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Abstract
Anticipating fisher behaviour is necessary for successful fisheries management. Of

the different concepts that have been developed to understand individual fisher

behaviour, random utility models (RUMs) have attracted considerable attention in

the past three decades, and more particularly so since the 2000s. This study aimed

at summarizing and analysing the information gathered from RUMs used during

the last three decades around the globe. A methodology has been developed to

standardize information across different studies and compare RUM results. The

studies selected focused on fishing effort allocation. Six types of fisher behaviour

drivers were considered: the presence of other vessels in the same fishing area, tra-

dition, expected revenue, species targeting, costs, and risk-taking. Analyses were

performed using three separate linear modelling approaches to assess the extent to

which these different drivers impacted fisher behaviour in three fleet types: fleets

fishing for demersal species using active gears, fleets fishing for demersal species

using passive gears and fleets fishing for pelagic species. Fishers are attracted by

higher expected revenue, tradition, species targeting and presence of others, but

avoid choices involving large costs. Results also suggest that fishers fishing for

demersal species using active gears are generally more influenced by past seasonal

(long-term) patterns than by the most recent (short-term) information. Finally, the

comparison of expected revenue with other fisher behaviour drivers highlights that

demersal fishing vessels are risk-averse and that tradition and species targeting

influence fisher decisions more than expected revenue.
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Introduction

There has been an increasing societal and public

demand from governments, industries and non-

governmental organizations to provide sound and

integrated scientific support for ecosystem-based

management (EBM) (Browman and Stergiou 2004;

Garcia and Cochrane 2005; Arkema et al. 2006;

Fulton et al. 2014). The concept of ecosystem

approach to fisheries (EAF) or ecosystem approach

to fisheries management (EAFM) was adopted to

account more explicitly for the interdependence

between human and environmental considera-

tions, therefore to consider the environmental

impacts of fisheries as well as the impacts of the

environment on fisheries (Garcia et al. 2003;

Pomeroy et al. 2014). A prerequisite to the effec-

tive application of the EAFM is to better under-

stand the different components of the ecosystem

(Degnbol et al. 2006; Fulton et al. 2014). Fishers

are key components of marine ecosystems: under-

standing and anticipating their behaviour is partic-

ularly important when implementing management

regulations (Hilborn 2007). For example, the intro-

duction of spatial closures can result in redistribu-

tions of fishing effort, with adverse and unforeseen

knock-on effects on other ecosystem components

(Hilborn 2007; Leslie and McLeod 2007; Fulton

et al. 2011).

Yet, the adaptability of fishers to regulations

and environmental variability has often been dis-

regarded, leading to fisheries management failures

(Hardin 1968; Daw and Gray 2005; Branch et al.

2006; Fulton et al. 2011). Different studies of stock

collapses, for example Caspian Sea anchovy (Das-

kalov and Mamedov 2007), Californian sardine

(Radovich 1982), North Sea herring (Dickey-Collas

et al. 2010), and North Atlantic cod (Walters and

Maguire 1996; Poulsen et al. 2006), suggest that

while recruitment failures, competition with other

species (Hjermann et al. 2013) and exceptional

environmental conditions (Beaugrand et al. 2003)

have caused fish stock depletion, a lack of under-

standing of fisher behaviour and their reactivity to

complex management regimes is also a key cause

of management failures (Allen and McGlade 1987;

Peterson 2000; Degnbol et al. 2006; Hilborn

2007).

The mechanisms of change in the behaviour of

human agents have been widely studied using a

range of approaches, one of the most dominant being

discrete-choice modelling (McFadden 1974; Greene

2003; Train 2003). Discrete-choice models building

in a random utility function, also known as random

utility models (RUMs), have been applied in various

disciplines including preferences of households and

consumers (Gracia and de Magistris 2008; Bougher-

ara et al. 2009; Zhang et al. 2009), school choice

(Glick and Sahn 2006; Cohen-Zada and Sander

2008) or travelling options (McFadden 1974; Ettema

et al. 2007). A founding principle of RUMs is that an

agent facing multiple choices assigns a utility to each

alternative and then chooses that with the greatest

utility. RUMs have also increasingly been applied to
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fisheries, to analyse how fishers choose their fishing

grounds (Wilen et al. 2002; Hutton et al. 2004; Tidd

et al. 2012, 2015), their target species (Pradhan and

Leung 2004; Vermard et al. 2008; Marchal et al.

2014), their fishing gear (Eggert and Tveteras 2004;

Andersen et al. 2012) or a combination of these

(Holland and Sutinen 1999; Marchal et al. 2009;

Girardin et al. 2015). Many other fleet dynamics

studies have been conducted using RUMs; see van

Putten et al. (2012) for a qualitative review pub-

lished in this journal. These studies have investigated

the relative weights of different fisher behaviour dri-

vers, hereby simply referred to as ‘drivers’, for a vari-

ety of countries, fishing fleets, fishing periods, and

underlying model structures. The objective of this

study was to review and compare, in a standardized

fashion, the evidence drawn from RUM-based fleet

dynamics investigations which have been conducted

in the past three decades. In these studies, the

dynamics of effort allocation are reflected by different

types of discrete choices, including the decision to

fish or not. If fishers decide to go fishing, they have

to decide what type of m�etier (i.e. combination of

fishing ground, fishing gear and/or target species) to

choose from. In our analysis, the main key drivers

are highlighted, and we investigate whether any

common patterns can be detected across case-

studies. Particular attention is paid to how expected

revenue influences fisher behaviour compared to

other possible drivers (e.g. traditions, target species),

and also whether fishers are more likely to make

decisions based on short-term (daily to monthly)

rather than long-term (seasonal) information. To

our knowledge, no comparison of the explanatory

variables driving fisher behaviour has ever been per-

formed before. Although some authors have com-

pared the outputs derived from different RUMs

(McFadden 1974; Swait and Louviere 1993; Koppel-

man and Wen 1998; Wen and Koppelman 2001;

Greene 2003; Greene and Hensher 2003; Train

2003), these comparisons were performed either

using a single model structure (to compare results

across different fleets), or using a single set of input

data (to compare model differences).

Materials and methods

Materials

The data used for this study come from a selection

of fleet dynamics studies reviewed by van Putten

et al. (2012). These authors present an overview

of different models and theories applied over the

past three decades to explain and forecast fishing

behaviour. In addition, the more recent fisheries

science and economics literature were surveyed, to

include fleet dynamics studies that were conducted

since 2010, and hence were not considered by

van Putten et al. (2012). This search for additional

references was based on several criteria. First, the

publications selected focused on fishing effort allo-

cation in terms of m�etiers. In some studies, the

decision to fish or not was also part of the choice

set (Table 1). Only papers highlighting the factors

driving fisher decision-making were selected. Our

research was further constrained to analyses based

on discrete-choice models, mainly RUMs (Greene

2003). Finally, only papers where the entire model

output was presented (i.e. parameter estimates and

standard deviations associated with all explanatory

variables) were retained.

Overall, 26 papers were included in our selec-

tion (Table 1). These studies relate mainly to fish-

ing fleets operating in the EU, North America and

Oceania, using data collected between 1976 and

2010. Across all 26 papers, a total of 61 case-

studies were available, with a variety of models

being fitted to data available for various fishing

fleets. The most commonly used RUM techniques

were the conditional (Hutton et al. 2004; Vermard

et al. 2008; Marchal et al. 2014; Girardin et al.

2015) and multinomial (Dupont 1993; Mistiaen

and Strand 2000; Berman 2007; Prellezo et al.

2009; Maravelias et al. 2014) logit models, nested

logit models (Eales and Wilen 1986; Campbell and

Hand 1999; Holland and Sutinen 1999, 2000;

Smith 2002; Wilen et al. 2002; Smith and Wilen

2003; Curtis and McConnell 2004; Andersen et al.

2012; Bucaram et al. 2013) and the mixed logit

model (Eggert and Tveteras 2004; Pradhan and

Leung 2004; Tidd et al. 2012; Marchal et al.

2014). The nested logit and the mixed logit mod-

els were often used to relax the non-IIA (indepen-

dence of irrelevant alternative choices property)

assumption associated with preference heterogene-

ity across fleets (Greene 2003; Train 2003). For

the purpose of this study, the different fleets exam-

ined in the 26 articles were grouped into three

main categories: fleets fishing for demersal species

using active gears (shrimp, demersal, otter and

beam trawlers; dredgers; and demersal seiners),

fleets fishing for demersal species using passive

gears (pots; scuba diving; gill and trammel netters)

and fleets fishing for pelagic species (tuna purse

640 © 2016 John Wiley & Sons Ltd, F I SH and F I SHER IES , 18, 638–655
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seiners; seiners; pelagic trawlers and longliners)

(Table 1).

Standardizing fisher behaviour drivers

We first classified the explanatory variables that

describe fisher behaviour in the models being

reviewed into a small number of categories

(Tables 1 and 2). The first category is their experi-

ence, otherwise termed habits or tradition. Tradi-

tion is usually included in the utility function as

past effort patterns (Holland and Sutinen 1999;

Vermard et al. 2008; Tidd et al. 2012). The second

category is economic opportunity. Into this revenue

category were gathered variables such as past

gross revenue or value per unit effort. The third

category consists of fishing costs, which negatively

contribute to overall fishing profits. Fishing costs

were introduced through proxies including fuel

price and/or costs, time spent at sea or distance

from harbour (Berman 2007; Bucaram et al.

2013). Fishers’ attitude towards risk has also been

considered as driving their decisions. Fishers have

often been categorized in two categories: risk-

averse or risk-seeking (Hilborn and Ledbetter

1979; Andersen 1982; Dupont 1993; Mistiaen

and Strand 2000; Branch et al. 2006). Risk-averse

fishers would be expected to choose stable alterna-

tives, while risk-seekers would select more variable

options provided these are associated with higher

expected returns. Risk-seeking behaviour, how-

ever, appears to be rare within fisheries and may

be confounded by poorly informed decisions

(Branch et al. 2006). By contrast, risk-aversion is

considered to be more widely spread across fish-

eries, as fishers seem to seek areas likely to gener-

ate a stable revenue (Hilborn and Ledbetter 1979;

Dupont 1993; Ran et al. 2011; Cinar et al. 2013;

Dowling et al. 2015). Fisher perception of risk has

usually been represented by the variance of past

revenues, when fishing in a given area or using a

given gear (Holland and Sutinen 1999, 2000;

Pradhan and Leung 2004), and it has often been

incorporated using mixed logit models (Hensher

and Greene 2003; Ran et al. 2011; Tidd et al.

2015). In addition to their own experience, fishers

can gain information by scrutinizing the activity of

other fishers, and then moving into areas where

fishing vessels are most concentrated (Vignaux

1996). On the other hand, the presence of too

many vessels or other activities (maritime traffic,

aggregate extraction, wind farms) could result in

congestion (Curtis and Hicks 2000; Poos and

Rijnsdorp 2007; Poos et al. 2010; Marchal et al.

2014). The presence of other agents in fishing

areas is usually approximated by a metric repre-

senting their activity (e.g. total fishing effort or

number of vessels in the case of fisheries). Finally,

the last group of drivers considered is species tar-

geting, which gathers variables referring to price,

catch or catch per unit of effort (CPUE) for a partic-

ular species. Indeed, fishers may target specific

species assemblages they have a market for or, on

the contrary, avoid them as a result of management

plans or quota availability.

In addition to the categorization of fisher beha-

viour drivers into the six groups summarized

above, some of these groups were also discrimi-

nated based on whether fishers use long-term (sea-

sonal) information made available during the

previous year, or short-term knowledge from the

previous month, day or fishing trip (Holland and

Sutinen 2000; Tidd et al. 2012). In our review,

this timescale differentiation has been applied to

the tradition variable group, as a result of data

availability.

Standardizing model outputs

Comparing the outcomes of 61 RUM-based studies

(s) of fleet dynamics, using different data inputs,

model structures and explanatory variables,

implies several challenges.

First, a common standard score needs to be

found to compare the respective effects of the dif-

ferent factors potentially influencing fisher beha-

viour across all models. For this, the value of the

test (t value or z value) used to assess the signifi-

cance of the RUM estimated coefficients was

selected (e.g. Holland and Sutinen 1999). This is

calculated as the parameter estimate value (l)
divided by standard deviation (r). In the reviewed

modelling studies (s), more than one explanatory

variable (v) is generally associated with a single

drivers group (g). Only the explanatory variables

with a significant effect (P < 0.05) on fisher beha-

viour were considered. In cases where multiple sig-

nificant variables (v) belonging to the same group

of drivers existed, the variable (v*) for which the

ratio between estimated mean (l) and standard

deviation (r) of the coefficient was highest was

assigned to a driver group (g) in each study (s)

(Table 2). The score used for subsequent analyses

may be formulated as Equation (1):
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Scores;m;f ;g ¼ Maxv2gðjls;m;f ;g;v=rs;m;f ;g;vjÞ
¼ jls;m;f ;g;v�=rs;m;f ;g;v� j

ð1Þ

where m, f and g refer to the modelling method

(conditional logit, mixed logit and multinomial

logit, nested logit), fleet category (active demersal,

passive demersal and pelagic) and any drivers

group (revenue, vessel density, cost, risk, targeting

and tradition) considered in study s, respectively.

Analysis design

Three analyses were performed to address three

questions concerning fisher behaviour. The first

question is whether fleet dynamics drivers consis-

tently have the same positive (attracting) or nega-

tive (repulsing) effects on fishers choosing a given

alternative. Second, short-term and long-term

influences on fisher behaviour were investigated.

Finally, the importance of different drivers was

estimated relative to expected revenue across the

different RUM studies. The reason for choosing

expected revenue as the reference driver is that it

is investigated in all fleet dynamics studies under

consideration (Table 1), and also because it is used

in many studies to calculate welfare effects.

Attraction or repulsion?

We analysed the sign of the estimated coefficient

value associated with each explanatory variable

(v*) selected after calculating the score (ls,m,f,g,v*,

see Equation (1)). This was based on the compar-

ison, for each driver group g, of the relative pro-

portion of negative ðP�
g Þ and positive ðPþ

g Þ
coefficient values of l, estimated across all studies,

using a chi-square test (Equations 2a and b):

Pþ
g ¼

P
s 1Rþðls;m;f ;g;v� ÞP
s 1Rðls;m;f ;g;v� Þ

ð2aÞ

P�
g ¼

P
s 1R�ðlm;g;v� ÞP
s 1Rðls;m;f ;g;v� Þ

¼ 1� Pþ
g ð2bÞ

where Rþand R� are, respectively, the subsets of

positive and negative values belonging to the set

Table 2 Details of the different explanatory variables within each drivers group used in the studies shown in Table 1.

The number of models associated with each drivers group is displayed. The reference numbers are those given in

Table 1.

Drivers group Explanatory variables Ref. number No. of studies

Vessel density Total effort previous days or month; Total number of trip
or vessel; Total effort of other fleets; maritime traffic

1; 5; 9; 10; 12; 13; 21–24 28

Revenue Expected VPUE ratio, profit, catch, quasirent,
revenue; Average catch value,
CPUE, VPUE or RPUE the previous days,
month or year; Total catch previous
month; Fish stock index

1–26 61

Cost Distance from home harbour, departing harbour,
landing harbour or from effort
gravity centre; Distance between two tows; Fuel
cost or fuel cost time distance

1–4; 7; 9; 10; 16–20; 22; 23; 26 29

Risk Variance or Standard deviation (SD) of expected
profit, turnover, revenue or
RPUE; Expected revenue quadratic function;
Coefficient of variation (CV) of
RPUE the past month or CV of catch value
per day the previous year

1; 6; 8–10; 12; 14–16; 18 13

Targeting %CPUE per target species the previous trips
or month

21; 24; 25 21

Tradition %Effort in each choice the previous month;
number of previous trip with the
same choice; same choice the previous trips,
days, month or year; no trip
the past month; Effort allocation the previous
month or year

1; 4; 5; 8–11; 13; 15; 16; 19–25 43
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of real numbers, R, and 1A(l) is the indicator

function defined as:

�
1AðlÞ ¼ 1; if l 2 A
1AðlÞ ¼ 0; if l 62 A

When Pþ
g is significantly greater than 0.5

(P < 0.05), fishers tend on average to select

options where explanatory variable v* of driver

group g has a high value, which is hereby

referred to as an ‘attraction’ effect. In contrast,

fishers make average choices associated with a

low v* value when Pþ
g is significantly lower than

0.5 (‘repulsion’ effect).

This analysis was carried out on the full data

set (Table 1), but also for each fleet (active demer-

sal, passive demersal and pelagic) separately if

there were enough observations to do so, resulting

in the calculation of Pþ
f ;g and P�

f ;g.

Short-term or long-term decisions?

We analysed whether fishers are more influenced

by recent, or short-term, information (i.e. from

previous month, day or trip) or by long-term infor-

mation (i.e. from previous year). In principle,

short-term and long-term information could be

considered for all drivers groups. However, as a

result of data availability, only tradition (past

effort) was considered to compare the respective

influence of long-term and short-term information.

This analysis was carried out for passive and

active demersal fleets only, because the effects of

short-term and long-term drivers were not tested

simultaneously in studies of pelagic fleets.

First, we calculated Scores,m,f,g for f 2 {‘passive
fleet’, ‘active demersal fleet’} and for g = ‘tradition’

similar to Equation (1). However, instead of apply-

ing the ‘Max’ function of Equation (1) to all vari-

ables v belonging to g, we applied it to two subsets

of g consisting of short-term drivers (g_st), or long-

term drivers (g_lt), resulting in Scores,m,f,g_st and

Scores,m,f,g_lt. The relative influence for each

fleet type, long or short term, was then investi-

gated by analysing the logarithm of the ratio

(Ratio1s,m,f) between Scores,m,f,g_st and Scores,m,f,g_lt

(Equation 3a):

Ratio1s;m;f ¼ Ratio1s;m;f ;g ¼tradition

¼ Scores;m;f ;g st=Scores;m;f ;g It

ð3aÞ

We then evaluated the overall influence of long-

term vs. short-term information on fisher decisions

by analysing Ratio1 with a generalized linear

model (GLM), applied to the tradition driver group

using Equation (3b) (Table 3).

LogðRatio1s;m;f Þ� Fleetf þMethodm

þes;m;f with e�Nð0; r2Þ and r2 the variance of e

ð3bÞ

Methodm represents the effect of model type, as

used in study s. This factor has been added to the

GLM to separate the potential impacts of the

method from the response of the fleet type Fleetf.

The normality hypothesis was tested with the

Shapiro–Wilk test and Q–Q plots.

What is the relative influence of expected gross

revenue and of other drivers on fisher behaviour?

Due to varying model complexities and struc-

tures, the scores of the variables belonging to

the same drivers group could not be compared

directly across the different case-studies. To make

the drivers influence comparable across case-stu-

dies, we calculated the ratios of the scores

among variables belonging to two different

groups within the same model, instead of consid-

ering the absolute score values. Here, the rela-

tive importance of revenue was compared to the

other key drivers. It may be assumed that com-

mercial fishers act as economic agents, such that

their decisions aim to maximize their profit. As

economic agents, they can be expected to seek

strategies that improve their gross revenue while

also taking into account the expected costs of

fishing and a number of other drivers that have

also been shown to influence decision-making.

However, detailed costs data are difficult to col-

lect and expected profit is often approximated by

gross revenue and/or the value per unit of effort

(VPUE) (Marchal et al. 2007; Vermard et al.

2008; Tidd et al. 2015). The importance of the

other drivers (fishing costs, attitude towards risk,

habits, targeting and density of other vessels)

was tested relative to expected gross revenue.

Two different questions were considered: (i) How

important are the different drivers, overall, com-

pared to expected revenue? (ii) How the relative

importance of the different drivers in predicting

behaviour could differ across fishing fleets? Both

questions were addressed using GLM analyses of

scores ratios, using a methodology similar to

Equations (3a) and (3b). For each model, fleet

and driver group other than revenue, we thus

calculated the ratio (Ratio2s,m,f,g) of the score of
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each alternative driver over the score of revenue

(Equation 4a):

Ratio2s;m;f ;g ¼ Scores;m;f ;g 6¼revenue=Scores;m;f ;g¼revenue

ð4aÞ
In relation to question (i), we carried out a GLM

analysis of Ratio2 combining all fleet categories

together, to separate out the effects of the

modelling method and of the different driver

groups (Groupsg) except revenue (g 6¼ revenue),

Equation (4b):

LogðRatio2s;m;f ;gÞ�Groupsg þMethodm

þes;m;f ;g ;with e�Nð0; r2Þ and r2 the variance of e

ð4bÞ
To address (ii), we conducted five GLM analyses

of Ratio2, one for each non-revenue drivers group

separately, to evaluate the respective effects of fleet

categories and modelling methods (Equation 4c):

LogðRatio2s;m;f ;gÞ� Fleetf þMethodm

þes;m;f ;g ;with e�Nð0; r2Þ and r2 the variance of e

ð4cÞ
The residuals from both models were tested for

normality, using Shapiro–Wilk test and Q–Q plots.

Not all variable types were present simultane-

ously in each paper reviewed. Due to this lack of

consistency in available information, the analysis

of the ratio between the effect of one driver group

and that of revenue was only performed when both

were investigated in the same paper. As a result,

the set of case-studies considered varied depending

on which driver was analysed (Table 3).

Results

Attraction or repulsion?

The proportions of signs of the coefficients for each

fleet and driver group are shown in Fig. 1. As a

result of data availability, the chi-square analysis

of the proportion of positive coefficients estimated

for different explanatory variables could be per-

formed only for demersal active fleets and for all

fleets combined (Table 4). For the active demersal

fleet, the analysis could be performed for all driver

groups, except risk. For the passive demersal fleet,

the analysis could only be carried out with

expected revenues. There was not sufficient data

to conduct sign analysis with the pelagic fleet cat-

egory separately. All of the proportions tested are

significantly different from 0.5 except for the risk-

taking group (Table 4).

For the entire fleet and the active demersal fleet

specifically, the effects of vessel density, revenue,

species targeting and tradition are mainly positive

(‘attraction’ group), while costs have an overall

negative effect (‘repulsion’ group) (Fig. 1).

Expected revenue also has a positive effect for pas-

sive demersal fleets. Risk-taking and risk-averse

attitudes were found in similar proportions across

the different studies and fleets under investigation.

Short-term or long-term decisions?

Each of the three models explains 45% of the vari-

ability in the data. More than half of explanatory

power stems from the fleet type and the remaining

part by the RUM method being applied (Table 5).

Both factors are found to have statistical influence

(P < 0.05). The Shapiro–Wilk test and visual

inspection of the Q–Q plot both suggest that resid-

uals are normally distributed. Active demersal

fleets seem to be more influenced by previous year

knowledge and seasonal cycles than by more

recent information. In contrast, passive demersal

fleets seem to be more influenced by information

on the most recent circumstances of the fishery.

What is the relative influence of expected gross

revenue and of other drivers on fisher behaviour?

We first investigated the relative importance of

expected revenue compared to other drivers, for all

Table 3 Case-studies considered as per analyses. The

reference numbers are the ones from Table 1.

Analyses Models Reference number

Ratio
short/long
term

Equation 3b
(Tradition only)

1; 9; 10; 19; 21; 22; 23; 24

Ratio
scoreg/
score
revenue

Equation 4b 1–12; 15; 17–26
Equation 4c
(Concentration)

1; 5; 9; 10; 21; 23; 24

Equation 4c
(Costs)

1–4; 7; 9; 10; 17–19; 22; 23; 26

Equation 4c
(Targeting)

21; 24; 25

Equation 4c
(Tradition)

1; 4; 8–11; 15; 19; 21–25

Equation 4c
(Risk)

1; 6; 8; 9; 10; 15
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fleets combined (Table 6). 50% of the variability is

captured by the model, most of which being

explained by the drivers (and 1% by the RUM

method used) (Table 6). The residuals are nor-

mally distributed. Overall, revenue seems more

influential than risk-taking, but it is less important

than species targeting and tradition (Table 6).

Revenue is given a similar weight as fishing costs

and the density of other vessels in the prediction

of choices.

We then investigated whether fishers from dif-

ferent fleets respond to different drivers in the

same way (Table 7). We obtain an adjusted R²
above 50% for models 2–5, while model 1 has a

lower adjusted R² of 31% (Table 7). Model 2’s

adjusted R-square is close to 100% due to few

observations. Therefore, the influence on fishers’

behaviour of risk-taking relative to expected rev-

enue, as derived from model 2, is considered

highly uncertain. The main part of the variability

Figure 1 Observed proportion of positive coefficients relative to the different RUM explanatory variables (in grey)

compared to the negative ones (in black), for each variable group. Those proportions are shown for the entire fishery

and each fleet group separately. The total number of observations is indicated with a white colour.
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is explained by the fleet type except for model 5,

and the residuals are normally distributed. The

Method factor has not been considered in model 3,

because species targeting and expected revenue

are investigated simultaneously only in conditional

logit approaches.

To help interpreting model outcomes, we show

the estimated coefficients drawn from each fleet

type within a pentagon-shaped radar plot (Fig. 2).

The centre of the polygon is associated with the

revenue group, while each of its five summits is

associated clockwise with one of the other driver

groups (tradition, vessel density, risk-taking, costs,

species targeting). For each non-revenue driver

(g), the fleet effect is represented by three dots

(one for each fleet type) located on the segment

joining the pentagon’s centre to its g-specific edge.

The closer a fleet’s dot to the edge, the higher the

importance of the driver relative to revenue for

the fleet being considered. Conversely, the closer it

is to the centre and the larger the effect of revenue

relative to the non-revenue driver. Compared to

pelagic fleets, demersal fleets are more influenced

by tradition and species targeting than by avail-

able revenue information. This is particularly true

for passive demersal fleets, for which the coefficient

estimates associated with these two drivers are

highest. However, in comparison with pelagics,

Table 4 Chi square statistic testing, for each fleet, whether the proportion of studies where the effect of a given driver

group has a positive effect on fishers’ behaviour is significantly different from the proportion of studies where that effect

is negative (P value: * <0.05). ‘–’ indicates combinations for which the analysis could not be conducted.

Variable Vessel density Revenue Cost Risk Targeting Tradition

Entire fleet 4.17* 47.61* 14.44* 0.82 21* 30.86*
Active dem. 6.37* 29.43* 9* – 17* 30.12*
Passive dem. – 8.33* – – – –

Table 5 GLM analysis results for the comparison of

long-term and short-term scores calculated for the

tradition driver group (P-value: * <0.05). The fleet and

model effects are shown with standard deviations in

bracket.

Models Effect of short-term vs. long-term information

nb. Obs 30
Active demersal �0.79* (0.18)
Passive demersal 0.69 (0.38)
Mixed logit 0.84* (0.26)
Nested logit 0.54 (0.40)
R² adjusted 0.45
Explained variability

Fleet 0.32*
Method 0.21*

Shapiro–Wilk test
W (P-value) 0.95 (0.26)

Table 6 Relative importance of revenue compared to other drivers of fishers’ behaviour. Results of GLM analysis of

score ratios as a function of variable group types and RUM methods (P-value: * <0.05).

Variables Factor levels Estimates Standard deviation Explained variability

Score ratio Vessel density/Revenue �0.12 0.36 0.48*
Costs/Revenue 0.50 0.30
Risk-taking/Revenue �1.14* 0.39
Targeting/Revenue 1.54* 0.41
Tradition/Revenue 1.17* 0.32

Methods Conditional logit �0.33 0.35 0.01
Mixed logit �0.35 0.34
Multinomial logit �0.43 0.47
Nested logit �0.06 0.33

R² adjusted 0.50
Shapiro–Wilk test: W (P-value) 0.99 (0.31)

648 © 2016 John Wiley & Sons Ltd, F I SH and F I SHER IES , 18, 638–655

30 years of fleet dynamics research R Girardin et al.



demersal fleets are more influenced by available

information on expected revenue than by the den-

sity of other vessels and risk-taking. No clear dif-

ferentiation can be observed between the effects of

costs relative to revenue across fleets.

Discussion

A variety of explanatory variables that often dif-

fered across case-studies were collected and were

subsequently classified into six common groups of

fisher behaviour drivers (fishing costs, attitude

towards risk, expected gross revenue, habits, tar-

geting and density of other vessels) (Table 2). To

accommodate the complexity of each model and

the presence of multiple explanatory variables per

driver group, only a single explanatory variable

per driver was retained in each model. Some

assumptions were made to standardize the various

inputs and outputs of RUMs, and to enable the

comparison of outputs derived from different model

structures. Still, consistent patterns emerge from

the analyses regarding the relative influence of

key drivers on fishing behaviour.

Attraction or repulsion?

As a result of data availability, the analysis of the

sign of the drivers’ effects focused only on the

entire data set for all fleets and on the active dem-

ersal fleet considered separately. The drivers could

be categorized into ‘attraction’ and ‘repulsion’

groups. As shown in several studies (Holland and

Sutinen 1999; Pradhan and Leung 2004; Vermard

et al. 2008; Marchal et al. 2009), fishers tend to

make decisions that are in accordance with their

habits and from which they expect a greater rev-

enue. Our results bear out these conclusions.

Risk-taking is generally approximated by the

influence of variability of past revenues on individ-

ual behaviour (Larson et al. 1999; Curtis and

McConnell 2004). Fishers are generally seen to

prefer minimizing risk by looking for alternatives

with a more stable expected revenue (Hilborn and

Ledbetter 1979; Andersen 1982; Bockstael and

Opaluch 1983; Dupont 1993). However, there

may be instances where fishers will visit volatile

areas and operate uncertain m�etiers (Mistiaen and

Strand 2000). In particular, when harvested

stocks are abundant and in good condition, some

skippers could be inclined to select more risky

options with the hope of earning outstanding

returns (van Putten et al. 2013). In this study,

fishers’ attitudes towards risk (risk-averse or risk-

taking) could not be fully evidenced due to data

limitations. Still, there is evidence that the beha-

viour of fishers operating in pelagic fleets may be

more risk-prone than that observed in demersal

fleets (Campbell and Hand 1999; Mistiaen and

Strand 2000), possibly due to the large natural

variability of the resources they harvest and the

nature of the environment in which they operate

Table 7 Relative importance of revenue compared to other drivers of fishers’ behaviour, for each fleet type. One model

has been performed for each score ratio type. Results of GLM analysis of score ratios as a function of fleet types and

RUM methods (P-value: * <0.05). The fleet and model effects are shown with standard deviations in bracket.

Models Costs/Revenue Risk/Revenue Targeting/Revenue Tradition/Revenue Vessel density/Revenue

Model number 1 2 3 4 5
nb. Obs. 23 9 18 36 20
Active_dem 1.19 (0.64) �2.44* (0.31) 1.21* (0.17) 0.87* (0.19) �0.38* (0.13)
Passive_dem 1.30 (1.00) �2.11* (0.43) 1.57* (0.36) 1.80* (0.40) �0.40 (0.23)
Pelagic �0.41 (1.44) �0.08 (0.45) 0.15 (0.62) �0.14 (0.48) 0.97 (0.53)
Logit �0.72 (1.29) – – – 1.72* (0.46)
Mixed logit �1.35 (0.79) �0.34 (0.41) – �0.15 (0.29) 0.85* (0.34)
Nested logit �0.77 (0.91) 2.06* (0.37) – �0.10 (0.44) �0.0001 (0.28)
Multinomial logit �0.66 (1.02) �0.70 (0.45) – – –

R² adjusted 0.31 0.99 0.79 0.63 0.52
Explained variability

Fleet 0.18 0.66* 0.83* 0.63* 0.23*
Method 0.13 0.32* – 0.08 0.42*

Shapiro–Wilk test
W (P-value) 0.98 (0.91) 0.96 (0.74) 0.98 (0.93) 0.97 (0.54) 0.96 (0.47)
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(e.g. it may be less risky to deploy fishing gear in

the water column than on unknown and poten-

tially rocky grounds).

In fisheries, both resource and spatial competi-

tions occur (Samples 1989; Gillis 2003; Salthaug

and Aanes 2003; Marchal et al. 2006). In particu-

lar, fishers compete locally for the resource when,

in the context of stock depletion, the harvest of

one fleet or boat affects the amount of fish left for

others (Gillis and Peterman 1998; Rijnsdorp et al.

2000). Spatial competition (or congestion) occurs

when vessel crowding reduces fishing efficiency

(Samples 1989; Pet-Soede et al. 2001; Gillis 2003;

Poos and Rijnsdorp 2007). However, in the papers

that were reviewed, the density of other vessels

was generally seen by fishers as a source of infor-

mation rather than a case for spatial competition

(e.g. Vignaux 1996). This concurs with the sug-

gestion by Campbell and Hand (1999) that it is

common for vessels to share information with

others or to track other vessels, notably using the

AIS (automatic identification system) on-board.

The few cases where vessel density had a repulsing

(congestion or competition) effect occurred when

competing activities were included, such as

maritime traffic, aggregate extraction (Marchal

et al. 2014) or other fleet types (Hilborn and Led-

better 1979; Marchal et al. 2014).

Is fisher behaviour more influenced by seasonal or

immediate knowledge?

As already mentioned, our results confirm that

fishers have a tendency to follow past exploitation

patterns (Bockstael and Opaluch 1983; Holland

and Sutinen 1999). The active demersal fleets seem

to favour seasonal over immediate information. By

contrast, the passive demersal fleets adhere to their

most recent, rather than to their previous year fish-

ing effort distribution. This might reflect that, com-

pared to active demersal fleets, passive demersal

fleets are often composed of small polyvalent multi-

gear vessels, with a more limited choice set and a

more variable year-to-year fishing activity.

Which drivers for which fleets?

The relative importance of fisher behaviour drivers

differs substantially between demersal and pelagic

fleets, even if the conclusions drawn from our

Figure 2 Comparison across fleets of the importance of different (non-revenue) fishers’ behaviour driver relative to

expected revenue. Each axis represents estimates of the effect of one driver compared to that of revenue. Any point

inside the black dotted pentagon line indicates a fleet’s preference for a driver group relative to expected revenue. Active

demersal fleets are shown in red, passive demersal fleets in blue and pelagic fleets in green. Significant values with

P < 0.05 are represented; others are set to zero.
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analyses should be treated with caution due to the

limited amount of fleet dynamics studies having

investigated pelagic fisheries.

As expected (Wilson 1990), tradition appeared

to be one of the main drivers of fisher behaviour.

Before elaborating on this finding, it is perhaps

necessary to stress that in this and other fleet

dynamics studies, ‘tradition’ really means ‘repeat-

ing past behaviour’. This could reflect fishers’

knowledge and previous experience, or have a cul-

tural connotation, when fishers persistently visit

the same fishing grounds because everyone in

their community they belong to has always done

so, or evidence some economic anticipation, when

changing habits comes at a cost in terms of buy-

ing a new vessel, new equipment on-board or new

gears (Holland and Sutinen 2000; Valcic 2009;

van Putten et al. 2012; Marchal et al. 2014).

However, what is referred to as tradition in fleet

dynamics studies also captures the effects of other

drivers, which are poorly observable. As high-

lighted in the review of van Putten et al. (2012),

the large explanatory power of tradition could

thus be linked to a substantial overlap of this

group of drivers with expected revenue. Fishers

rarely discover new fishing grounds and fish on

fishing grounds which have proven profitable for

long periods of time. More generally, the proxies

used to reflect tradition and the way they are

implemented in fisheries RUM studies often make

it difficult to discriminate between pure habit

(state dependence) and preference heterogeneity

(variation across individuals in the utility that

they expect from choosing a particular option)

(Smith 2005). State dependence means that past

experience does have a genuine influence on fish-

ers’ behaviour. Preference heterogeneity, however,

implies that past experience seems to affect beha-

viour only because it is a proxy for temporally

persistent, but unobservable, variables.

Despite these caveats, our findings suggest con-

trasted response patterns across the fleets being

investigated, which bear out general fisheries

understanding. Thus, compared to active fleets,

passive fleets seem to be relatively more influenced

by tradition. This observation might be due to ves-

sels rigged with passive gears being generally

small and therefore constrained to fish on a more

limited spatial extent (closer to the coast) com-

pared to active fleets. Also, passive vessels may be

deployed at a particular time of the year or tide,

and in a particular locality to target migrating

species (e.g. gill nets). Based on the results of this

study, pelagic fleets appear to be less driven by tra-

ditions than active or passive demersal fleets. This

might be because pelagic fleets tend to target pat-

chy and migratory fish, which have a more vari-

able distribution and require exploring greater

areas than those covered by demersal fleets.

The importance of species targeting as a major

driver of fisher behaviour, compared to overall rev-

enue, bears out evidence from earlier studies (Ver-

mard et al. 2008; Marchal et al. 2009). Indeed,

some fishers are subject to individually granted sin-

gle-species landing restrictions (e.g. total allowable

catches) and also need to land species for which

there is a market demand. Those two constraints

may explain why demersal fleets target species for

which they have quota and a market channel,

rather than fish assemblages of a possibly greater

value but which they would not be able to sell or

even retain on-board. Compared to demersal fleets,

pelagic fleets are generally more selective and

usually target few species. Therefore, the species

targeting effect for pelagic fleets is probably

confounded with that of expected revenue, while it

is substantially higher in the case of demersal fleets.

Compared to demersal fleets, pelagics seem more

influenced by risk-taking and information drawn

from density of other vessels, relatively to expected

revenue. Pelagic fleets target fish subject to large

spatial fluctuations and spatial patchiness (shoal-

ing). So, the greater consideration of risk-taking in

pelagic fleet may be an important component of

their harvesting success, although that could have

been alleviated in recent years with the increasing

use of GPS-tracked FADs and of support vessels,

planes or helicopters. Moreover, the information

gathered from other fishers allows them to reduce

their searching area and make fishing operations

more profitable (Vignaux 1996). In contrast, the

species targeted by demersal fleets are generally

less variable and distributed in a less patchy fash-

ion, such that fleets may be able to rely to a

greater extent on habitual fishing and expected

revenue. However, this result should be treated

cautiously, given the small number of studies

focused on pelagic fleets.

Where to from here?

As shown in van Putten et al. (2012) and in this

study, RUMs and discrete-choice models have

attracted considerable attention and have indeed
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proved useful in forecasting fleet dynamics in the

short term. Some studies have attempted to couple

such models with conceptual ecological models, to

forecast long-term ecosystem and fisheries futures

(Marchal et al. 2013; Girardin 2015). However,

RUMs are relatively simple linear and data-driven

models, and as such are not expected to capture

all the complexity of the various processes engaged

in fishers’ decision-making, especially when this

involves contexts beyond historical observation,

which limits their capacity to provide long-term

forecasts. RUMs may thus not be well suited when

there are major regulatory or environmental

changes, and more particularly so when habit

variables are strong predictors of fishers’ beha-

viour, hence bringing in an excessive amount of

inertia in the system. More conceptual approaches

to fleet dynamics modelling building on, for exam-

ple, ideal free distribution theory (Rijnsdorp et al.

2000; Gillis 2003), optimal foraging theory (Dorn

2001; Rijnsdorp et al. 2011), game theory (Trisak

2005), vessel trajectory analyses (Bertrand et al.

2005; Marchal et al. 2007; Vermard et al. 2010)

or individual-based modelling (Little et al. 2009;

Batsleer et al. 2013), could be considered in that

context. A follow-up to our study could then be

to review, for a variety of case-studies, the extent

to which coupling conceptual fleet dynamics

models with existing ecosystem models (see

Plaganyi (2007) for a review) could improve their

long-term forecasting capacities.

Conclusion

In this review, a methodology was proposed to

summarize, standardize and compare quantitative

information collected in the past three decades on

fisher behaviour. Only studies applying discrete-

choice modelling were investigated to highlight

the main drivers of fisher behaviour. As expected,

the main behavioural driver affecting fishing deci-

sions is tradition, with a particular influence of

seasonal patterns in the case of active demersal

fleets. However, species targeting may be as influ-

ential as tradition in the decision-making process.

It is important to note that the relative strength of

tradition variables in explaining fishers’ behaviour

is partly due to difficulties in specifying expected

revenue or profit accurately for individual fishers,

particularly when there is a lot of information

available to them. More research should thus be

dedicated to a better quantification of expected

revenue/profit and information flow (Abbott and

Wilen 2011). Finally, including a larger number

of pelagic and passive fleet case-studies would be

necessary to provide a more complete picture of

the decision-making drivers for both types of fleets.

The results also point to a need to better under-

stand the reasons for which specific drivers seem

to play less important roles than would have been

expected in particular fisheries. Such an under-

standing might also contribute to improving the

quality of information on fleet dynamics that can

be used in evaluating alternative management

strategies for fisheries policy.
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