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Abstract 

Optimal vertical distribution of a copepod population of equal competitors under predation hazard is modelled by ideal 
free distribution (IFD). The foragers may be limited by both depletable (food) and non-depletable (temperature) resources. 
Individuals are assumed to maximize growth rote per mortality risk ( g / M ) .  Mortality risk is assumed density-dependent 
whenever the copepod concentration is high enough to satiate predators. The growth rate depends upon temperature or food 
concentration in absence of competition, and is density-dependent under competition. These relationships may yield peaked 
habitat profitability curves. For L depths with peaked profitability curves, the computational complexity scales to 3 L. 
Simplifying restrictions to allow numerical solutions when a large number of depths are available are presented and 
discussed. At moderate and high copepod stock size, the restrictions find the optimal distribution much faster, but at low 
stock sizes they may predict suboptimal distributions. The model predicts that individuals shall be more sensitive to 
predation risk at low and moderate competitor abundance and more sensitive to resource input rate at higher competitor 
abundances. Deviations from a food-based IFD are therefore most pronounced at low copepod population size. The IFDs are 
compared with predictions from a dynamic programming model with state- and time-resolved motivation of the copepods. © 
1997 Elsevier Science B.V. All rights reserved 
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1. Introduction 

This paper explores the possibility of  modelling 
the spatial distribution of  copepods based on fitness- 
maximization under density-dependent habitat prof- 
itability. The aim of this paper is three-fold: (1) to 
incorporate predation risk in the habitat descriptor of  
the ideal free distribution (IFD) of  copepods, (2) to 
develop methods for finding the IFD in a situation of  
multiple depths and complex habitat descriptors, and 
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(3) to compare these density-dependent results with 
models with state- and time-resolved individual mo- 
tivation based on dynamic optimization (SDP). 

Optimal spatial distributions have been investi- 
gated by several modelling approaches. Individual 
motivation for behavior in life history theory (LHT) 
accounts for factors influencing fecundity and sur- 
vivorship, and generates predictions of  optimal 
trade-offs between environmental forces over a long 
period (McLaren, 1963; McLaren, 1974; Werner and 
Gilliam, 1984; Aksnes and Giske, 1990; Giske and 
Salvanes, 1995). Typical for LHT models is that 
individuals are characterized by their age and not 
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individual characteristics as competitive ability or 
hunger. 

Dynamic optimization (SDP: Houston et al., 1988; 
Mangei and Clark, 1988) allows descriptions of the 
intemal state of individuals, which may lead to both 
variable and fluctuating motivation among individu- 
als over short time periods. SDP has yielded consid- 
erable attention lately, and has been used to study 
diel (Clark and Levy, 1988; Rosland and Giske, 
1994) and ontogenetic (Fiksen and Giske, 1995) 
vertical distribution of zooplankton and fish, large- 
scale horizontal distributions (Mangel, 1994; Fiksen 
et al., 1995) and optimal group sizes (Mangel, 1990). 
A disadvantage with SDP for ecological modelling is 
that optimal solutions in dynamic programming de- 
pend on the future of the individual and the environ- 
ment. As this expectancy of the future also incorpo- 
rates food availability and predation risk, trophody- 
namics can not be modelled by the backwards- 
calculating SDP. For this purpose, a forward running 
approach is needed. 

The ideal free distribution (IFD) is a theoretical 
model for studying density-dependent effects on the 
spatial distribution of optimal individuals in a group 
(Fretwell and Lucas, 1970). The model has been 
widely used on the distribution of consumer popula- 
tions (Milinski, 1979; Milinski, 1984; Harper, 1982) 
although Fretwell and Lucas (1970) also discussed 
patch profitability based on predation risk. A few 
investigations have added effects of density-indepen- 
dent factors on habitat quality, e.g. metabolic costs 
and environmental temperature (Grubb and Green- 
wald, 1982; Tyler and Gilliam, 1995). However, the 
density-dependency does not only relate to resources, 
but also to predators (and pathogens) and their effi- 
ciencies. While density-dependent effects on re- 
sources in most situations (Clark and Mangel, 1986) 
yield diminishing return with increased competition, 
this may be compensated by reduction in predation 
risk (Hamilton, 1971; Neill and Cullen, 1974; Milin- 
ski, 1977; Jakobsen et al., 1994). Thus, the return 
rate of the habitat, which in classical IFD theory 
(Fretwell and Lucas, 1970) is a monotonically de- 
creasing function with competitor denSity, may also 
be constant (density-independent) or increasing. 
While a peaked habitat profitability curve was dis- 
cussed by Fretwell and Lucas (1970) and termed the 
Allee curve (Allee, 1931; Allee et al., 1949), it has 

been given little attention in the IFD literature later. 
Lately, some IFD models have included both preda- 
tion risk and food supply. Hugie and Dill (1994) 
have modelled IFD among fish predators and fish 
prey in a three trophic level system (with a static 
resource for the prey). Gilliam and Fraser (1988) 
constructed a 2-habitat IFD for juvenile fishes for 
whom generation time was a function of growth rate. 
The measure of fitness gain was 'minimize M/f'  
(where M is mortality rate and f gross foraging 
rate), derived from the 'minimize M/g' rule (where 
g is growth rate) of Werner and Gilliam (1984). 

By including both feeding and predator avoidance 
in the habitat descriptor, the fitness curves may 
become peaked. As there are two competitor densi- 
ties which yield the same profitability at each depth, 
one with increasing and one with decreasing prof- 
itability with increased competition, there are numer- 
ical problems associated with finding the ideal free 
distribution. We develop three methods for finding 
the optimal distribution of a large population of 
equal individuals among a large number of distinct 
patches (here: depths). In our first approach we seek 
the globally optimal distribution of a copepod popu- 
lation in a water column with 15 available depths. As 
this is numerically intractable for all but the simplest 
situations, two simplifying restrictions on gradual 
changes in copepod concentrations with depth allow 
two much faster solutions, and larger scales to be 
studied. Density independent effects are dominated 
by temperature, which strongly affects the growth of 
individual copepods. Density-dependent factors in- 
clude both a resource gradient and a predation risk 
gradient mediated by light intensity. The model ap- 
plies to the spring growth phase where individual 
fitness may be modelled by the impact of depth 
selection on the expected reproductive rate. 

The limitation of IFD is that it can not resolve the 
fluctuating motivation of individuals according to 
time and state. Combined effects of density and 
internal state may be studied by SDP as a dynamic 
behavioral game (Mangel and Clark, 1988), but this 
has computational limitations for all but the simplest 
ecological scenarios. McNamara and Houston (1990) 
have constructed an SDP based IFD model that 
incorporates both state-dependency and mortality risk 
for animals maximizing survival probability under 
the combined threat of starvation and predation. 
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However, their model considers only two habitats (a 
safe and poor and a rich and dangerous), as model 
complexity (description of individual state) goes at 
the expense of spatial resolution in the computations. 
Which of the shortcomings of SDP or IFD are more 
important, will depend on the situation under study. 
It may therefore be profitable to develop alternative 
models of similar situations as each model may only 
account for some aspects of the total environment. 

2. Models 

The daytime and nighttime vertical distribution of 
copepods in a stratified water column of 30 m is 
modelled. Vertical distribution of food and tempera- 
ture are taken from the SDP model of copepod 
vertical distribution by Fiksen and Giske (1995), 
with a mixed surface layer and a deep chlorophyll 
maximum (Fig. 1). Chlorophyll and water molecules 
create absorption and scatter of the downwelling 
light, which is modelled as by Riley (1956) and 
Fiksen and Giske (1995). Mortality risk for a single 
copepod in absence of conspecifics is the same as 
the daytime risk profile used by Fiksen and Giske 
(1995). The difference between day and night does 
only relate to light intensity and thereby efficiencies 
of visual predators. 
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Fig. 1. Vertical profiles of food concentration (phytoplankton), 
temperature and attenuation of light are identical to Fiksen and 
Giske (1995). The profile describes a mixed surface layer overly- 
ing stratified waters. The phytoplankton maximum is found deep 
in the mixed layer. 

2.1. ~ e c @ ~ o d  

2.1.1. Feeding and growth 

2.1.1.1. Density-independent feeding. Growth of 
copepods is restricted by food concentration only at 
low or intermediate feeding rates (Mullin et al., 
1975). Both metabolic rates and feeding rates are 
temperature-dependent processes. Weight-specific 
ingestion follows 

fmax F>-F,im (1) 

f l = FCW- I F < FIim ' 

where f~ is the copepod feeding rate in absence of 
competition, fmax is the temperature-limited feeding 
rate under superfluous food concentrations, F is the 
food concentration, F[~r~ is the maximum food con- 
centration that will limit feeding rate, W is the 
copepod individual weight and C the temperature- 
dependent clearance rate (Huntley and Boyd, 1984; 
Fiksen and Giske, 1995). (Symbols are explained in 
Table 1.) 

2.1.1.2. Density-dependent feeding. We may assume 
that there is no interference between the copepods if 
each copepod has the volume needed for continuous 
feeding without resource depletion, i.e. if the cope- 
pod community filtering rate at a depth is lower than 
or equal to phytoplankton growth rate. When phyto- 
plankton growth balances copepod clearance, we 
have 

0 = d F * / d t =  7F* - N *  CF*,  (2a) 

where F * is phytoplankton concentration and N * is 
copepod concentration at steady-state, respectively 
and ",/ is phytoplankton growth rate. The maximum 
copepod concentration for non-interference feeding 
is therefore 

N* = y / C  (2b) 

at steady state. Interference is induced when N > N *, 
and individual feeding will decrease in proportion to 
the ratio between them: 

fl N _< N * 
f =  f , y / C U  U > U * .  (3) 

Interference is therefore a function of phytoplank- 
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Table 1 
Descriptions of symbols for parameters and variables 

Symbol Description 

,,/ 

AZ 
0 

Pj 

% 
,tt 
a 

A 
C 
19 
e 

E. 
f 
f, 
F 
Film 

gj 
h 
H 

1 
J 
K 
L 
m 

M(N) 
Mt 
Mj 
Ni 

N2 

Nj 
N~ 
P 
r 

R 
sj 
l 

v 

5 

W 
X~, 

phytoplankton growth rate 
vertical extension of depth interval 
visual predator's field angle 
expected instantaneous rate of increase 
of individual in depth j 
instantaneous fimess of individual in depth j 
number of profitability levels to search 
assimilation efficiency 
prey detection area 
clearance rate 
depth of water column 
predator-prey encounter rate 
irradiance at depth z 
instantaneous feeding rate 
density-independent feeding rate 
food concentration 
maximal F that will limit feeding rate 
temperature-limited feeding rate 
instantaneous growth rate in depth j 
neighborhood number 
neighborhood: sequence of depths 
with same V) 
24 h average ingestion rate of predator 
patch (here: depth) number 
number of utilized depths 
total number of available depth layers 
instantaneous metabolic rate 
density-dependent mortality risk 
M in absence of risk dilution 
instantaneous mortality risk in depth j 
the lowest concentration of copepods 
in a depth that satisfies Sj = S(N, z) 
the highest concentration of copepods 
in a depth that satisfies Sj = S(N, z) 
concentration of competitors in depth j 
copepod population size 
predator concentration 
(expected) instantaneous population growth rate 
sensory range of predator 
density-dependent habitat profitability at depth j 
time 
swimming speed of predator 
number of possible values of N to 
be considered at depth j 
copepod dry mass 
number of combinations to be 
considered in neighborhood h 
depth 

Subscripts t and v in equations refer to tactile and visual preda- 
tors, respectively. An * designates minimum concentration of 
food or copepods for a density-dependent effect to occur. 

ton growth rate, copepod concentration and clearance 
rate, which is temperature dependent. 

2 .1 .1 .3 .  G r o w t h .  . M e t a b o l i c  cos t s  m are 
temperature-dependent and described by an equation 
of  the yon Bertalanffy form, similar to clearance rate 

(Huntley and Boyd,  1984; Fiksen and Giske, 1995). 
The assimilation efficiency a is assumed constant, 
and the feeding surplus may then be written as 

g = a f - m .  (4)  

The most important variables underlying g are 
temperature, food concentration, food renewal rate 
and competitor concentration. At  very high food 
concentrations, feeding rates will be at maximum 
(Eq. (1)) and the efficiency of  converting food to 
growth drops. At very low food concentrations and 
ingestion rates, metabolism will outweigh feeding, 
giving a negative 'growth ' ,  This is probably common 
in deep waters, e.g. at the overwintering depths of  
the large calanoid copepods in boreal waters (Hirche, 
1993; Wil l iams and Conway,  1988; Conover and 
Siferd, 1993). During the non-breeding season, fit- 
ness might be maximized by locating a depth which 
minimizes mortality risk (Stephens, 1981; McNa- 
mara, 1990). The latter situation is, however,  not 
covered in this model (spring growth phase) as the 
copepod life history in boreal waters requires an 
energy surplus to be gained during spring. These two 
situations gives contrasting motivations, and (in ab- 
sence of  individual state dimensions in the model)  
should be modelled with different motivation rules 
(Eq. (10) below). 

Growth is at its temperature-limited maximum 
(Eq. (1)) at 2 - 1 2  m at competi tor  concentrations 
below 200 ind 1-~ (Fig. 2a). Above these densities 
and below these depths, community filtering will 
outweigh phytoplankton renewal (Eq. (3)), giving 
density-dependent reduction in growth rate. Vertical 
gradients in growth are most pronounced in the 
deeper parts of  the water column, and density-depen- 
dent changes in growth are steepest at intermediate 
competitor concentrations. 

2.1.2. Mortal i ty  

Ingestion by the planktivores is proportional to 
prey concentration and predator number when preda- 
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tor feeding is encounter-limited (Eq. (8) below). 
Hence, individual copepod mortality risk will be 
diluted when predator-prey encounters exceed 
predator capacity, i.e. when copepod concentration 
N exceeds a critical concentration N *. Then mortal- 
ity risk is assumed to decrease proportionally (Foster 
and Treherne, 1981) so that 

M l N < _ N *  
M ( N ) =  M I N * / N  N > N * .  (5) 

Pelagic planktivores will be handling limited only 
under quite extreme circumstances (Rosland and 
Giske, 1994). As our model describes expected depth 
gradients in copepod concentration, predator diges- 
tion capacity - -  and not handling time - -  will be 
the decisive predator variable (Giske and Salvanes, 
1995). 

It is fruitful to distinguish between visual and 
tactile predators, as the mortality risks they represent 
(M v and M t, respectively) differ in the vertical 
(Eiane, 1995). While the search range of a visual 
predator is light dependent and therefore will vary 
considerably with ambient depth (Aksnes and Giske, 
1993; Giske et al., 1994), we represent tactile preda- 
tors by a spatially invariant search field. Tactile 
predators accounted for half of the total mortality in 
the SDP model of copepod vertical distribution (Fik- 
sen and Giske, 1995). Having two classes of preda- 
tors may yield two copepod concentrations where 
risk may be (further) diluted by increased concentra- 
tion. 

2.1.2.1. Visual  predators .  The  prey detection area of 
a swimming visual predator is determined by its 
visual range (R~) and the search angle (0) (Luecke 
and O'Brien, 1981; Dunbrack and Dill, 1984): 

A = 7r(R~ sin 0) 2. (6a) 

The encounter rate between a swimming planktivore 
and non-moving copepods is 

= ANvv, (6b) 

where v v is planktivore swimming speed. Mortality 
risk for a copepod from a moving visual planktivore 
is then proportional to the planktivore's prey detec- 
tion surface, for which the visual range Rv is the 

only environmental variable (Giske et al., 1994). The 
visual range of a planktivore is influenced by depth, 
light regime, the planktivore and the copepod (Aksnes 
and Giske, 1993). According to their model, R2v will 
be proportional to light intensity at depth (E:), and 
we may therefore write (Giske et al., 1994): 

M, otA ctR2v orEs. (6c) 

The proportionality factor is influenced by overall 
abundance of predators, predator swimming speed, 
the predators' feeding motivations, and by availabil- 
ity of alternative prey items. 

In case of planktivores limited by digestion pro- 
cesses, predator saturation requires that prey encoun- 
ters exceed stomach (or gut, whichever smallest) 
evacuation (Giske and Salvanes, 1995). The feeding 
capacity of the visual predator is therefore assumed 
to be constrained (Henson and Hallam, 1995), giving 
a maximum average ingestion rate of I v copepods 
per second over its daily feeding period. Saturation 
occurs when e > Iv: 

Nv* = I v / (  rr( R v sin 0 )2 vv ). (6d) 

2.1.2.2. Tactile predators .  The  sensory field of tac- 
tile predators is determined by their sensory capabili- 
ties (Fulton, 1982; Browman et al., 1989; Yen and 
Nicoll, 1990) and by the noise produced by the 
copepod. We make no attempt here to represent this 
process mechanistically, and just assume that such 
predators are equally efficient in near-surface water 
at midday as in deep water at midnight. This corre- 
sponds to setting the sensory range constant. 

As swimming speed of tactile predators is of the 
same order as that of their prey, these speeds will 
both influence the predator-prey encounter rate. 
When predator and prey speeds are equal, the aver- 
age relative speed between them is 4vt/3 (Gerritsen, 
1980), so we write: 

e t = rrR~Nv t • 4 /3 ,  (7a) 

and saturation occurs when e > It: 

Nt* = 3I t / (4"n 'R  ~ v ,) .  (7b) 

We further assume that predators are not horizon- 
tally attracted to higher copepod concentrations, and 
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that there is no interference between predators. Mor- 
tality risk is thus proportional to predator concentra- 
tion, and the mortality rate of an individual copepod 
in the presence of Pv visual predators and Pt tactile 
predators is 

M ( N )  = My(N)  Pv + Mt(N)  Pt- (8) 

Mortality risk is almost 150 times greater for a 
single copepod in surface waters than for an individ- 
ual surrounded by 650 competitors l-1 at 29 m. 
Dilution of mortality risk has the strongest impact in 
near surface waters and at low copepod concentra- 
tions. In shallow waters, risk may be reduced by 
downward vertical migration. Opposite to growth, 
gradients in mortality risk are weaker at larger depths 
(Fig. 2b), where visual predators are less efficient. 

2.2.  F i t n e s s  a n d  s p a t i a l  d i s t r i b u t i o n s  

The ideal free distribution (IFD) is one of a set of 
theoretical distributions investigated by Fretwell and 
Lucas (1970). The original IFD was based on five 
assumptions: (1) competitors are equal, (2) resources 
are patchily distributed, (3) the competitors incur no 
cost to move, (4) each individual will go to the patch 
with highest gain, and (5) competition between indi- 
viduals is 'scramble', without any contest or combat. 
The IFD was developed in the era of the optimal 
foraging theory, and although Fretwell and Lucas 
(1970) stated that food was but one component of 
fitness, the examples provided assumed a direct rela- 
tionship between feeding rate ('gain') and fitness 
(but see Oksanen et al., 1992). Under the IFD with 
equal competitors, the total number of individuals 
distribute among the patches so that the gain of an 
individual is equal in all patches utilized. If L patches 
are available, the IFD is achieved when individual 
gain S is equal among the K < L utilized patches: 

S ~ ( N , )  = $2(N2) = ... = S K ( N K ) ,  (9) 

and cannot be increased by relocation. 
It is not to be expected that copepods in a natural 

environment shall distribute relative to food concen- 
trations, as (1) there are combinations of low cope- 

pod concentration and high food production where 
the individual feeding rate will not be influenced by 
a (minor) increase in competitor concentration (Eq. 
(3)), and more important, (2) one of the main re- 
sources for copepod development and fitness may be 
environmental temperature (Eq. (1)), which is a 
non-depletable resource and (3) predation risk will 
affect fitness in a density-dependent manner (Eq. 
(5)). Here, we will express gain directly in terms of 
the habitats' expected contribution to the fitness (alp) 
of the animal, and assume the IFD to cause this 
fitness contribution equal for all individuals after the 
IFD is established. With this revision of the assump- 
tions, the functional model will resemble what 
Gilliam and Fraser (1988) termed 'equal competitors 
under predation hazard'. Although Clark and Mangel 
(1986) discussed several peaked profitability-func- 
tions for group size, gain has never increased with 
competitor concentration in previous models of IFD 
(except in the verbal discussion of Allee curves in 
Fretwell and Lucas, 1970). This will be possible 
here, particularly where feeding and growth is sup- 
pressed by temperature and where mortality risk may 
be reduced by dilution. 

Phenotypical fitness is the difference between the 
reproductive rate of an individual and that of its 
population. By denoting the expected rate of increase 
of an individual p and the corresponding rate of the 
population r, the fitness in habitat j is (Giske et al., 
1993) 

ci9j = p j  - r .  ( 1 0 a )  

Whether the population is constant, growing or di- 
minishing, an individual will increase its fraction of 
the future gene pool when p > r. However, for the 
practical situation of determining the IFD, we see 
that by inserting Eq. (10a) into Eq. (9) and equating 
habitat profitability S with fitness qb, we obtain 

c19t :-- c192 -=- ... = O K  ¢* Pl  = P2 = "'" ~- PK , 

(10b) 

as r is a population parameter constant for all habi- 
tats. As a consequence of the fitness definition in Eq. 

Fig. 2. Impact of copepod concentration and depth on (A) growth rate g, (B) mortality risk (given as In M) and (C) habitat profitability 
S j = g / M .  
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(10a), an the IFD population of equal competitors 
will consist of individuals with fitness ~ = 0, as 
Pi = Pj = r. This zero fitness can only be achieved 
by living an optimal life and maximizing the repro- 
ductive rate. 

Individuals with an unconstrained generation time 
maximize their expected rate of increase p by maxi- 
mizing the ratio of growth to mortality (Werner and 
Gilliam, 1984; Aksnes and Giske, 1990; Salvanes et 
al., 1994): 

max p *~ max(g /M) .  (10c) 

We restrict our analysis to this situation, i.e. we 
study situations where feeding will be sufficient for 
growth (g > 0) and that reproduction can occur un- 
hindered by seasonal and other constraints. We do 
not go into situations where risk of starvation must 
be considered, as this will make considerable changes 
in the individual motivation (Stephens, 1981). Then 
we may define the profitability of habitat j as 

Sj( Nj) = gj( Nj)/Mj( Nj), (10d) 

which is identical to the net reproductive ratio as 
employed by Hugie and Dill (1994) and similar to 
the 'minimize M / f '  rule employed by Gilliam and 
Fraser (1988). The density-dependent growth rate 
will be found by Eq. (4) and the mortality risk by 
Eq. (8). For the data set used here, this habitat 
profitability will be at maximum for 220 copepods 
l - i  at 18-20 m depth (Fig. 2c). Sj will be reduced 
downward due to lower growth and upwards due to 
higher visual predation. In these midwater depths, a 
lower competitor density will not enhance individual 
mortality risk, but stronger competition will reduce 
growth more than mortality. 

In IFD terms we will find the relation between the 
optimal competitor concentration in each habitat, so 
that gain is equalized by competition and predation 
risk dilution. The criteria we use is that (1) the 
number of individuals in all utilized depths shall sum 
up to the population size, 

N, + N 2 + ... + NK=N T, ( l l a )  

(2) that each copepod shall expect the same fitness in 
all utilized depths, 

q > l  = q ~ 2  = - . .  = q~K 

¢*. S , ( N , ) = S 2 ( N 2 ) : . . . = S x ( N K ) ,  ( l i b )  

and (3) that this is the solution with the highest 
possible habitat profitability S i. 

IFD models have been around for a while, yet 
they have largely been limited to small systems (but 
see Bernstein et al., 1988, 1991; Kacelnik et al., 
1992) and diminishing return curves. To find an IFD 
for a large population offered a series of patches 
with peaked profitability curves will have tremen- 
dous computation costs, and we are forced to seek 
biologically sound simplifications of the problem. 

2.3. Numerical solutions of the IFD 

2.3.1. The continuous problem 
For a given habitat profitability function S(N, z) 

and for a population size (N v (ind m-Z))  we want to 
determine the vertical distribution that allows the 
largest possible habitat profitability of each individ- 
ual. That is, we want to locate the largest S i = g~/Mj 
that allows the identity 

0 NT= f N(S, z)dz (12a) 

to be satisfied where D is the total depth. To be able 
to compute the population size integral above, we 
must for a given density-dependent profitability 
function S(N, z) be able to compute the inverse 
function N(S, z). At habitat profitability S, the 
competitor concentration at depth z, N(S, z), will be 
uniquely defined if OS/~N ~ 0 for all N. However, 
in general N may be a multivalued function of S for 
a given z. In this study we allow S to have at most 
one maximum, although this maximum may be a 
plateau. When searching for an optimal distribution, 
we also want for each depth to consider the possibil- 
ity that there are no animals at that depth. In the one 
peak case without a plateau the integrand N(S, z) 
may therefore take at most three different values: (1) 
N(S, z) = 0 and there are no animals at depth z, (2) 
N(S, z)= N~ which is the smallest N that satisfies 
S(NI, z ) = S  and (3) N(S, z ) = N 2  which is the 
largest N that satisfies S(N 2, z) = S. 

For a given z and S there then may be I, 2 or 3 
possible values of N that must be considered. If 
there are no N satisfying S(N, z) = S, then the 
solution is 0. If there is one N such that S(N, 
z) = S, we get 2 possible values of N (0 and Nl). If  
there are 2 values of N such that S(N, z)= S, we 
get 3 possible values of N (0, N¿ and N 2) to 
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consider in the integral. For the special case where 
the profitability level hits a plateau of a habitat 
curve, all values of N fulfilling S(N, z) = N will be 
considered. Since N(S, z) is multivalued, Eq. (12a) 
may take an infinite number of values. 

2.3.2. The discrete problem (MO) 
To find unique solutions to the problem stated 

above is in general impossible with few options and 
gets worse with increased choice. In the search for 
approximate solutions we approach Eq. (12a) with 
the repeated midpoint rule 

L - I  

N T -  Y'~ N(S ,  Zj)AZ, (12b) 
j=o 

where A z = D / L ,  L is the number of layers in the 
vertical and zj is the depth in the center of the layer. 
For each j N(S, z i) has up to 3 possible solutions 
and all permutations may be potentially interesting. 
Therefore, if • profitability levels (determining the 
precision in the approximation of the true Sj) shall 
be considered, the computational complexity will be 
up to ~ 3  L. 

For a given depth z j, however, there may be 
fewer than 3 possibilities. Let Vj (Vj ~ (1, 2, 3)) be 
the number of possible values of N that must be 
considered in depth zj. The total complexity then 
becomes xtr(v~ × V 2 × ... × Vt). For large values of 
L the computational complexity of the procedure 
above becomes unrealistically large. For 20 depths, 
32o > 109 and we have to multiply this by ,I, in our 
search for optimal distributions. We therefore study 
some simplifying procedures. 

2.3.3. Simplified discrete method 1 (M1) 
Definition: For a given habitat profitability level S 

a neighborhood h is a connected sequence of dis- 
crete depths (zj, zj+! . . . . .  z j+,)  such that the 
number of possible copepod concentrations that must 
be considered in each depth is constant: Vj = Vj+ ~ = 
. . .= Vj+,. Thus, a neighborhood contains depths 
with similar-looking profitability curves that cross 
the current S-level equally many times. 

Further, we make two restrictions to the numeri- 
cal search for solutions: (1) Within a neighborhood 
with Vj = 3 we will consider only combinations of 
N = 0 and N = NI or N = 0 and N = N 2. (2) Within 
a neighborhood the possibility N = 0 will not be 

allowed between depths with N 4: 0. Thus, combina- 
tions of the type N s = NI(S, zj) 4: O, Nj+ ~ = O, Nj+ 2 
= NI(S, Zj+ 2) ~ 0 will not be considered. The bio- 
logical interpretation of these restrictions is that in a 
sequence of depths of similar quality, we will not 
allow copepods to distribute in a way that makes 
alternating high and low competitor concentrations, 
and an unexploited depth may only be found at the 
outer margins of exploited depths within a neighbor- 
hood. 

For a neighborhood with 4 discrete depths with 
the possibilities N-= 0 and N =  N l the following 
combinations will be considered with the restrictions 
above: (0, O, O, 0), (NI, O, O, 0), (0, NI, O, 0), (0, O, 
N¿, 0), (0, 0, 0, NI), (N t, N 1, 0, 0), (0, NI, N 1, 0), 
(0, 0, N I, Nl), (N l, Nl, N l, 0), (0, N I, N 1, N l) and 
(N l, N l, N l, NI). That is 1 + ( 4 ×  5 ) / 2 =  l l  possi- 
bilities. 

If the current profitability level S hits the plateau 
of a profitability curve, then the curve will be con- 
sidered a one-peak curve if the plateau is at its 
maximum habitat profitability (i.e. low N, e.g. depths 
17-23 in Fig. 3) or a two-peak curve if not (e.g. 
depths l - 15  in Fig. 3). 

In general for a neighborhood h with L depth 
levels and Vj possible values of N at each depth, the 
number of combinations X h that will be considered 
with the 2 restrictions becomes 

i f V j = l , X  h = l  

(only (0, 0 . . . . .  0) is considered), 

if Vj= 2, X h = 1 + L ( L  + 1) /2 ,  (13) 

if Vj= 3, X h = 1 + L ( L  + 1). 

For a case with H neighborhoods covering the 
depth range, the computational complexity becomes 
%I't X (Xl XX2X ...XXH). For a case with 1 neigh- 
borhood covering the water column the complexity 
becomes of order WL 2. For an increasing number of 
depth levels, L 2 << 3 L, so this will be a considerable 
reduction in computation cost. Also with few neigh- 
borhoods the reduction will be significant. 

2.3.4. Simplified discrete method 2 (M2) 
Let the definition of a neighborhood be as above, 

but with the following restriction: For each neighbor- 
hood we consider at most the combinations (0, 0 . . . . .  
0), (Nj, N 1 . . . . .  N I) and (N 2, N 2 . . . . .  N2). Thus, at 
most (if V~ = 3) 3 combinations will be considered. 
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Fig. 3. Density-dependent habitat profitability curves (S# = g / M )  
for all depths at daytime. All depths show constant Sj at low 
copepod concentration N. The first increase in profitability in 
shallow depths is due to satiation of visual predators. Tactile 
predators with constant search volumes are satiated at N =  217 
ind m -3 at all depths. 

For a case with H neighborhoods covering the 
depth range, the computational complexity again be- 
comes • x (X~ × X 2 X ...X Xn), but now with X h 
= 1, 2 or 3. For a case with 1 neighborhood cover- 
ing the whole water column, the complexity becomes 
of order q~. 

3. Results 

3.1. Ecology 

All habitat profitability curves do initially show a 
plateau where OS/ON = 0 (Fig. 3). At shallow depths 

Sj will increase due to satiation of visual predators 
(at daytime). However, influence of visual predators 
is not visible at 13 m and below. Tactile predators 
with a constant sensoric field are satiated at all 
depths (both day and night) at 217 ind m -3. This is 
visible as a weak or moderate improvement of all 
curves in Fig. 3. 

Density-independent effects of temperature-limita- 
tion of feeding at high food concentrations affect 
habitat profitability at low competitor densities (Fig. 
2a). Then individual profitability will be maximized 
by individuals concentrating to achieve risk dilution, 
and to seek the deeper depths where visual predation 
risk is lower but food is still plentiful. At intermedi- 
ate copepod stock size, the largest concentrations 
should be found at 16-20 m, while at 10-12 m at 
larger population size (Fig. 2c and Fig. 3). The 
resulting ideal free distribution is quite stable in the 
sense that small alterations in overall copepod popu- 
lation size do not cause major shifts in the spatial 
distribution (Fig. 4). 

The impact of light intensity on the visual range 
of the predators gives diei variation in the vertical 
distribution (Fig. 5). Except at very high copepod 
population size, the model predicts shallower distri- 
bution at nighttime. The difference between day and 
night reflects the relative impact of visual predation 
versus food and temperature upon vertical distribu- 
tion, and it is seen that this influence diminishes with 
increasing copepod population size. 

The nighttime optimal distributions are very simi- 
lar to distributions based on maximization of g (Fig. 
5). At low copepod stock sizes, concentrations in 
occupied depths will be lower than N * for tactile 
predation, and only growth potentials will influence 
distributions. At higher copepod stock sizes, night- 
time maximization of g / M  yields heavier utiliza- 
tion of the best habitats and weaker utilization of 
marginal habitats than by the max g rule. By doing 
so, individuals in crowded depths obtain reduced 
mortality risk, while concentrations in less used habi- 
tats are too low to satiate tactile predators. 

3.2. Methodology 

The predicted vertical distributions from the sim- 
plified methods M1 and M2 will in most circum- 
stances be quite similar to M0. M0 always finds the 
spatial distribution that gives the higher habitat prof- 
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Fig. 4. Ideal free distribution of  the copepods as a function of  stock size N T. 

itability (Fig. 6). The differences in terms of prof- 
itability are largest at low copepod population size 
N T. When N T exceeds 10 7 ind m -2,  there are no 
differences between the solutions. At such a large 
copepod population size, all depths are utilized so 
that the simplifying restrictions will be valid. With 

the current data set (Figs. 1 and 2), the profitability 
obtained by these restrictions is never more than 4% 
lower than with the unsimplified method. 

All three cases where M2 predicts suboptimal 
distributions (Fig. 6) are caused by the neighborhood 
restriction. In the first two instances M0 fills a depth 
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Fig. 6. Habitat profitability ( g / M )  achieved under the three 
methods used at low copepod stock sizes. M0 is the unsimplified, 
and MI and M2 are the simplified methods. M1 always gave the 
same fitness as M0. 

with N 2 individuals adjacent to N~ depths, and in 
the third case M0 fills N1 individuals into an area 
where other depths have N 2 concentrations. 

As the simplified methods allow reductions in the 
total number of possible solutions, the computation 
time is also strongly reduced. For the runs presented 
here with 15 depth intervals (Az = 2m), M0 used 
101 min, M1 used 4.6 min, and M2 used only 14 s to 
find the solution to Fig. 4 on our UNIX machine, i.e. 
an increase by a factor of 20 from M2 to MI and 
from M1 to M0. Solutions predicted by M1 and M2 
at increased depth resolution ( A z =  l m) did not 
differ much from the runs with 15 depth intervals, 
indicating little sensitivity for the depth resolution 
with the present data set. The doubling of depth 
intervals did, however, have great effects on the run 
time of the models. 

4. Discussion 

4.1. Ecology 

The main difference of the model presented here 
compared with traditional IFD models (Fretwell and 
Lucas, 1970) is the inclusion of density-dependent 
predation risk and the possibility of density-indepen- 
dent regulation of the feeding rate in the profitability 
function. Such curves yield the prediction that if 

competitor concentration is so low that the feeding 
rate is not or only weakly impaired, individuals 
should join groups to avoid predation in stead of 
spreading out to match the resource input. We have 
modelled the growth phase of copepods, where feed- 
ing motivation will be high. Under other circum- 
stances (Aksnes and Giske, 1990; Giske and Aksnes, 
1992; Utne and Aksnes, 1994; Utne, 1995), preda- 
tion risk dilution may be even more important and 
expected matching with resources even poorer. 

Hugie and Dill (1994) modelled the ideal free 
distribution of predator and prey fishes where both 
trophic levels were dynamically represented. They 
found that the prey density was independent of both 
predator density and resource level, and only af- 
fected by the inherent riskiness of the habitat. Like 
them, we assume that predators may relocate, so that 
predator concentration is no cue for habitat prof- 
itability. Contrary to them, we found that the preda- 
tion risk has decreasing importance with increasing 
prey population size, and that the resource input rate 
eventually becomes the dominant environmental sig- 
nal ('input matching' (Parker, 1978; Milinski, 1979) 
or 'habitat matching' (Pulliam and Caraco, 1984)). 
The difference in results stems from our formulation 
of density-dependencies in feeding rate and mortality 
risk. Our formulations contain the possibilities of 
resource deprivation under intensive competition and 
risk dilution by predator satiation. As the deep and 
safer depths also are the poorer depths, both these 
factors will lead to a gradual shift towards higher 
sensitivity to food input ratio at the expense of 
habitat riskiness at increased copepod concentration. 

Life history decisions as allocation to growth, 
storage or reproduction and risk-willingness can only 
be understood in the context of how these decisions 
influence the maximization of p. Ultimately, vertical 
migrations must also be evaluated by this measure. 
For this purpose SDP and individual state are needed. 
However, copepods generally lag behind their algal 
resources, such that mismatch may be a common 
feature (large population - low food availability). 
Thus they are likely to be regulated by density-de- 
pendent mechanisms at least at some times of the 
year. On the other hand, the lack of food will affect 
their state, and actions like entering diapause or 
modifying activity to increase survival can be in- 
duced. In an IFD model the action can be to spread 
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out, while the SDP model could predict other behav- 
iors. The different models may therefore complement 
each other, as individuals in nature will rely on a 
range of actions simultaneously, which we currently 
only are able to study separately. 

If both the current IFD and the SDP model by 
Fiksen and Giske (1995) captured the essence of 
habitat profitability, then the conclusions from one 
model should be modified in the light of the results 
from the other. In essence, it is clear that at high 
population densities the predictions from the SDP- 
model will be mistaken, while SDP may be superior 
(provide more information) at low population densi- 
ties or at high resource levels. Also, when predators 
are dense or can operate efficiently, the SDP model 
may predict a too deep distribution, because it does 
not consider the option of clumping, or the IFD 
model will predict a too deep distribution when food 
is scarce, because it does not include the risk of 
starvation. 

Theories and models are imperfect abstractions of 
reality, lacking some essential features of the indi- 
vidual or the environment. Predictions based on only 
one modelling approach should therefore be treated 
with caution. The two models discussed (SDP and 
IFD) illustrate why we to a larger extent should 
apply several and different approaches to study the 
same phenomena. Hopefully, future approaches may 
be able to capture more of these abilities within one 
framework. 

4.2. Methodology 

The IFD theory has usually been applied to situa- 
tions with few habitats and few individuals. With 
intentions of modelling population dynamics includ- 
ing density-dependent processes in natural systems it 
will inevitably be necessary to include far more 
habitat options and individuals, which makes compu- 
tations far more difficult. 

Discretization of a continuous system always in- 
cludes the danger of creating unnatural border lines 
that might affect the model predictions, and the need 
for good resolution will certainly depend on environ- 
mental properties as well as the organism in study. 

With the current settings, the two simplified pro- 
cedures produce almost identical distributions as M0 
does. However, in another scenario not documented 

here, where risk dilution occurred at far lower cope- 
pod concentrations (e.g. by better vision and lower 
digestion rate of the visual predators), we have seen 
that both simplified methods may fail to find the 
optimal distributions when stock size N x is small, 
and the resulting habitat profitability may be as 
much as 25% lower by M2 than by M0. This poten- 
tial difference in precision of the simplified ap- 
proaches at high and low population sizes is caused 
by more switches between empty (N(S,  z ) = 0 ) ,  
low-concentration (N(S,  z ) = N 1 )  and high-con- 
centration (N(S,  z ) =  N2) depths at lower popula- 
tion sizes. These switches are not always discovered 
under the simplifying restrictions. In a situation where 
many habitat profitability curves resemble the l m 
curve in Fig. 3, M2 will match the original only 
when all depths are utilized, and the competitor 
concentrations in all depths are on the falling right- 
hand side of the habitat profitability curve. The 
technical process of finding the IFD is then identical 
to the classical IFD with monotonically decreasing 
habitat profitability. M2 thus resembles the methods 
of Bernstein et al. (1988, 1991) and Kacelnik et al. 
(1992) who sought for solutions in a multi-patch 
landscape with strictly negative effects of competi- 
tion. M2 may also find the IFD at very low competi- 
tor abundances, so that all depths are utilized in the 
rising left-hand side of the profitability curve. How- 
ever, the probability that optimal competitor density 
in all depths shall be on the left-hand side is quite 
small, and the simplifying restrictions should be 
applied with caution under weak competition. We 
regard this paper as a first attempt to find simplified 
solutions, and other methods - -  that can allow more 
spatial patchiness at low computing cost - -  should 
be investigated. 

As long as the habitats differ in quality, there is a 
general trend that for low abundances, only the few 
best depths will be occupied (yielding relatively few 
possible solutions), and as abundance increases more 
of the less profitable depths will be included (yield- 
ing relatively many possible solutions). Thus for low 
N x (when computational costs are low), M0 or M1 
may be applied to search the optimal distribution, 
while for high N x (where computational costs are 
high) M2 will almost always be valid and may be 
applied. 

Applying the IFD framework on zooplankton in a 
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vertical system is somehow unrealistic as it can 
hardly perceive the concentrations of conspecifics 
several meters away. Neither is it free to relocate 
without costs in energy and time. The same problem 
would occur on large scale systems like a horizontal 
distribution of fish populations, where the IFD as- 
sumptions of free movement and total knowledge of 
other habitats and competitors are broken. For such 
situations, movement rules allowing relocation re- 
lated to normal swimming speeds of the individuals 
(Rosland and Giske, 1994; Fiksen et al., 1995), and a 
(fading) memory (or reliability) of the quality of 
habitats visited (Milinski and Regelmann, 1985; 
Milinski, 1994), can increase the realism of the 
model. It may also reduce computer costs, as not all 
habitats need to be considered for all individuals. 
Further, a slight turbulence would ruin most patterns 
of zooplankton distribution, e.g. the pattern in Fig. 
5a where risk dilution forces all individuals into one 
thin vertical layer. Some of the predictions yielded 
by this model will therefore apply more to organisms 
(e.g. fish) that may overcome the chaotic power of 
turbulence. 
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