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Summary

Reproductive value (RV) and net reproductive output (R,) are frequently used fitness measures. We argue
that they are only appropriate when intervals between reproductive events are fixed, as they are
dimensionless generation-to-generation scalings with units offspring per parent. A fitness measure should
account for two different effects of a decrease in generation time: (1) increased survival due to shorter
exposure to mortality agents and (2) increased frequency of reproduction. R, and RV deal with the first of
these two effects, while a measure with a physical dimension per time [T'] is needed to account for the
second. The Malthusian growth parameter, r, meets this requirement and in situations where time to
reproduction is variable, we propose p, the instantaneous rate of spread of descendants (from an individual)
be used instead of R,. As an alternative to RV, we suggest using the instantaneous difference ® = p — r,
where r is the population rate of increase. While RV and R, are dimensionless ratios, ®, and p are per time
rates which are appropriate in accounting for alterations in generation time.
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Introduction

There has been long debate on the use of population growth rate parameters as fitness
measurements (e.g. Charlesworth, 1980; Nur, 1984; Stenseth, 1984; Murray, 1985; Stearns,
1992). Fitness is hard enough to define, let alone measure. We will leave the measurement
problems untouched and be satisfied with an intuitive understanding of phenotypical fitness: that
natural selection has favoured those individuals who have reproduced successfully at a higher rate
than the population as a whole, where successfully means that a premium is also put on offspring
survival. Thus, a fitnes measurement should consist of the rate of reproduction of an individual
and the survival of its offspring, scaled according to the reproductive rate of the population.
Much of the controversy arises from not stating explicit dimensions and units, especially
quantities with one as their numeric value. This has no implications for the calculus, but prevents
the discovery of dimensional inconsistencies and, inevitably, biased estimators. As such, R, is
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Table 1. Definition of symbols, dimensions and units
Symbol Description Dimension Unit
A Finite increase - -
p Individual instantaneous rate [T™] Year™'
of increase
) =p-—r [T Year™
b Lifetime fecundity (M Daughters
K Relation between fecundity and [T Daughters per mother per year
generation time '
M Instantaneous mortality rate [T Year™
m Mother [T} Female
N, Population size at time ¢ 1] Females
R, Net reproductive output - Daughters per mother
RV Reproductive value - Daughters per mother
per population
increase during T
r Population instantaneous rate [T Year™!
of increase
S Survival probability over - -
gencration time
T Generation time [T] Years
t Time [T] Years
At Basal time [T] Inverse unit of ®, p and r
w Finite dimensionless fitness - -

Dimensional symbols: I, individual; T, time.

frequently termed the net reproductive (or reproduction) rate (e.g. Keyfitz, 1968; Charlesworth,
1980; Caswell, 1989; Stearns, 1992). An inspection of the dimensions, however, gives no
indication that this parameter is a rate, as the time dimension is not explicitly expressed. A
biological variable has three attributes: a numerical value, a unit of measurement and a physical
(or biological) dimension. Equations must be consistent with regard to each of these factors. To
separate dimensions from units, dimensions are given in brackets [ ]. All the symbols, their
dimensions and the units that are used below are defined in Table 1.

Reproductive value (RV) and net reproductive output (R,)

The fitness of a phenotype has been approximated by the reproductive value (RV) (Fisher, 1930;
Charnov, 1990; Stearns, 1992). RV is a measure of two different phenomena: (1) the discrete
reproduction of an individual, weighted against (2) the continuous reproduction of its population
over the same time span. Stearns (1992, p. 223) defines RV more stringently as ‘the number of
offspring that an average organism in a particular age class can expect to have over the rest of its
life under the conditions prevailing, discounted back to the present by the current population
growth rate’. Reproduction must account for both number and persistence of offspring before it
can be assessed as the ratio between the numbers of individuals separated by one generation, that
is,-the adult offspring per mother as compared to population growth over the same interval.
R, is defined as the number of female offspring a female is expected to produce over her
lifetime, which, for the semelparous situation equals the number of adult female offspring an
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adult female gives rise to. The number of descendants replacing the adult mother is the product
of fecundity and juvenile survival, i.e.

R, = (bim)S (1a)

where b/m is the individual fecundity (number of female offspring produced by and per a female)
and § is the probability of offspring survival from egg to adult. Hence, from a numerical point of
view, m could be omitted. From a dimensional viewpoint, however, it should not be neglected.
As the ‘individual’ is not a dimension of the SI system, we define here the dimension [I] and the
common units ind. (individuals) and females are assumed to be associated with this unit. The
time dimension is not explicitly expressed in any of the variables on the right-hand side of
Equation 1a. Although survival is obviously related to time, time is not commonly expressed in
the unit of S. Survival is often expressed as § = e, where M is the instantaneous mortality rate
[T'] and T is the generation time. Thus Equation 1a becomes

R, = b eMT (1b)
As the death of an individual is a discrete rather than a continuous process, ¢ ™’ should be
interpreted as the individual juvenile survival probability. Regardless of how survival is
represented, S in Equation 1a must be dimensionless and, although R,, is frequently called the net
reproductive rate, R, represents a dimensionless ratio of the number of individuals in a parent—
offspring line. RV scales expected individual performance (R,) against the population’s growth
over the same time interval T and since in a continuous breeding population N./N, = e’”, we can
write

RV, = R, e'” (2

where RV, represents RV at age zero, i.c. lifetime reproductive value. By inspection of the
dimensions, we see that RV is also dimensionless. Hence, both RV and R, are ratios rather than
rate measurements.

Instantaneous rate of increase

The instantaneous population growth parameter in Equation 2 is also commonly used to express
fitness (e.g. Fisher, 1930; Cole, 1954; McLaren, 1963; Lewontin, 1965; Lande, 1982; Sibly and
Calow, 1986). The dimension of [T '], is obtained from its definition

1 dN

TN @)

Thus, in contrast to R,,, r is a true rate. It was originally defined for population growth where N is
the population size and ¢ is time. Later, we will need both the current population rate of increase
and the rate of spread of descendants from an individual and we therefore reserve r for the
population and p for the individual. At the individual level, the instantancous increase, p, is the
instantaneous production of offspring minus the death rate. As commonly shown in textbooks, r
and R, (as defined at the population level) are closely related and for semelparous reproducers
we have the following relationship between instantaneous growth rate (p), net reproductive
output (R,), generation time (7T), fecundity (b) and mortality (M) at the individual level:

p = InR/T = In(bm™' ¢™"IT = [In(bm™)IT] — M 4
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On the right-hand side of Equation 4 we see that the instantancous growth rate is the difference
between the instantaneous birth and death rates, which is another way of defining r (e.g. Lotka,
1925).

By comparing Equations 1b and 4 we see that generation time has a different impact on R,
compared to p. R, is actually independent of generation time per se, as will be illustrated in the
next section, but it does depend on the generation time for juvenile survival.

Influence of generation time

Stearns (1992, p. 31) has stated that ‘In using R,, one makes the implicit assumption that
variation in generation length makes no difference to the outcome of selection. The only thing
that counts is the number of offspring produced per lifetime, no matter how long it takes to
produce them.” This, however, is not entirely true, as the numerical value (although not the
dimension) of R, does depend on generation length (unless mortality is zero). By inserting
different generation times in Equation 1b and keeping the others constant, it may be asserted that
reproductive output increases with reductions in generation time and therefore it might seem that
R, is a per time rate that rewards early reproduction. This reward is, however, only a
consequence of the definition of survival as being dependent on time (S = e ™). Hence, the
increased R, is due to a shorter exposure to mortality risk and not to a decreased generation time
per se (which is the argument of Stearns (1992)). This can easily be seen when mortality is zero
(M = 0and § = 1), as a reduction in generation time therefore has no influence on the value of
R,,, assuming that there is the same number of offspring. From Equation 4 we see that the value
of p is affected by alterations in generation time also when mortality is zero.

Fitness

As stated in the Introduction, we assume that fitness increases with an increase in both
reproduction rate and juvenile survival. As shown above, generation time affects both. Hence,
generation time should be appropriately represented in the rate of reproduction and in survival.
As is also shown above, R, may respond indirectly to alterations in generation time if such
changes also affect survival. It does not respond, however, to the decreased turnover time
associated with reduced generation time and this is reflected in p.

Phenotypical fitness is reproducing at a higher rate than other members of the population. An
individual may have a high fitness even when bS < 1 and p < 0, as long as the rest of the
population suffers even more. This aspect of fitness is included in RV by the weighing factor e’ T,
but RV is biased due to R,. As a better measure of phenotypical fitness we suggest the
instantaneous difference in increase with dimension [T™']

d=p-—r (5a)

where r represents instantaneous change in population size during T (Equation 3). While one or
both of p and r may be negative, @ is positive only when the increase rate of the individual is
higher than that of the population, as would be expected for a phenotypical fitness measurement.
It may be desirable to express fitness as a ratio of individual versus population performance. For
this use, the finite term w corresponds to ®:

w = ePA = epAiferd = )\ /X, (5b)

where At is basal time (i.e numeric value one and inverse unit of ®, p and r). Contrary to R, and
RV, the instantaneous ® and the finite w account correctly for the generation time.
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Consequences for optimal habitat and risk-taking

Recently, life history theory has been used to explain and predict animal distributions (e.g.
Werner and Gilliam, 1984; Clark and Levy, 1988; Aksnes and Giske, 1990). In all these papers,
predictions were based on the maximization of R,,. In the following analysis we show that R, will
not predict the optimal risk-taking associated with an optionally reduced generation time.

Marginally acceptable changes in mortality risk associated with an environmental change in
generation time can be studied by considering two (or r) habitats, one having a higher fitness
value than the other (R,; > Ry, p1 > po). We assume that the optimal habitat choice of the
individual is independent of population growth rate (r), so that the measurements of individual
performance (Equations 1b and 4) will describe the individual relative fitness as well as the
comparative measurements do (Equations 2 and 5). Thus, the optimal habitat is where R, or p,
respectively, is maximized:

max(R,) = max(bm 'e ") (total reproduction) (6)
or
max(p) = max[In(bm ")/T — M| (reproductive rate) (7)

(Of course, time scales other than the generation time are important and short-time trade-offs
may differ widely from those derived here (Stephens, 1981; Mangel and Clark, 1988). As already
emphasized, in these very simplistic models, b, T and M have different impacts on the fitness
measurements and thus on the predicted optimal habitats. Also, in most habitats, b, M and T will
be interdependent. We will assume that lifetime fecundity is the same in habitats 1 and 2, i.e. b,
= b, = b. If habitat 1 should provide a higher fitness value (measured as R,), the following
inequality should be satisfied:

Ry > Ry, 2> TiT, < My/M, 8)

Hence, a reduction in generation time is favourable as long as it is linked to a less than equal
relative increase in mortality rate. Using the instantaneous rate as a fitness measurement, we end
up with a very different inequality that has to be satisfied in order to achieve higher fitness in
habitat 1:

o] > ()] :> T]/Tz <1+ (MZ - Ml)Tl/ln(bm_l) (9)

Here, we see that fecundity has not been eliminated and the optimal T versus M trade-off
depends on the actual fecundity. Following Werner and Gilliam (1984) and Gilliam and Fraser
(1987), there have been several studies showing that juvenile animals trade-off growth rate (g)
versus mortality risk by minimizing M/g. These results are based on maximization of R, and the
assumption that generation time is inversely proportional to growth rate. Unfortunately,
Inequality 9 shows that this simple rule does not account appropriately for the generation time.

Consequences for optimal age at maturity

R, may not only misjudge the correct trade-off, but may also invoke incorrect variables in a life
history optimization. To demonstrate this, assume that fecundity is a function of body size,
linearly increasing with age at maturity (b/m = KT). Let the mortality rate be constant over
generation time, so that survival § = e 7. With these two simplistic assumptions optimal age at
reproduction can be investigated by solving Equations 6 and 7 for all values of 7. First, we see
from Equation 7 that age-independent mortality risk will give a constant reduction in p and will
not influence optimal age at maturity. By using p, the trade-off depends on the steepness of the
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Figure 1. Dependency of R, and p on generation time (7). Under the assumptions that survival can be
expressed as S = e 7™ and fecundity as b/m = KT, the global maximum is at T, = 1/M and at T, = ¢/K. In
this example K = 3 and M = 1/3.

age-dependent fecundity function (K) and generation time. The opposite applies by using
R, (= KT ¢™7) and Equation 6: optimal age is independent of the age-dependent fecundity,
but cannot be separated from the mortality rate. By differentiation of R, and p with respect
to generation time, it is easy to show (Fig. 1 and Appendix) that R, has a global maximum at
Tg, = 1/M, while the global maximum of p is at 7;, = e/K (where ¢ is the base of the natural
logarithm).

The above expressions for optimum generation time show that when conditions worsen, so that
M increases and K decreases, the optimum generation time predicted from R, will decrease,
while p predicts an increase. By rearranging Equation 1b to Tx = —In (R,m/b)/M and Equation 4
to T, = InR, p and solving for Tz > T,, we find that the predicted optimum generation time is
lower by using R, than by using p when R, < 1 and p < 0. Thus, when breeding earlier is not
worthwhile (cf. Sibly and Calow, 1986), R, underestimates the optimum generation time. Again
it is shown that conclusions based on R, may be misleading, but nevertheless common.
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Appendix

Let bm™' = KT
Proof that p is at maximum at T = e/K:

p=In(KT)T - M
dp/dT = (1/T? (1 — In(KT)

dp/dT =0 > In(KT) =1 > T =¢lK
which is a maximum because d?p/dT? = —T*(1 + 2In(KT)) < 0 at T = e/K.
Proof that R, is at maximum at T = I/M:

R, = KTe™T
dR /AT = Ke™T (1 — MT)
dR AT =0 2> T = 1M

which is a maximum because d?R,/dT? = KMe ™" (MT - 2) <0at T = 1/M.



