes (Kahilainen, Malinen, & Lehtonen, 2009), expe-

rience changes to ice cover (Magnuson et al., 2000) similar to those

in the oceans. Although few lake systems are large enough to expe-

rience lateral migratory shifts, changes in optical conditions will alter

vision-based foraging and vision-based predation risk, with ecological

and evolutionary consequences.

To confront our large-scale projections with observation (sensu

Hilborn & Mangel, 1997), we deem case studies where model data

are compared against spatially and temporally resolved field data,

paired with field or aquarium experiments, to be the most promising

approach. Lakes in the sense of semiopen and controllable environ-

ments with limited room for range expansions can provide suitable

natural laboratories.
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