Chapter twenty-eight

Evolutionary models for
fisheries management

Jarl Giske

ABSTRACT

The potential use of functional evolutionary models and mechanistic eco-
logical models as predictive tools in fisheries ecology is discussed. Evolution
by natural selection is a force that leads to ecological adaptations of the
individuals in the populations. By miechanistic modelling of the sense
organs, we may model how individuals perceive their environment, and
by life history theory we may predict optimal responses to environmental
variation. Modelling tools such as dynamic programming and individual-
based modelling are discussed, and the coupling to physical models of the
sea allows analyses that hindcast with explanatory power. Currently, our
ability to forecast is limited by weather models. However, the quasi-peri-
odic oscillations of the hemisphere-level ocean—atmosphere interactions
bring hope for increased ability to make predictions in the future.

28.1 INTRODUCTION

In the first five years of the 20th century, the Norwegian Voéringen
expedition investigated the physical and biological conditions of the
Norwegian Sea, an area that was almost unknown beforehand. Helland-
Hansen and Nansen discovered that the Barents Sea was fed by irregular
transport of warmer Atlantic water along the coast of Norway. As there

Reinventing Fisheries Management. Edited by Tony J. Pitcher, Paul ].B. Hart and Daniel Pauly.
Published in 1998 by Kluwer Academic Publishers, London. ISBN 0 412 83410 3.




378 Evolutionary models for fisheries management

was a two-year delay in the pulse of water from western Norway to the
Barents Sea, they anticipated that ocean temperatures might be monitored
and predicted. Large-scale biological events such as invasions of beluga
whales and Greenland seals to Norwegian coastal waters, as well as poor
growth and low condition of Atlantic cod, Gadus morhua, indicated food
shortage in these waters at the time, and Helland-Hansen and Nansen
linked this to water transport: ‘We think that these discoveries give us the
right to hope that by continued investigations it will be possible to predict
the character of climate, fisheries, and harvests, months or even years in
advance’ (Helland-Hansen and Nansen, 1909, pp. iv—v).

While Helland-Hansen and Nansen cruised the unknown Norwegian
Sea, the Wright Brothers were constructing the first motorized aeroplane.
As this chapter is written, the Hubble telescope seeks out distant stars and
planets. There has been tremendous scientific achievement in the 20th
century, but the hopes of the early oceanographers have not been fulfilled.
Will we ever be able to predict the future of fish stocks?

During the past 30 years, fisheries assessment has been based on catch-
at-age analyses of various sorts, including virtual population analysis
(VPA) and elaborations of it (Sampson, 1988). By measures of recruitment
and assessment of fishing mortality, the year class strengths may be calcu-
lated. Hence, the number and biomass of fish aged n + 1 in year y + 1
may be predicted from numbers of fish aged n in year y. This method
works well, in many cases. However, there are two cases where this is not
a good tool: for short-lived fish and for variable environments.

Short-lived fish exist, but the stable ecosystem does not. Because the
classical mathematical assessment tools assume stability, new methods are
needed. In a world with stable ecosystems from which high-quality
empirical relationships exist, theoretical approaches are of only academic
interest. However, such models are valuable for management in fluctuat-
ing environments, i.e. where it is hardest to make predictions. And even if
future events could not be predicted with much certainty, adaptive man-
agement would benefit from revealing causal relationships, as this under-
standing is needed to evaluate possible effects of a proposed management.

28.2 EVOLUTION AS A FORCE

The theory of evolution by natural selection gives a frame for under-
standing the processes of development, allocation patterns, life cycles and
habitat choice. Individuals with a genetic composition that makes them
more successful in reproduction, leave on average more offspring than
other members of the population. By this process, the gene pool of the
population is under continuous selection for alleles that are suited for
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coping with the physical and biological environment. After 3.5 billion
years of mutations, recombinations and natural selection, we are left with
the evolutionary winners (Dawkins, 1976, 1996). This implies both: (1)
that all species on Earth are reasonably well adapted to the environment
in which their ancestors lived; and (2) that individuals are likely to have a
genome that allows them to live almost optimally in order to spread their
genes.

Therefore, there exists a predictive evolutionary force that operates on
units exposed to natural selection: the behaviour of individuals will be
aimed at maximizing their potential reproductive rate (Sibly, 1989, McNa-
mara and Houston, 1996). This force can be utilized in environmental
modelling to yield predictions of individual behaviour and growth patterns
as well as life cycles and population dynamics (Fiksen et al., 1995;
Rosland and Giske, 1997; Giske et al., 1998a). The objective: for predictive
ecological and fisheries modelling is to provide functional models, relating
the activities of the individuals to fitness (dnd thereby to understand their
ultimate motivations for behaviour), and mechanistic models relating the
potentials for feeding, growth, reproduction and survival to the state of the
environment. The mechanistic models will estimate the immediate gains
and losses associated with, for example, a series of habitats, while the
functional models will trade off these forces so that the action taken is the
one that is most likely to maximize fitness. Mechanistic models will focus
on sensory systems and physical, chemical and bioenergetical laws, while
functional models must address which traits will spread in a population
under natural selection.

28.3 THE STATUS OF COMBINING MECHANISTIC AND
FUNCTIONAL MODELS

For a long period, mechanistic models of aerodynamics and hydro-
dynamics have been used to predict water movements, salinities, and tem-
peratures in the sea. More recently, dynamics of nutrients and primary
production have also been modelled mechanistically and have been
coupled to the physical models (Aksnes, 1993; Aksnes et al., 1995; Giske
et al., 1998b).

Far fewer models are available for the higher trophic levels: zoo-
plankton, fish and sea mammals. The new challenge at these levels is that
the organisms are (relative to phytoplankton and bacteria) long lived with
complex life histories. They have, through evolution, been selected for per-
forming different tasks through their lives, and they are to a high degree
able to sense both their internal state and the external environment and
behave optimally using evolved responses. Hence, modelling these higher
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trophic levels may require different, but perhaps not more complex,
mechanistic models. Modelling populations of animals that are able to

" relocate requires functional models that properly describe the fitness values
of the multiple choices these individuals continuously perform (Tyler and
Rose, 1994; Giske et al., 1998a). The meagre success in modelling higher
trophic levels in classical bottom-up biogeochemical models is probably
related to the lack of proper behavioural control that only fitness-max-
imization imposes.

Theories that combine optimal behaviour with optimal life cycles first
appeared in the 1980s (Mangel and Clark, 1986: Aksnes and Giske,
1990). Models of the sensory fields of fish (Jumper and Baird, 1991; Schel-
lart, 1992; Bleckmann, 1993; Aksnes and Utne, 1997), bioenergetics
(Kitchell et al, 1977, Hewett and Johnson, 1992: Salvanes et al., 1995)
and of the environmental impact on growth and survival (Clark and
Mangel, 1986; Giske et al, 1994) are available, although only developed
for a limited number of species and situations. The relatively homogeneous
and transparent pelagic environment should give the best opportunities for
linking ecological variables like depth and diet selection, group size, and
swimming speed to growth and survival, as required by managers.

Predictive models are in need of biological theories but also of numerical
methods to find solutions. Over the past decade, a series of techniques
have become available. Optimizations based directly on life history theory
(by the Euler-Lotka equation or a derivative) are often called static
optimization (Leonardsson, 1991), as the state of the individual is not
included and motivation is not allowed to change over short time inter-
vals. Static optimizations are therefore best suited for principal analyses or
large-scale phenomena, and can often yield analytical solutions. Examples
are the growth—mortaqlity trade-off for juvenile fish (Werner and Gilliam,
1984), habitat choice as a function of life history (Aksnes and Giske,
1990), age-dependent difference in acceptance of mortality risk (Giske and
Aksnes, 1992), optimal timing for settling of codlings (Salvanes et al,
1994), diet versus depth selection (Giske and Salvanes, 1995) and density-
dependent habitat profitability (Giske et al., 1997). There now also exists
an extensive theoretical treatment of demography (Tuljapurkar, 1990) and
adaptations in stochastic environments (Yoshimura and Clark, 1993).

Optimizations are called dynamic if the outcome will depend on changes
in state of the individual. The state may be internal factors such as stomach

fullness, fat reserves, body mass, or external factors such as group size
or the spatial position within the habitat, and the optimal policy of the
individual will change over time according to these variables and their
fitness values. The most widely used dynamic optimization technique is
stochastic dynamic programming (SDP, Houston et al., 1988; Mangel and
Clark, 1988). This method has been used to study vertical distributions of
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fish populations (Clark and Levy, 1988; Rosland and Giske, 1994, 1997)
as well as large-scale horizontal distributions (Fiksen et al., 1995). o
The use of individual-based modelling (IBM), whereby the population is
represented by a large number of artificial individuals, has recently pro-
vided interesting results on how fish population processes are governed by
the success of the few, rather than by the average success rate (Crowder et
al, 1992; DeAngelis and Rose, 1992; Rose et al, 1993; Brandt and
Hartman, 1993, and references therein). While SDP models are used to
study individual variation in motivation for behaviourgl (%e.mm?ns, IBMs
are good at resolving population consequences of variability in perf'or-
mance owing to stochastic processes and at interactive processes including
density dependencies or trophic couplings. This approach_ has re?cently
been much used in studying the ecology of fish larvae and in recruitment
studies (Hinckley et al., 1996; Letcher et al, 1996; Werner et al., 1996)
and on growth rate estimates (Mason et al,-1995; Mason and Branslt,
1996). The potential uses of IBMs in resource management have been dis-
cussed by Barnthouse (1992), Hansen et al. (1993) gnd Bart (1.995). ‘
Biological models of oceanic populations must interact with physical
models of ocean dynamics. The forcing functions for the most-used ocea-
nographic models are meteorological fields, such as air temperaturef, air
pressures, wind field, precipitation, solar radiation and cloud cover, Hlst':or-
ical data for these forcing variables are stored in open archives, enabhng
models to mimic quite precisely the physical conditions that forced a parti-
cular historical biological event. For example Aksnes gt al. (198’9) c:alf:u-
lated the spread of the toxic flagellate Chrysochromu.lma polylepis (killing
salmon in aquaculture) in the North Sea in 1988, Hinckley et' al. (1996)
used meteorological forces to simulate drift of eggs and larvae in the Gulf
of Alaska, and Fiksen et al. (1995) utilized meteorological data tg calculate
sea temperatures and zooplankton advection (to calculate habltat> proﬁF—
ability for capelin) in the Barents Sea in 1979—1.981.. B_ut, whll_e this
method gives eminent opportunity to recapitulate history, it also disables
predictions of future events, as the horizon is limited to the weather fore-
cast. Therefore, these models are currently used in hindcast analyses of
nts, not in predictions. .
pa'SIfoe;iedict, a diﬁ%rent type of physical forcing of hy.drodynamlc‘al and
biological models is needed. There is a strong chaot.xc element in the
current weather forecasting models, but weather itself is not chi'aotxc: sea-
sonality itself shows that strong deterministic forces. are operating. 1}13{),
on longer time scales, oceanographic and meteorological phenomena }{1(11—
cate strong influence from ordering forces. Example.s are the El Nlno—.
Southern Oscillation (ENSO: Rogers, 1984; Ropelewski and Halpert_, 198?,
Halpert and Ropelewski, 1992) in the Pacific and the North Atlantic Osc1l-'
lation (NOA: Walker and Bliss, 1932; Van Loon and Rogers, 1978;
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Wallace and Gutzler, 1981). These and other huge weather systems
exhibit quasi-periodic oscillations (WMO and UNEP, 1995). Understanding
these oscillations and how they are forced (Ikeda, 1990), will put us in a
different situation with regard to predicting biological change as a function
of climate oscillations months or years in advance.

28.4 PERSPECTIVES

The use of predictive models on historical data has already revealed causal
relationships from physics and phytoplankton to fish. Theoretical models
have also given insight into how the different external and internal forces
interact to produce life histories and behaviour. With the continuous
increase in computer capacity, in numerical methods, and in quantitative
biological theories, a variety of theoretical models and predictive simula-
tion models may soon play an increasing role in marine management.

More recently, complex ecological models (Aksnes et al., 1995; Fiksen et
al., 1995) also indicate that the biological basis is improving for the crea-
tion of models predicting the future state of biological resources and envir-
onmental variables. However, these efforts are at present limited by the
physical forcing, which so far hinges on meteorology. A different set of
forcing functions, e.g. based on statistical analyses of climate variability or
forcing by Earth and astronomical events, or on measured upstream
changes in physical factors (Helland-Hansen and Nansen, 1909), will be
needed for this purpose. Still, the uncertainties associated with these pre-
dictions will be formidable.

Meanwhile, we can do no better than to forecast by scenario modelling.
From the current state of the environment, it may be possible to select a
limited number of similar past situations and through them simulate pos-
sible outcomes. For capelin in the Barents Sea, the present ice and tem-
perature conditions could be compared with those in previous years, and
the meteorological conditions for similar situations could then be used to
simulate some scenarios for the further development of temperatures and
currents. In these physical scenarios, the biological models could be run,
to simulate the probable development of the capelin stock. This may seem
unsatisfactory, but nature is inherently stochastic, and the future in parti-
cular.

Scenario modelling is also a means of both quantifying and reducing the
inherent uncertainties of nature as well as in process representations,
parameter values and field data (Moxnes, 1996; Hagen et al., 1998). The
precautionary principle is already in use in the management of sea
mammals (Gambell, 1993), and may also be adopted for fisheries (Garcia,
1994). By developing more advanced quantitative tools for understanding
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nature, and by using them in models accounting for the potential vari-
abilities in the forcing functions, we may be able to narrow the security
measures needed for the protection of stocks and the environment (Mangel
et al., 1996), so allowing a sound utilization of the resources.

As the different theoretical approaches and numerical methods are only
capable of handling bits of the total complexity, managers should be
trained at using a variety of tools. By comparing results from very different
models, managers will be more able to assess possible outcomes of their
recommendations and acquire an understanding of the functioning of the
system and its interacting components. This skill is a prerequisite for suc-
cessful adaptive management.
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Chapter twenty-nine

Bayesian decision analysis
and uncertainty in
Jisheries management

Randall M. Peterman, Calvin N. Pefers, Christina A.
Robb and Shane W. Frederick

ABSTRACT

Large variability and estimation errors in data create challenges for esti-
mating risks and identifying appropriate fisheries management strategies.
The formal quantitative method of decision analysis, sometimes referred to
as statistical decision theory, can help deal with this challenge because it
explicitly considers uncertainties in quantities such as parameters of
dynamic processes in fish populations or fishing fleets. Field data can be
used in conjunction with Bayesian statistical analysis to calculate prob-
abilities associated with different estimates of the uncertain parameters.
These probabilities can then be used as part of a decision analysis to iden-
tify the optimal management action for each specified management objec-
tive. We illustrate this approach of decision analysis with three examples.
(1) The optimal decision for opening an in-river sockeye salmon fishery
depended, among other things, on the assumed functional form (not just
parameter values) of the stock—recruitment relationship, i.e. whether it
was a Ricker model or a more flexible Shepherd model, which can take on
various shapes, including a Ricker shape. (2) When uncertainties in
density-dependent growth and in size-dependent vulnerability to fishing
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