
INTRODUCTION

Ecologists are gradually realizing the importance of 
behavior in understanding both patterns of growth and 
deaths in individuals, populations, and even ecosystems 
(Schmitz 2010). It has long been known that zooplank-
ton can be behaviorally responsive to their predators, 
and adjust their vertical migration strategy depending on 
which predators are most abundant and dangerous (Ohman 
1990, Frost & Bollens 1992). Larval fish are immature 
and vulnerable, initially highly susceptible to predation, 
and have received less attention for their behavioral rep-
ertoire. One may conclude that chance is the dominant 
factor for their success, or instead that evolutionary adap-
tations and behaviors become even more important due 
to this vulnerability. Certainly, field observations do sug-
gest that fish larvae of various species perform diel-verti-
cal migration (Lough & Potter 1993, Santos et al. 2006), 
but the mechanisms and trade-offs are rarely quantified. 
Although abilities of cognition and scope for behavior are 
low in larvae, they steadily increase with ontogeny, and 
should not be ignored in our understanding of larval fish. 

Three behavioral traits have received attention from 
larval fish modelers: 1) diet selection, 2) activity level or 
swimming speed and 3) habitat (typically depth) selection. 
These behaviors are all included in various models of lar-
val fish. With focus on our own research, we divide mod-
elling efforts between rule-based and optimal approaches, 
and discuss how behavioral flexibility and spatial distri-
bution during the early life history of fish, mainly applied 
to cod larvae, can be modelled. The methods and their 
theoretical foundations are generally well known and 
developed in the field of behavioral ecology, but may be 
new to anyone with no training in evolutionary ecology 

(or economics, where similar methods are often applied). 
We also highlight some of the key lessons and predictions 
from our models developed over the last decade. 

THEORY AND MODELS

Diet selection and predation risk

The theory of diet selection and optimal foraging the-
ory (OFT) are among the oldest behavioral theories with 
a sound evolutionary basis (Stephens et al. 2007). Prey 
selection, which essentially is the behavioral decision 
to ignore a potential prey that has been detected, makes 
sense (i.e. maximizes the rate at which food is consumed) 
if the energetic value of the particular prey item is low, 
the handling time is long, or the probability of capture is 
low relative to the expected return if the prey is ignored 
(Charnov 1976). It may intuitively appear suboptimal to 
ignore prey which has been detected, but it can easily be 
shown that the loss of time searching for better prey in 
some situations offsets the value of handling and consum-
ing a prey of low value. In fact, the cost of not doing so 
can be substantial (Visser & Fiksen 2013). As an example, 
the general increase in prey size with larval size (Miller et 
al. 1988) is rooted in this theory. 

An organism may have a spectrum of alternative prey 
in its environment, and if detected each has profitabil-
ity (energy ingested per time) defined as the product of 
energetic value*capture success/handling time. Thus, 
there will be a particular range of prey that is profitable 
to include in the diet, and only the prey within this range 
should be pursued (e.g. Visser & Fiksen 2013). This the-
ory has been applied extensively and elegantly in larval 
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fish models where there is a spectrum in prey size, first 
by Letcher et al. (1996), and later in a number of large-
scale applications (e.g. Daewel et al. 2008a, Daewel et al. 
2008b, Hinrichsen et al. 2012), mathematically solving a 
problem that occurs immediately when a larva is offered 
several alternative prey items. Sometimes this issue is 
handled by inclusion of more or less sophisticated ‘pref-
erence functions’, but these are not mechanistic or eco-
logically meaningful when the prey composition changes 
over time or in space. 

Prey searching and selection involve an energetic cost 
and a feeding-predation risk trade-off. Swimming associ-
ated with either searching for food or moving to a new 
depth location inherently lead to higher encounter rates 
with both prey and predators. Movement activity there-
fore increases feeding rate but also make the larva more 
visible to predators, leading to a classical survival-growth 
trade-off. A similar trade-off is typically involved in habi-
tat or depth selection of larvae, since both larvae and visu-
al predators are dependent on light to see and find food. 
Light decays exponentially with depth but since the detec-
tion range of fish satiates with light, foraging and risk do 
not necessarily follow the same curve with depth (Giske 
et al. 1994, Fiksen et al. 1998, Huse & Fiksen 2010). Ver-
tical gradients of growth and predation rates can be steep, 
and therefore the behavioral migration decision, even 
within the range attainable by larval fish, becomes an 
important determinant of survival and growth. The spatial 
aspect may often exceed differences between models with 
alternative formulations of processes or across typical 
variation in environmental parameters, and the behavioral 
kernel then becomes the most important element of the 
model. 

Ideas from optimal foraging theory OFT have since its 
invention spilled over to other areas, such as spatial dis-
tribution and migration of animals. But this has mainly 
happened after OFT developed into UFT – unified forag-
ing theory – where the risk of predation associated with 
foraging also became part of the equations (Mangel & 
Clark 1986, Houston et al. 1988). The ability to integrate 
growth and survival in a behavioral trade-off became pos-
sible with the introduction of what is called ‘dynamic pro-
gramming’ in ecology during the 1980s. This particular 
method is widely used in a range of disciplines, and the 
relevance and application in ecology have been elaborat-
ed in detail in several textbooks (Mangel & Clark 1988, 
Houston & McNamara 1999, Clark & Mangel 2000). We 
have used it extensively to understand the rationale and 
importance of behaviors, such as swimming activity and 
depth selection in larval fish. 

Individual-based models and vertical migration of 
larval fish 

 Individual-based models (IBMs) represent a novel 
approach to think about ecology in general (Grimm & 

Railsback 2005, Grimm et al. 2005), and are frequently 
applied to understand and model evolutionary and behav-
ioral processes (Railsback et al. 1999, Huse & Elling-
sen 2008, Railsback & Harvey 2011). Some of the IBMs 
now developed integrate across multiple biological lev-
els, from genetics to behavior and population dynamics 
(Giske et al. 2013, Giske et al. 2014). These are power-
ful tools, but can be challenging to develop and analyze 
when individuals can adapt or evolve over generations. 
Obviously, no truly evolutionary larval fish models exist, 
since they only cover a short period of the life cycle. The 
approach taken to model behavior in larval fish IBMs is 
typically referred to as ‘rule-based’ – where the larva fol-
lows a prescribed rule in how it responds to a particular 
stimuli. This rule can be either a simple environmental 
cue, but most often is based on either growth or mortality 
rates as perceived from one or several cues. The most clas-
sical rule is Gilliam’s rule (Gilliam & Fraser 1987) where 
at any moment in time, an organism is assumed to behave 
to maximize the difference between growth and mortality 
(or specifically, the ratio of growth rate/mortality rate). In 
an environmental gradient, this assumes that a larva can 
assess growth and mortality in its ambient environment 
and alternative adjacent locations, and move to the habitat 
with the highest growth-mortality difference. There are 
several discussions on the validity of this fitness measure 
in the literature (Railsback & Harvey 2002, Persson & De 
Roos 2003), and it is certainly not a perfect measure in 
all situations. Nevertheless, it does capture some essen-
tial elements of fitness, as both growth and predation are 
included and traded off against each other. For larval fish, 
the importance of growing fast out of a vulnerable size 
range is one of the issues that this rule may miss.

We explored the emergent spatial distribution and fit-
ness (defined as survival probability to a given size) in 
larval cod using a range of behavioral rules in Kristians-
en et al. (2009). Rules were all using information about 
either growth and mortality or foraging and mortality; 
but we also tried out different ‘personality traits’ to the 
rule, where the larvae could place more or less weight on 
growth (‘bold’ larvae) or predation (‘fearful’ larvae). This 
risk-seeking or risk-averse element could also depend on 
stomach fullness, such that the larvae become more risk 
seeking and increase their ability to find food if the stom-
ach is running empty, which may be common in nature 
(Pearre 2003). We performed simulation competitions 
between the alternative rules, and compared their suc-
cess in a vertical water column with a day-night cycle. We 
found a substantial difference in survival (several orders 
of magnitude) between the random movement and all of 
the rule-based behaviors, with evolved rules outperform-
ing random or uninformed behavior in all cases. This 
points at the importance of using a reasonable behavioral 
algorithm in larval fish models, which aim at quantifying 
how larval fish recruitment is affected by environmental 
factors. 
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An important property of IBMs is that they easily inte-
grate with general circulation models (GCMs). This can 
be done using stored offline flow-fields (velocity vec-
tors) generated by ocean models, and then let particles be 
moved in space within these fields (Vikebø et al. 2007). 
These models must contain a rule of behavior or migra-
tion of the larvae, either assuming random, fixed depth or 
some inherent responses to local cues. The drift trajecto-
ries and dispersal of the larvae can be quite sensitive to 
the chosen rule (Fiksen et al. 2007). An interesting ques-
tion is how larvae may be adapted to a particular circu-
lation system and utilize the vertical shear of currents 
and vertical positioning in the water column to increase 
retention or to end up in favorable nursery areas. The ver-
tical positioning required to drift into favorable nursing 
grounds may be in conflict with the immediate need to 
forage or avoid predators. Particle tracking in GCM-flow 
fields can reveal these potential trade-offs, and suggests 
how personality traits or individual affinities to particu-
lar cues may evolve in these settings (Fiksen et al. 2007, 
Vikebø et al. 2007). A substantial number of IBMs have 
been developed and applied on top of large-scale marine 
ecosystem models or climate projections (e.g. Hinrichsen 
et al. 2003, Daewel et al. 2008a, Hinrichsen et al. 2012, 
Kristiansen et al. 2014), and there is an increasing aware-
ness of the interaction between behavior and spatial dis-
persal.

Optimality models and habitat selection

Optimality models are first and foremost a thinking 
tool, an instrument to investigate what will happen if an 
organism is perfectly adapted to the environment, as a 
sort of null-hypothesis. Optimality models for larval fish 
assume that the individual behaves in a way that maxi-
mizes its fitness, which we have equalled to ‘maximize 
probability of survival to a given size’. We calculate the 
best route through a vast space of possible trajectories 
through state-space (depth, stomach fullness, size) and 
time (a number of day-night cycles), and find the optimal 
behaviors for each possible combination. Then, we follow 
individual larvae through time and space to visualize the 
strategies that lead to high fitness (Fiksen & Jørgensen 
2011, Fouzai et al. 2015). Thus, we implicitly assume that 
larvae have fully adapted their behavior to a given envi-
ronmental setting, which is obviously an optimistic asser-
tion. Young larvae have limited cognition and behavioral 
repertoire, and this can be included as constraints in the 
models. In reality, individual behavior is driven by cues 
from the external environment (temperature, light, chemi-
cals, etc.) or the internal physiology (gut fullness, energy 
reserves), while optimality models simply assume that 
organisms have the information needed with certainty 
(but stochasticity is commonly added). Consequently, the 
models overestimate the abilities of animals to navigate 
and take advantage of all loopholes in their environment. 

On the other hand, ignoring behavioral plasticity 
completely, even in larval fish, is a more unlikely start-
ing point. Organisms are able to assess their environment 
and adjust their behavior accordingly – and these can 
evolve faster than we often realize. For instance, mayfly 
nymphs adopted a new diel activity pattern shortly after 
brown trout were introduced to New Zealand (Mcintosh 
& Townsend 1994), and the activity level and diet of 
grasshoppers depend on whether its spider predator is an 
ambush or cruising species (Schmitz et al. 2008). A larval 
fish will not be able to live up to the optimality assump-
tion, but it is reasonable to expect that it has evolved the 
ability to both sense and take advantage of gradients in 
its environment to some degree, and that these abilities 
increase rapidly during ontogeny.

Comparing IBMs and optimality models – and how they 
might be combined 

While IBMs assume the larval behavior is naïve or 
rigid, and probably underestimate the prudence of lar-
vae, optimality models are overly optimistic about what 
an individual may know about the local environment and 
the near future. Lack of behavioral responses is a well-
known limitation for IBMs, and various suggestions for 
how to deal with this problem exist in the literature (e.g. 
Hutchinson & Gigerenzer 2005, Railsback & Harvey 
2013). For instance, the IBM-rules do not drive larvae to 
fill up their stomachs before the night or to leave the sur-
face soon enough to migrate out of the dangerous depths 
at dawn, and modelled larvae therefore grow less or are 
eaten more often than they would if they planned ahead 
within the diel cycle. We should expect that even larval 
fish could be equipped with inherent responses that opti-
mize diel periodicity in behavior if the benefits are sub-
stantial. In our models (Kristiansen et al. 2009) the lack of 
prudence caused larvae to be trapped in risky daylight in 
early morning where they encountered fish predation, and 
a loss of growth due to empty stomach during the night. 
Railsback & Harvey (2013) suggested a method to deal 
with such problems by allowing individuals to look into 
the future and use some information in their immediate 
decisions, but so far this has not been tried on larval fish.

Clearly both optimality models and IBMs have their 
pros and cons, and it should be possible to combine the 
best of both by using an optimality model as a bench-
mark for the IBM (Sainmont et al. 2015). This would 
mean to first find the behavior as a larva grows over time 
using dynamic programming, and then use the results 
to compare how close to this optimum one can get with 
rule-based modelling in exactly the same vertical, time-
varying environment. Ideally, a robust rule should yield 
reasonable survival chances relative to the optimum in 
a range of different environmental settings. In any case, 
such benchmarking of rules against an optimum could be 
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a possible approach to the development and ground-truth-
ing of proximate behavioral rules (Sainmont et al. 2015). 

What have we learned from these 
models? 

There are a number of lessons to be drawn from these 
models, some of which were recently summarized in 
an attempt to reframe some of the classical hypotheses 
on recruitment success in fish in the context of behav-
ioral ecology (Jørgensen et al. 2014). One key point was 
that larvae are in a constant trade-off situation between 
growth and survival modulated with behavior (migration 
between habitats). Our models (e.g. Fiksen & Jørgensen 
2011) suggest that a classical growth-mortality trade-off 
perspective can unify several of the hypotheses of recruit-
ment processes which have emerged within fisheries 
oceanography. 

Cod recruitment success has been found to be strongly 
associated with food abundance (Beaugrand et al. 2003), 
but at the same time cod larvae appear to grow at maxi-
mum temperature-limited rates, regardless of food abun-
dance (Folkvord 2005). These studies might look like con-
trary findings, but from an optimality model we see that 
food abundance has relatively little implication in growth, 
but profound effect on survival (Fiksen & Jørgensen 
2011). The reason is that costs of increasing the duration 
of the larval stage make it profitable to accept increased 
predation risk to maintain high growth and keep the larval 
stage short. As food abundance increases, the larva can 
take advantage by moving to safer habitats or by using 
other behavioral strategies. The model predicts that the 
benefits on survival from higher prey availability extend 
far beyond the level of food required to maintain satiated 
growth rates, and points to a stronger link between prey 
and recruitment than in models which do not explicitly 
include a foraging-predation trade-off. It also suggests 
that the correlation between prey availability and growth 
rates may be difficult to establish, as an important frac-
tion of the benefit of more food shows up in survival rates 
which are much more difficult to estimate.

Similarly, higher temperatures can reduce development 
time, but the increased metabolism comes with a preda-
tion cost that is not trivial unless the trade-offs are made 
explicit. The mix of high temperature and low prey avail-
ability is detrimental not because of the risk of starvation, 
but because of the predation cost incurred while foraging 
to meet the higher metabolic demand (Fouzai et al. 2015). 
Vertical temperature gradients represent an opportunity 
for larvae to move into the right temperature regime given 
the food supply, but on the other hand, this can drive them 
into less favorable temperatures by the spatial gradient in 
predation risk. 

In these optimality models, external temporal changes 
are limited to the daily light cycle. However, the model 

framework also allows inclusion of seasonal and yearly 
cycles. Behaviors related to such periodicity are often 
termed ‘routines’, which can be understood as adapta-
tions to the periodicity of their environment, including 
annual and diel routines (McNamara & Houston 2008). 
These models are powerful tools to develop detailed pre-
dictions and hypotheses of the diel routines of larvae. For 
diel migration, the prediction is that a shift from no or 
limited to extensive diel migration should be abrupt at a 
size depending on turbidity, predator abundance and prey 
availability. Activity should peak in the morning and eve-
ning, to ensure the gut is operating at its capacity through 
the diel cycle. 

What remains to be done?

The models we have worked on so far are theoretical, 
and the environment schematic. The next step is to move 
theoretical predictions into the sea and use data available 
from monitoring and field campaigns. Field surveys with 
detailed information of larval distribution over time are 
scarce, but exist (e. g. Munk et al. 1989). Detailed sam-
pling of the environmental and biological drivers over a 
diel cycle are very valuable to testing and further devel-
oping models of space use in larval fish. Although we are 
aware of the challenges involved, observations of poten-
tial predators are desirable, and as seen from our models, 
at least equally important as the environmental variables 
in understanding what drives variability in larval recruit-
ment success. 

Another wish is more experiments that place larvae in 
gradients of environmental variables – light, temperature, 
food, cues of predators – to see if or at what stage they 
start to respond to gradients. Experiments which give fish 
a choice are rare, but do exist (Sogard & Olla 1996, Voll-
set et al. 2009, Vollset et al. 2013), and they are needed to 
develop our understanding of the capabilities and priori-
ties of larval fish. Hopefully, the models will also stimu-
late discussions around patterns or absence of patterns 
that the models are deriving, and stimulate a productive 
and scientific cycle of theory and observations.
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