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Abstract. Even though individual-based models (IBMs) have become very popular in ecology

during the last decade, there have been few attempts to implement behavioural aspects in IBMs.

This is partly due to lack of appropriate techniques. Behavioural and life history aspects can be

implemented in IBMs through adaptive models based on genetic algorithms and neural networks

(individual-based-neural network-genetic algorithm, ING). To investigate the precision of the

adaptation process, we present three cases where solutions can be found by optimisation. These

cases include a state-dependent patch selection problem, a simple game between predators and

prey, and a more complex vertical migration scenario for a planktivorous ®sh. In all cases, the

optimal solution is calculated and compared with the solution achieved using ING. The results

show that the ING method ®nds optimal or close to optimal solutions for the problems presented.

In addition it has a wider range of potential application areas than conventional techniques in

behavioural modelling. Especially the method is well suited for complex problems where other

methods fail to provide answers.

Key words: adaptation, arti®cial neural networks, behaviour, genetic algorithms, habitat choice,

individual-based model, state dependence, stochastic dynamic programming

Introduction

The dynamics of natural populations result from interaction between indi-

vidual organisms. Most traditional models in ecology, however, de®ne popu-

lations in terms of their abundance and ignore these local interactions. This has

been recognised for some decades now (èmonicki, 1988; Huston et al., 1988),

and has led to an increasing popularity of individual-based models (IBMs) in

ecology. This approach allows a population to be speci®ed in terms of its

individuals, and the recent increase in computing power has made the

approach feasible despite the considerable computational cost. Since IBMs

trace individuals it is easy to compare model predictions with individual

observations in experiments and ®eld studies. Such studies have illustrated that

individual variability in many cases can be important to population dynamics
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(e.g. Crowder et al., 1992). However, most IBMs simply follow the fates of

individuals in a population without taking into account behavioural decisions.

This limits IBMs to studies where will directed behaviour is unimportant

(eggs, larvae, plants) or to such simple situations that motivation can be

enforced by the modeller. The traditional models for describing behavioural

trade-o�s generally deal with relatively narrow aspects of the organism's life.

Several such model frameworks prevail, including life-history theory (e.g. Ro�,

1992), optimal foraging theory (MacArthur and Pianka, 1966), the ideal free

distribution (Fretwell and Lucas, 1970) and evolutionary stable strategies

(Maynard Smith, 1982). These models are largely analytical, which ensures

an excellent understanding of their underlying logic and generality (Houston

and McNamara, 1999). However, this approach su�ers from a lack of ¯exi-

bility, and soon gets intractable when more aspects of the organism's life are

added (Taylor and Je�erson, 1995). Behavioural decisions in IBMs should

therefore be implemented in a di�erent way than by using these analytical

tools.

Here we show how this can be achieved using an adaptive approach based

on the genetic algorithm (GA, Holland, 1975) and arti®cial neural networks

(ANNs, Rummelhart et al., 1986). These methods are common in arti®cial life

(Langton, 1989) and related ®elds, but have rarely been applied in ecological

studies (Goldberg, 1989; Toquenaga and Wade, 1996). There are, however,

some exceptions, and we have earlier applied these techniques in a complex

scenario of ®sh migration, which includes both individual and environmental

variability in a large-scale spatial setting (Huse and Giske, 1998). Despite the

complexity of this scenario, the behavioural model provided credible solutions.

However, in order to investigate the precision of the adaptive model, we

investigate three simple cases where the optimal solutions can be found using

conventional models. These examples include a state-dependent patch selection

problem, a simple game between predators and prey, and a more complex

vertical migration scenario for a planktivorous ®sh.

The individual-based-neural network-genetic algorithm (ING) concept

The genetic algorithm (GA) is a technique that applies the principle of

evolution by natural selection to search for optimal solutions to a problem

(Holland, 1975). Solutions are represented as arrays of numbers, analogous to

genes (here characters) on chromosomes (here strings) in biology. The best

solution is the combination of numbers that gives the highest score in a test of

the particular problem. The algorithm works by starting with random solutions

in generation 1. Thereafter the best individuals are selected for reproduction in

each generation. As shown in Figure 1, variability in the strings is produced
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through recombination and mutation. This procedure is repeated over many

generations.

Arti®cial neural networks (ANNs) is a method that applies neurobiological

principles of synaptic brain-activity to model behavioural output by di�er-

ential weighting of input variables (Rummelhart et al., 1986; Montana and

Davis, 1989). The way they function is that weights and biases are trained

through an adaptive process, by repeated calculations of output from input

data and weights. During this process the weights and biases are altered so

that the output of the ANN accommodates a ®tness criteria. Depending on

the problem, there exist several methods for training an ANN, but here the

GA does this. After training, the ANN can be used in problem-solving. Since

ANNs are inspired by brain function they are well suited to model behaviour.

The networks applied here are feed forward networks with an input layer, one

hidden layer and an output layer. Each of the layers consist of a number of

Figure 1. The ING modelling concept with ANN based behaviour and GA based evolution in an

individual-based setting. Individuals with randomly set `genetic' strings that code for the weighting

of the ANN, are initiated in the ®rst time-step. The problem cycle (19 time steps in the patch model)

is simulated. The 10% of individuals with the highest ®tness (p1) are then selected to reproduce

with a partner (p2) randomly selected among 50% of the best individuals. New individuals are

produced through recombinations and mutations. Di�erences between the `genetic' strings are

expressed through di�erences in weights of the ANN, which can lead to behavioural di�erences.

Patch choice is calculated based on the state (X) and time-step (T) as input. Wih and Who are the

weight matrices of connection strengths between the layers. Behaviour is determined by choosing

the patch with the highest output value.
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nodes, values that can be input data (information presented to the network),

sum of weights and input data (at the hidden layer) or output (behavioural

decisions, Figure 1). The input data (Ii) are multiplied by a weight matrix that

speci®es the strength of connection between nodes in the input layer and

nodes in the hidden layer. At each hidden node the sum of the input data

multiplied by the connection weights (Wij) plus a value referred to as bias (Bj)

are added together (Equation (1)). This sum is then transformed (Fj) by a

sigmoid activation function. Transformation makes the ANN non-linear,

which is a key aspect of its performance, and standardises the output values

between 0 and 1:

Fj �
Xn
i�1

1

1� eÿ�WijIi�Bj� �1�

where n is the number of input nodes. While the weights (Wij) are multiplied by

the input data, the bias is not (Equation (1)) and provides the threshold value

out of the hidden node. The value coming out of the hidden node (Fj) is then

weighted by the connection strength between the hidden and output nodes. At

each output node the values are again added and behaviour is determined. This

is the general procedure of the ANNs applied here. ANNs have many simi-

larities to statistical methods and can be considered as a special case of multiple

regression.

By extending IBMs with the ANN and the GA we get an ING. Here indi-

viduals, in addition to being characterised by state variables, are equipped with

a `genetic string' that speci®es the inherited basis for behavioural traits. This

method removes much of the dichotomy between proximate stimuli-response

models and ultimate survival-value derived models in ecology (Giske et al.,

1998). The ultimate GA modi®es the proximate ANN and enables individuals

to respond in an adaptive but not necessarily strict optimal manner to complex,

unforeseen events, more like real organisms do. The more familiar the situa-

tion is and the closer the behaviour is related to ®tness, the stronger will

the selection pressure be in the GA to evolve a truly optimal response in the

ANN.

The models

The ING method has been used to model spatial distribution and life history

strategies of the Barents Sea capelin (Huse and Giske, 1998). However, there

does not exist data with a spatial or temporal resolution that allows more than

a qualitative validation of this ING model. The modelled situation is also so

complex that other approaches (such as SDP) cannot be used without strong

simplifying assumptions (Fiksen et al., 1995). To test the ability of the ING, to
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arrive at a true optimal solution, we therefore now investigate simpler

ecological models.

The patch model

The patch selection problem, originally presented by Mangel and Clark (1988),

is simply at each time step to choose the patch that maximises the probability

of survival to the end of a simulation period. There are three patches, each

with a di�erent value for predation risk (b), probability of ®nding food (k),
and food reward if food is found (Y). There is also patch independent respi-

ration cost a (Table 1). Patch choice is state-dependent, and in general satiated

animals are expected to choose safe patches while hungry animals choose

riskier patches, if such give a higher energy gain. Energetic state X and time T

were used as state variables in the original model and are used as input data to

the ANN here. Mortality is in¯icted either through predation (b) or starvation
if the energetic state falls below the threshold at X � 4. Since the current

results are compared with those from a stochastic dynamic programming

(SDP) model, emphasis is put on making our model as similar to the SDP

setting as possible. First we used the SDP model of Mangel and Clark (1988)

to ®nd optimal habitat choices and maximal survival. Then we ran an ING-

adaptation in the same environment. At the start of the simulation the indi-

vidual has state 4. Patch choice is then determined for this state using the

ANN. The proportion of individuals dying is then subtracted. Similarly the

proportion of individuals ®nding food and increasing their state is determined

as well as the proportion that do not ®nd food. If a state gets higher than 10 it

is set equal to 10. At the end of the 19th time-step simulation the proportion of

the individual strategies alive in state 4±10 is calculated and used as a ®tness

criterion in the GA.

After a minor test period an ANN architecture with two input nodes, ten

hidden nodes, and three output nodes was found to be pro®table for the

current problem. Individuals are born with a string of 63 characters including

20 input weights, 10 hidden biases, 30 output weights and 3 output biases. The

Table 1. Parameter values used in the patch model where b is predation risk, k is probability of

®nding food, Y is food reward when food is found, and a is energetic cost (FromMangel and Clark

(1988))

Patch number b k Y a

1 0.000 0.0 0 1

2 0.004 0.4 3 1

3 0.020 0.6 5 1
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two state variables, energy level and time are applied as input variables in the

ANN (Figure 1), and the layers are fully connected. The three output nodes

function in a ``winner takes all'' mode where the patch corresponding to the

output node with the highest output value is chosen as each time-step. The

weights of the ANN are initiated randomly with values between )1 and 1. A

population of 2000 individuals is tested in each generation of the GA, and the

10% best individuals are used as parents (p1, Figure 1) for the next generation

with 10 o�spring each. Partners (p2) are selected randomly among the 50%

best individuals, and a single recombination of strings between these parents at

a random site occurs with probability (p � 0.5). In case of no recombination,

new individuals are a clone of p1. Mutations are carried out by choosing a

node in the hidden and output layers randomly (with p � 0.1) and mutate all

weights and biases that a�ect the output of this node (Montana, 1991).

Mutations add random values [)1,1] to the weight and bias values. The model

was run over 1000 generations with four replicates altogether.

Predator±prey interaction

The second case is a habitat selection game between a zooplankton prey and its

®sh predator, and was originally introduced by lwasa (1982). Iwasa imagined a

water column divided into two habitats, a shallow and a deep, that di�er in

phytoplankton density and light intensity. The model is solved mathematically

by assuming that the individuals will distribute among the habitats so that no

individual is able to increase its ®tness by moving to the other habitat. Iwasa

referred to this as an evolutionary stable strategy (ESS, Maynard Smith, 1982)

although Gabriel and Thomas (1988) have shown that not all of the require-

ments for an ESS are ful®lled. We constructed an ING model where the

individual ®sh and zooplankton choose habitat based on information about

the current densities of predators and prey in each habitat (Figure 2). The

Figure 2. The ANN architecture used to solve Iwasa's game. The predator and prey are provided

with similar information. Habitats 1 and 2 are the shallow and deep ones respectively.
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individuals in the two populations choose habitat sequentially, alternating

between zooplankton and ®sh. When one individual has picked a habitat, the

densities are updated. The ANN is constructed with four input nodes, ®fteen

hidden nodes, and one output node (Figure 2). Habitat 1 is chosen if the

output value is less than 0.5. The 50% most ®t individuals are selected as

parents, while a partner is selected randomly from the population. Since the

relative abundance of predators and prey will a�ect solution, the model was

run for di�erent predator:prey ratios. The model was run over 700 generations

with ®ve replica simulations for each predator:prey ratio. Mutations and

recombinations are implemented as in the previous case.

Vertical migration

The ®nal case is a vertical migration scenario for the mesopelagic ®sh Mau-

rolicus muelleri in a fjord of Western Norway. Diel vertical migration (DVM) is

a classical theme in aquatic ecology, and although many di�erent hypotheses

have been proposed regarding its ultimate function, DVM is now generally

considered to be a trade o� between feeding and predator avoidance (Clark

and Levy, 1988; Fiksen, 1998). Mesopelagic ®shes perform DVM, and we

present a model environment similar to that of Rosland and Giske (1994).

Whereas the two previous cases only consider behaviour for its survival value

(ultimate), behaviour is here determined proximately as a response to stimuli.

Due to its great diel variation, light intensity is the most important physical

parameter in trigging vertical migration (Aksnes and Giske, 1993). We used

models developed by Aksnes and Giske (1993) and Aksnes and Utne (1997) to

calculate visual range of the ®sh. Visual range depends upon surface light

intensity, which again is dependent upon sun declination, latitude, day of the

year, time of day, cloud cover, and attenuation in the water column. Rosland

and Giske (1994) provide a detailed account on model implementation and

parameter values of the visual models.

The model is run over 5 days with a 5 min time-step. The vertical distri-

bution of zooplankton biomass is taken from a fjord in Western Norway

(Figure 3). The predation risk of M. muelleri is assumed to be dependent upon

the predator's visual range (Rosland and Giske, 1994). For simplicity, the

visual range of the predator is set proportional to that of the modelled ®sh. In

addition we introduced a predator density variable, which varies between days

to increase the complexity of the environment. Feeding rate is calculated as the

product of visual range and zooplankton density.

Similar to predator density, the zooplankton density was set to vary ran-

domly between the ®ve days, with a vertical pro®le proportional to one in

Figure 3. It is assumed that the ®sh can determine the density of zooplankton

and predators (e.g. by olfaction).
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Werner and Gilliam (1984) showed that juvenile individuals should choose

habitats that minimised the risk of predation (lt) divided by the growth rate.

If one assumes that growth rate is proportional to feeding rate ( ft), Gilliam's

rule can be expressed on the inverse form as:

Ht � ft
lt

�2�

where Ht is habitat pro®tability at time-step t. Optimal habitat choice is cal-

culated for each time-step. After 5 days of simulation the habitat pro®tability

sums give the terminal ®tness (u):

u �
X5

Day�1

X288
t�1

Ht

 !
�3�

Figure 3. Vertical gradients in zooplankton density and temperature (A), and variation in surface

light over the day (B). The data are for October.
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An ING model with ®ve input nodes, thirty hidden nodes, and one output

node was constructed to solve this problem, with input data shown in Figure 4.

The 5% most ®t individuals (Equation 3) were selected as parents (20 o�spring

per parent), while a random partner was selected among the 50% best. The

model was run over 300 generations, and mutations and recombinations were

implemented as in the previous cases.

Results

The patch model

The ANN is able to solve the patch selection problem with a high precision

(Table 2). The proportion of correct patch choices is determined by comparing

with the optimal choices found by SDP, and the maximally possible survival

probability is found by using this optimal strategy. Although the ING model

does not ®nd the optimal patch in about 3% of the choices (Table 2), one

should keep in mind that the ®tness criterion in the GA is survival rather than

the number of correct patch choices. The canonical costs (McNamara and

Figure 4. The ANN architecture used to solve the vertical migration scenario. The input variables

used are visual range, zooplankton density, density of predators, food consumption last time-step,

and temperature.

Table 2. Average patch choice, survival, and similarity with the patch choices (�SE) in the ING

patch model with the original SDP solution of Mangel and Clark (1988). The survival in the SDP

column is the maximal survival by using the optimal strategy when individuals are initiated at state

4. SE is standard error of mean (n � 4)

SDP ING

Average patch value 2.28 2.30 � 0.02

Survival 0.51 0.51 � 0.00

Patch choice similarity (%) 100.0 96.8 � 1.95
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Houston 1986) of some of the sub-optimal patch choices are marginal. It is

therefore more relevant to compare the survival data (Table 2) in which case

the score of the GA is >99% of the survival rate achieved using the optimal

strategy.

Predator±prey interaction

Although Iwasa (1982) presented solutions both for the day and night phases,

we concentrate on the day phase, which is the most interesting phase in terms

of vertical positioning. The ING model has the same qualitative predictions for

all F/Z ratios (Figure 5), although it does not always ®nd the exact numerical

solution to the game situation. For F/Z > 0.12, Iwasa's model predicts a

constant distribution of zooplankton among habitats 1 and 2, una�ected by the

distribution of predators. These results are reproduced in the ING run as well.

In some cases the ING model predicts a more even distribution of the ®sh

among the habitats than the analytical solution. This is seen for F/Z ratios of

1 and 2.5 (Figure 5). As a result of the simulation method, the solution tends

to oscillate around the equilibrium. When 1.00 > F/Z > 0.12 the zooplank-

ton will exert a greater selection pressure on the ®sh than vice versa. Conversely,

Figure 5. The results of the habitat selection game between zooplankton and ®sh with Iwasa's

(1982) original solutions (A) and the ING model results (B). Each ®gure shows zooplankton and

®sh distribution in habitat 1 (upper) and habitat 2 (lower). The results for four di�erent predator/

prey (F/Z) ratios are shown. In each replica the average density of the last 100 generations are

calculated. The error bars are standard error of the ®ve replicates.
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when F > Z the ®sh will exert the greatest selection pressure. This leads to an

oscillation around the ESS, where the population with fewer individuals will

more easily be forced into their ESS, as indicated by the error bars.

Vertical migration

The vertical distribution seen in Figure 6 is a typical example of how

M. muelleri is distributed during fall, with distinct vertical movement at dawn

and dusk. Although it is not an exact match, the evolved behaviour of the ING

model resembles the optimal trajectory to a high degree (Figure 6). Also the

ING model responds close to optimally to the variability in zooplankton and

predator densities between days. The behaviour of the best individuals in each

of the replicate runs is shown (Figure 6), although there is only small di�er-

ences in behaviour between individuals in each computer run. As for the

previous model there are some oscillations between depths during some periods

of the day.

Discussion

We have shown how genetic algorithms and neural networks can be used to

implement behaviour in IBMs. Despite the di�erent nature of the problems

Figure 6. The results of the vertical migration scenario. The predator density parameter (P) and

zooplankton biomass parameter (Z) values vary between days. The white line is the global opti-

mum solution and the black line (�SE) is the adapted behaviour of the ING model.
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presented, the ING model was able to solve them with a high precision.

The advantages of the individual-based approach can thus be ported to

behavioural ecology using the ING concept. Many basic and applied problems

in ecology are complex, and there is a need for tools that can solve such

problems. In theory, the adaptive approach used here can be applied to any

problem regardless of its complexity, although the probability that the

ING method ®nds good solutions is likely to be lower in highly complex

environments. However, the good results achieved for the simple cases shown

here are encouraging regarding its performance in more complex environments

as well.

Proximate and ultimate models

As seen in the two ®rst cases, ANNs can rely on derived information about

habitat pro®tability when calculating behaviour in the same way that an SDP

model operates. In addition, ANNs can integrate proximate responses with the

ultimate functioning as seen in the last case. This allows behaviour to be

modelled as a response to stimuli (Ghirlanda and Enquist, 1998), but at the

same time also for its ®tness value, thus providing a more realistic approach to

individual behaviour. The proximate stimulus-response approach was the

foundation for the classic behavioural study of ethology (Tinbergen, 1951).

The optimisation approach in ecology can be criticised for neglecting this

aspect of behaviour. For example in SDP models of vertical migration (e.g.

Rosland and Giske, 1994), light is used to generate both expected feeding rate

and the anticipated predation risk from visual predators. This gain and risk

are presented to the ®sh as `information' while the light intensity as such is not

an input variable. In the ING model, however, individuals position themselves

according to light and other stimuli. This makes the modelling process using

ANNs analogous to the way that animals position themselves, which gives the

modeller more ¯exibility with regard to the kind of problems that can be

addressed. For example it can provide more information about constraints

acting on the behavioural process. Also, trained ANNs can provide adapted

responses towards non-adapted stimuli. This can be fruitful if one is interested

in providing predictions about behaviour in response to human in¯uences.

During acoustic abundance estimation of pelagic ®sh for example, avoidance

reactions, due to the noise produced by the vessel are common. In this case an

ANN trained for a natural situation could be used to predict the avoidance

behaviour of the ®sh, which again may be used to correct the acoustic

estimate.

The `genetic' adaptation that takes place during training of the ANN, is the

process of modifying the weights so that pro®table responses to environmental

input are achieved. An alternative way to adapt the weights is to let individuals
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learn during their lifetime. This can be achieved by using a di�erent technique

such as reinforcement learning (Ballard, 1997) instead of or in combination

with the GA (Ackley and Littman, 1992). Based on the problem at hand the

need to apply learning or genetic adaptation or both should be determined. In

some cases learning during the life time will be the more important adaptive

process and in such cases a learning routine rather than a GA could be used to

adapt the weights of the ANN.

Potential pitfalls of adaptive models

A problem with the ING method is that it may get stuck on local maxima in

solution space and never ®nd the optimum. The probability of getting stuck is

especially pronounced in cases where ®tness gradients are weak and/or the

®tness landscape is rugged. This problem is inherent in all processes governed

by adaptation. A problem with ANN based models is oscillatory behaviour, as

seen in both the predator±prey and vertical migration cases. This is caused by

the continuous update of input data as a result of behavioural actions. Oscil-

lations may be a real property of animal positioning in cases where the per-

ceptive ability is poor, or where habitat choices are discrete. The oscillations

are probably an inherent property of ANNs, but an optimal network and short

time-steps would have ®ne-tuned the behaviour and reduced the degree of

oscillation to the minimum. Increasing the probability that the optimal solu-

tion will be found therefore, reduces both the problems of getting stuck on

local maxima and the oscillation problem. This can be achieved by using the

shifting balance theory of Wright (1977) where instead of having a single

population, a metapopulation with several sub populations is applied. An

example of how this technique can be implemented in GAs is provided by

Sumida et al. (1990).

Although ANNs perform well, it can be di�cult to understand why par-

ticular behaviour is produced. ANNs are therefore sometimes referred to

as black box models. However, by analysing the di�erent weights and how

they relate to the input data, it is possible to improve the understanding of

ANN behaviour (see Aoki and Kamatsu, 1997). Such analyses are useful in

providing more information about how the input data a�ects the output.

Another way of analysing trained ANNs is to perform sensitivity analyses

where the behaviour of the model over a range of di�erent input values is

studied.

Despite these challenges we think that the ING concept is an important

extension of individual-based models, that can make IBMs applicable to eco-

logical problems where behavioural aspects are important. Especially, the

method is suited for complex problems where most other methods fail to

provide answers.
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