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 A B S T R A C T

The northern shrimp (Pandalus borealis) and the Atlantic cod (Gadus morhua) fisheries are prone to bycatch 
of polar cod (Boreogadus saida), a key Arctic forage fish species. Discrimination between the acoustic signals 
from these coinciding species could provide information on the risk of bycatch in addition to improving the 
accuracy of non-lethal scientific stock assessment surveys. As a step towards automatic in situ classification, we 
conducted a series of single-species mesocosm experiments for broadband target strength spectra measurements 
of Atlantic cod, polar cod and northern shrimp. Mesocosm experiments were completed with a Wideband 
Autonomous Transceiver (WBAT) and collected individual target strength spectra, TS(f ), between 90–170 kHz 
and 185–255 kHz. Hundreds of TS(f ) were extracted for each species and used to train machine-learning 
classification algorithms (i.e. classifiers). We found that two supervised learning classifiers, LightGBM and 
support vector machine, were able to achieve high classification performance (89%) on target spectra shape 
with a single 200 kHz transducer operating in broadband mode. This is promising for acoustic classification 
from autonomous platforms with limited payload. We explore the utilization of single transducer target spectra 
shape variability and provide recommendations to overcome challenges associated with scaling the method 
successfully for in situ marine species classification not only in the Arctic, but globally.
1. Introduction

The northern shrimp, Pandalus borealis, fishery is one of the most 
economically valuable fisheries in the Northwest Atlantic, the eastern 
Canadian Arctic, and the Barents Sea. It generates 90% of Greenland’s 
export value (Garcia, 2007), and is the most valuable invertebrate 
fishery in the Barents Sea (Berenboim et al., 2000). However, shrimp 
fisheries are associated with bycatch issues (Howell and Langan, 1992; 
Grimaldo and Larsen, 2005) in particular from juvenile gadoids, such 
as Atlantic cod (Gadus morhua) (Isaksen et al., 1992), and polar cod 
(Boreogadus saida) (Walkusz et al., 2020). Moreover, polar cod has 
a circumpolar distribution, can account for >95% of the pelagic fish 
assemblage in the Arctic, and has a pivotal role in the Arctic food 
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web as a key forage fish species (Geoffroy et al., 2023). The ecology 
and stock abundance of all three species is monitored through trawl 
or acoustic-trawl surveys (Zimmermann et al., 2024; Korsbrekke et al., 
2001; McQuinn et al., 2005). However, sampling in ice-covered waters 
is generally impossible. There is a need to develop a method to validate 
and classify their acoustic signal using solely acoustics to improve as-
sessment surveys, evaluation of bycatch risks, and ultimately forecasts 
in stock dynamics at high latitudes. The classification of coincident 
species could help assess the bycatch risk prior to setting the trawls 
or to inform policy and models on ecosystem distribution patterns 
and biomass attributions. Remote target classification with broadband 
acoustics could also benefit stock assessment surveys and estimates by 
increasing spatial resolution, access to remote areas, and sustainability 
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Table 1
Overview of mesocosm experiments (left side) and trawling operations (right side) in 2023. The pelagic trawl was used unless otherwise noted.
 Species (n) Experiment Experiment Trawl date Location Sampling  
 date duration (h) (UTC) (◦N, ◦E) depth (m) 
 Polar cod (90) 19 Jan 6 17 Jan Billefjorden 102  
 Polar cod (133) 24 Jan 6.5 22:26 (78.62, 16.54)  
 Northern 26 Jan 5.25 19 Jan Outer 150  
 shrimp (100) 00:10 Krossfjorden  
 Atlantic cod (5) 20 Jan 8 (79.05, 11.35)  
 Atlantic cod (11) 19 Jan Outer 352a  
 19:54 Kongsfjorden  
 (79.04, 11.34)  
a Bottom depth – bottom trawl was used.
by reducing survey time and costs related to trawling and sorting of 
catch.

A protocol to process and classify broadband acoustics is not only 
required in the Arctic, but would improve hydroacoustic surveys glob-
ally. Hydroacoustic surveys are widely used to monitor pelagic fish 
stocks (Rudstam et al., 2009). They provide high spatio-temporal res-
olution of fish abundance and distribution, and are less invasive than 
traditional net monitoring (Trenkel et al., 2019). Because the acoustic 
scattering of a target, which depends on size, orientation, and material 
properties, is also dependent on frequency, broadband echosounders 
have been increasingly used to infer species composition and increase 
the taxonomic resolution (e.g., Ross et al., 2013; Loranger et al., 
2022; Dunn et al., 2024). However, broadband acoustic scattering 
measurements of an individual target, conventionally recorded as target 
strength spectra, TS(f ) in dB re 1 m2, have high variability which 
cannot be explained by length or orientation (Briseño-Avena et al., 
2015; Dunning et al., 2023). The increased variability, complexity 
and size of broadband datasets have required powerful data analysis 
methods, such as machine learning algorithms (Malde et al., 2020). 
There is therefore a pressing need to develop clear protocols to classify 
broadband acoustic data from fisheries surveys.

Supervised machine learning algorithms require training datasets 
containing measurements of known targets. To achieve this, the first 
step is to develop a library of TS(f ) from known targets of interest in a 
controlled environment that reproduces real environmental conditions 
as much as possible, such as in situ mesocosms. A mesocosm-trained 
classification approach has proven to be a promising avenue to improve 
taxonomic resolution from broadband hydroacoustics (Dunn et al., 
2024). The in situ mesocosm approach allows for the collection of a 
large amount of detections for a known population with semi-natural 
swimming behaviours and is possible for many different species. Meso-
cosm classification of target spectra has been successfully used to differ-
entiate between two coincident swim-bladdered fish species: whitefish 
(Coregonus wartmanni) and stickle-back (Gasterosteus aculeatus) (Gugele 
et al., 2021). Furthermore, tethered individual Pacific herring (Clupea 
pallasii) and Pacific chub mackerel (Scomber japonicus) species dis-
played slopes in their target spectra that could be used to discriminate 
between species but require a method to measure target spectra from 
a wider range of individuals (Wang et al., 2025). By conducting series 
of single-species mesocosm experiments, a library of detections can be 
created for supervised model training for discrimination of species with 
distinct spectra shapes or different spectral complexities. In addition, 
the method can be used to validate sound scattering models and 
improve our understanding of broadband variability.

This study reports on a series of single-species mesocosm experi-
ments with broadband hydroacoustics to classify the acoustic backscat-
ter from three sympatric species: Atlantic cod, polar cod, and northern 
shrimp. It provides a protocol to measure target spectra of pelagic or-
ganisms, not only from the Arctic, but globally. We further discuss how 
to overcome challenges associated with scaling the method successfully 
for in situ marine species classification.
2 
2. Methods

2.1. Species collection

Atlantic cod, polar cod, and northern shrimp were collected from 
R/V Helmer Hanssen using a Harstad pelagic trawl (8 mm mesh, 110 
m3 mouth opening area) and bottom trawl (Campelen 1800 shrimp 
trawl with rockhopper gear) at 3 knots for 15 to 20 min in three fjords 
in Svalbard (Billefjorden, Krossfjorden, and Konsgsfjorden) (Fig.  1) on 
17 and 19 January 2023 (Table  1). The trawled depth was selected 
based on the depth of the strongest scattering layer seen on the vessel’s 
echosounder (Kongsberg Discovery AS; Simrad EK60, 18 and 38 kHz, 
1.024 ms pulse duration, 0.5 s ping interval). A FISH-LIFT, an aquarium 
attached to the trawl codend that reduces turbulence and minimizes 
the impact of trawling on the caught animals (Holst and McDonald, 
2000), was used to maximize the fitness and health of the live fish and 
shrimp. The fish and shrimp were kept on board in large tanks (1 m3) 
with running seawater and delivered to the wharf in Ny-Ålesund in 
Kongsfjorden (Fig.  1B). At the Kings Bay Marine Laboratory, the fish 
and shrimp were sorted by species and stored in 6 m3 holding tanks 
with a flow-through system of filtered ambient seawater (∼1 ◦C) for 2 
to 7 days, depending on weather and experiment priority. The species 
were not fed in the holding tanks.

2.2. Mesocosm experiment

Broadband target strength data of single species were collected 
during four experiments conducted in January 2023 (Table  1) using a 
mesocosm deployed from a wharf in Ny-Ålesund, Svalbard (red square; 
Fig.  1B). The mesocosm, or AFKABAN (Arrested Fish Kept Alive for 
Broadband Acoustics Net experiment), was fitted with a large cuboid 
fish net (H7 × W2 × L2 m) with a 6 mm by 3 mm oval mesh or a small 
cuboid zooplankton net (H3 × W2 × L2 m) with a 500 μ m-mesh (Dunn 
et al., 2024)(Fig.  2A). The net was mounted on an 8 m high by 2 m wide 
and 2 m long aluminium frame oriented vertically (Fig.  2A). Ropes with 
hook and loop straps attached the eyelets on the net to the frame at 
each corner and along the edges. A zipper on the top panel was opened 
to introduce species into the submerged mesocosm.

The transducers (ES120-7CD and ES200-7CDK-split; Kongsberg Dis-
covery AS, Horten, Norway) were mounted side by side on a plate 
centred inside the mesocosm through a hole on the top panel of the net 
with the acoustic axis pointing directly down. The smaller transducer 
(ES200-7CDK-split) was mounted on raisers to level the transducer 
faces. The transducer plate was fixed to the frame to ensure the 
transducer, the frame, and the net moved as a unit under the stress of 
currents. The AFKABAN frame was purpose-built by Havbruksstasjonen 
(Ringvassøya, Norway) and wide enough to have two side-by-side 
beams of 7◦ opening angle transducers inside the net. AFKABAN was 
suspended from a crane and lowered into the sea (Fig.  2B) until the 
depth of the transducer face was approximately 1 m below the surface. 
A Wideband Autonomous Transceiver (WBAT; Kongsberg Discovery 
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Fig. 1. (A) Svalbard archipelago. Trawling locations (blue circles) in (B) outer Krossfjorden and outer Kongsfjorden and in (C) Billefjorden. The experiment was conducted in 
Ny-Ålesund.
Fig. 2. (A) Schematic of the frame with the small zooplankton net (left; northern shrimp experiment) and large fish net (right; Atlantic cod and polar cod experiments). The 
acoustic transceiver (yellow cylinder) is attached to the frame and the transducers (orange cylinder, two in this experiment). There is a hole at the top of the net for the transducer 
faces to be unobstructed inside the net. (B) The AFKABAN mesocosm with the large fish net lifted with the crane at the end of the experiment. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.)
AS) was fastened horizontally to the frame to operate the transducers 
(Fig.  2A).

The acoustic data were collected using a WBAT programmed to 
emit frequency-modulated chirps alternating between two bandwidths; 
90–170 kHz and 185–255 kHz. The emitted pulses had a fast taper, a 
pulse duration of 0.512 ms with 200 W and 113 W emitted power for 
the 120 kHz and 200 kHz transducers, respectively. The ping interval 
was set to the minimum allowable value, between 2 and 2.5 s, to 
maximize the number of single target detections and improve target 
tracking; it was limited by factors such as the internal processing time 
and range. We selected a fast taper to have the maximal bandwidth 
available at full power for the classifier. A short pulse length was 
selected to resolve targets near the net boundary, reduce reverberation 
volume (Soule et al., 1997), and increase the chances of sampling clean 
echoes from single targets in the mesocosm (Gugele et al., 2021). Data 
collection for analysis started at least 25 min after the mesocosm was 
fully submerged with the species inside the net to leave enough time 
for the organisms to acclimate and bubbles to disperse.
3 
Sound speed was calculated by continuous conductivity, tempera-
ture, and pressure measurements during all experiments with a Sea-Bird 
SBE19plus for the fish experiments and SeaBird 37SI MicroCAT CTD for 
the northern shrimp experiment.

Immediately after the experiment, the frame was lifted to the wharf 
and the species were removed from the net via a zipper on the bottom 
panel. The shrimp and fish were euthanized in an overdose of Finquel 
MS-222 (tricaine methane sulfonate) compound solution (500–600 mg 
l−1). Length and weight measurements were taken on the euthanized 
individuals after the experiment. The treatment and use of species 
in these experiments were approved by the Norwegian Food Safety 
Authority (FOT 29801, 22/231325).

2.3. Acoustic data analysis

The WBAT and transducers were calibrated using the standard 
sphere method adapted to broadband echosounders (Demer et al., 
2015; Andersen et al., 2024). The calibrations required two tungsten 
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Fig. 3. Examples of the target spectra of each selected detection from an individual track of each species using multiplexing broadband echosounders. An image of the species 
from the experiment: (A) Atlantic cod (Gadus morhua), (B) polar cod (Boreogardus saida) (C) northern shrimp (Pandalus borealis). (D–F) Echogram from 120 kHz transducer of a 
selected isolated track from each species labelled above. Measured target spectra of the selected tracks; (G) Atlantic cod with 19 detections in the 94–158 kHz bandwidth and 13 
detections in the 189–249 kHz bandwidth (grey lines), (H) polar cod track with 6 in the 94–158 kHz bandwidth and 4 target spectra in the 189–249 kHz bandwidth, (I) northern 
shrimp track with 9 target spectra in the 94–158 kHz bandwidth and 10 target spectra in the 189–249 kHz bandwidth.
Table 2
Single echo detection — wideband 1 detector settings, where TS is target 
strength.
 Parameter Value  
 TS threshold (dB re 1 m2) fish: −75  
 shrimp: −120 
 Pulse length determination level (dB re 1 W2) 8  
 Normalized pulse length (min, max) (0.5, 1.5)  
 Minimum target separation (m) 0  
 Off-axis angle filter (degrees) 4  

carbide spheres for each transducer (38.1 mm and 22 mm) to collect 
calibration parameters for the available frequency bandwidths (Supple-
mentary Material Figure S1, S2, S3). Calibrations were performed on 26 
January 2023 in Ny-Ålesund, Svalbard.

All acoustic data were processed in Echoview 13.1 (Echoview Soft-
ware Pty Ltd, Hobart, Tasmania). The data analysis range was bounded 
by the near-field region (Simmonds and MacLennan, 2008), and by the 
echo from the bottom of the net (i.e., 1.0 m–6.8 m for the fish experi-
ments and 1.0 m–2.4 m for the shrimp experiments). The ‘‘single target 
detection — wideband 1’’ operator was applied to the pulse-compressed 
target strength to select qualifying targets for each transducer (Table 
2). The target strength, TS, threshold was adjusted for the different 
experimental species. All other parameters were consistent between 
experiments.

The detected single targets from both transducers were merged 
based on ping time stamp for manual target selection. The selected 
single echo detections (SEDs) were manually organized into tracks 
by visual assessment to ensure each track came from a single organ-
ism (Khodabandeloo et al., 2021). We selected isolated SEDs that did 
not contain adjacent targets from other individuals in the Fourier trans-
form window (0.25 m above and below) (Fig.  3D–F). Adjacent targets 
4 
from other individuals can distort the frequency response because of 
interference between the backscattered signals. Target spectra graphs 
(Fig.  3G–I) were used to assess the presence of adjacent targets; these 
can be identified by regularly spaced nulls (Stanton et al., 1996; Reeder 
et al., 2004; Khodabandeloo et al., 2021). The single target tracks were 
formed by following SEDs traces from ping to ping and verifying the 
location sequence of the single target tracks across the acoustic beam. 
The ping-to-ping target strength variability was due to the small beam 
width at the sample range and the relative slow ping rate for each 
transducer (Fig.  3G-I). We ensured each selected track had a minimum 
of 4 SEDs to have enough information for the target trajectory across 
the acoustic beam. Only one SED per ping could be selected for each 
track, in the case of multiple SED candidates in a single ping, the centre, 
strongest SED was selected for the track. We are confident that a single 
organism formed each track because we used both frequency response 
patterns and target tracking location in the acoustic beam to select 
and create tracks. The analysis used SED rather than track averaged 
target spectra to ensure the spectral variability of each detection was 
represented.

All target spectra were calculated using a Fourier transform window 
length of 0.33 times the pulse length (i.e., 0.25 m) and exported 
from Echoview with a 2 kHz frequency resolution, determined by 
the pulse duration (Medwin and Clay, 1998; Khodabandeloo et al., 
2021). The Fourier transform window size was selected to maximize 
the information from the echo while reducing the risk of contamination 
from nearby targets.

The first and last 5% of each target spectra were removed to 
eliminate the effects of the pulse taper. The frequency band from 
158–170 kHz was removed because of inconsistent calibration results 
at this frequency range (Supplementary Material Figure S2). The re-
sulting trimmed target spectra corresponding to the 94–158 kHz and 
189–249 kHz bandwidth were used to train the classifiers. The target 
spectra from SED were classified for each transducer separately due 
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Fig. 4. Target spectra of all single target detections from all single species experiments. Each target spectra was recorded as target strength (TS) over the 94–158 kHz or the 
189–249 kHz bandwidth. Panel A-D: target spectra of single echo detections organized by species from the 200 kHz transducer. Panel E–H : L2-normalized target spectra.
to the alternate pinging. Therefore, the SED between the transducers 
could not be coupled into one combined target spectra from two 
separate SEDs. However, by separating the target spectra between 
each transducer, we aim to find: (1) if one transducer is enough to 
discriminate targets, and (2) which single transducer performs best at 
SED classification.

An L2-normalization was applied to each target spectra so that if the 
values were to be squared and summed, the sum would equal 1 (Komer 
et al., 2014). Normalizing by observation was done to make the method 
scalable to other species and ecosystems and to ensure the classification 
was dependence on target spectra shape and not only dependent on dB 
differencing.

The total variation of each normalized target spectra was calculated 
by summing the absolute difference between each consecutive point. 
The total variation quantifies the overall oscillation in the spectra in the 
form of a statistical distance metric, therefore it is used here as a metric 
for spectral complexity. The higher the total variation, the greater the 
spectral complexity.

2.4. Classifier training

Classifier training was performed in Python (version 3.9.15) us-
ing the Scikit-Learn library (version 1.1.3, Pedregosa et al., 2011) 
and Hyperopt-Sklearn library (version 1.0.3; Komer et al., 2014). The 
number of target spectra per class was balanced by applying an over-
sampling technique. Over-sampling was used to avoid removing sam-
ples and because the classes were not severely unbalanced (6:1). The 
samples in the minority classes (Atlantic cod and northern shrimp) were 
resampled randomly until they were balanced with the majority class 
(polar cod) to reduce the risk of bias in the model predictions (Goodfel-
low et al., 2016), reaching a total of 695 and 699 samples per species 
for the 94–158 kHz and 189–249 kHz bandwidths, respectively.

Three classifiers, K-Nearest Neighbours (kNN; Goldberger et al., 
2004), LightGBM (Ke et al., 2017), and support vector machine (SVM; 
Cortes and Vapnik, 1995), were trained and Bayesian hyperparameter 
optimization was used for parameter selection. The classifiers were 
trained using a 10-fold cross-validation method (Stone, 1974) to split 
the data iteratively into a training subset (90%) and a testing subset 
(10%) of the single species target spectra from the mesocosm experi-
ments. Target detections within a track were kept together throughout 
the cross-validation training to avoid bias from autocorrelation. Classi-
fier performance was evaluated using a mean class-weighted F1 score 
because it is an evaluation metric that penalizes false positives and false 
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negatives equally. The class-weighted F1 score was averaged by class 
and weighted by the number of true instances for each class (Pedregosa 
et al., 2011).

3. Results

3.1. Species composition

The 16 Atlantic cod in AFKABAN had a mean length of 52 ± 8 cm 
(L ± standard deviation (SD)), and their mean weight was 978 ± 346 g 
(W ± SD). The individuals for both polar cod experiments were smaller. 
The first polar cod experiment had fewer (n = 90; L = 19 ± 2 cm; W =
50 ± 10 g), whereas the second experiment had more individuals that 
were, on average, smaller (n = 133; L = 18 ± 2 cm; W = 30 g; weighed 
as a group and divided by the number of individuals). For the shrimp 
experiment, inside the small mesocosm configuration (Fig.  2A left), the 
100 shrimps had an average length of 8 ± 1 cm (measured from eye 
to telson) inside the small mesocosm configuration. The shrimps were 
weighed as a group and divided by the number of individuals, which 
resulted in an average individual weight of 6 g.

3.2. Single species target spectra

There were 60 selected tracks in the Atlantic cod dataset, comprised 
of 345 target spectra in the 94–158 kHz bandwidth and 273 target 
spectra in the 189–249 kHz bandwidth (Fig.  4A). All target spectra 
are from SED. The first polar cod experiment resulted in 62 selected 
tracks with 345 target spectra in the 94–158 kHz bandwidth frequency 
bandwidth and 362 target spectra in the 189–249 kHz frequency band-
width (Fig.  4B). The second polar cod experiment was slightly shorter 
in length (Table  1) and had a total of 66 tracks with 350 target 
spectra in the 94–158 kHz bandwidth and 337 target spectra in the 
189–249 kHz bandwidth (Fig.  4C). The northern shrimp experiment 
had the fewest tracks because of the shorter duration of the experiment 
and the small size of the individuals (Table  1). There were 25 selected 
tracks composed of 108 target spectra in the 94–158 kHz bandwidth 
and 180 target spectra in the 189–249 kHz bandwidth (Fig.  4D).

The classification analysis used all the selected target spectra and, in 
the case of Atlantic cod and northern shrimps, the replicates added to 
achieve balanced classes by having the same number of target spectra 
in each group (Fig.  4). Atlantic cod had the strongest average echo in-
tensity with a mean target strength (standard deviation, SD) of −33 (SD 
+5, −4) dB re 1 m2 for the 94–158 kHz bandwidth and −38 (SD +6, −5) 



M. Dunn et al. Fisheries Research 286 (2025) 107388 
Table 3
Classifier F1 scores estimated by classifier training (mean ±SD) of the normalized target spectra collected with the 120 kHz and 200 kHz 
transducer.
 120 kHz 200 kHz
 kNN LightGBM SVM kNN LightGBM SVM  
 Mean  
 class-weighted 0.75 ± 0.08 0.81 ± 0.08 0.85 ± 0.07 0.83 ± 0.07 0.89 ± 0.06 0.89 ± 0.06 
 Atlantic cod 0.73 ± 0.12 0.85 ± 0.11 0.82 ± 0.14 0.78 ± 0.07 0.92 ± 0.05 0.87 ± 0.06 
 Polar cod 0.71 ± 0.08 0.78 ± 0.06 0.84 ± 0.07 0.77 ± 0.11 0.85 ± 0.09 0.85 ± 0.10 
 Northern  
 shrimp 0.74 ± 0.19 0.71 ± 0.19 0.84 ± 0.12 0.92 ± 0.07 0.88 ± 0.08 0.92 ± 0.09 
dB re 1 m2 for the 189–249 kHz bandwidth. Both polar cod experiments 
resulted in similar target strength values with a mean target strength 
of −41 (SD ± 4) dB re 1 m2 for the 94–158 kHz bandwidth for the 
first polar cod experiment with the slightly larger individuals and −42 
(SD +4, −3) dB re 1 m2 for the 94–158 kHz bandwidth for the smaller 
polar cod experiment. In the 189–249 kHz bandwidth, both polar cod 
experiments resulted in an average target strength of −44 (SD +5, −4) 
dB re 1 m2. The northern shrimp had the weakest echo with a mean 
target strength of −77 (SD +4, −3) dB re 1 m2 and −82 (SD ± 6) re 1 
m2 in the 94–158 kHz and 189–249 kHz bandwidth, respectively. The 
mean target strength of all species decreased in the higher frequency 
range.

Atlantic cod had the largest variability in target strength intensity 
per individual (i.e., among pings forming a track) with a maximum 
range of 43 dB re 1 m2 at the nominal frequency, 120 kHz, and 33 dB 
re 1 m2 at the nominal frequency, 200 kHz. The variability in target 
strength intensity per track at the nominal frequency for the polar 
cod and northern shrimps were largest at 200 kHz than at 120 kHz, 
but smaller than the Atlantic cod target strength intensity variability. 
During the second polar cod experiment, the polar cod had a maximum 
target strength intensity range within a track of 21 dB re 1 m2 at 
200 kHz, and for northern shrimp it was 8 dB re 1 m2 at 200 kHz.

The average total variation was greatest for the Atlantic cod target 
spectra at both frequencies (64 and 61 in normalized TS units in the 
94–158 kHz and 189–249 kHz bandwidth, respectively), indicating that 
the Atlantic cod target spectra has the highest spectral complexity, 
highest amplitude of oscillations. The polar cod experiments both had a 
total variation of 20 for the 94–158 kHz bandwidth and had 16 for the 
first experiment and 15 for the second experiment for the 189–249 kHz 
bandwidth. The northern shrimp had the smallest total variation with 
8 for the 94–158 kHz and 5 for the 189–249 kHz bandwidth.

3.3. Classifier training

The three classifiers trained on the normalized target spectra
(Fig.  4E–H) showed a high performance in classifying the frequency 
response of polar cod, Atlantic cod, and northern shrimp across both 
the 94–158 kHz and 189–249 kHz bandwidths (mean class-weighted F1 
scores: >70%; Tables  3). The 189–249 kHz bandwidth had the highest 
mean per-class classification performance for all three species (>75%; 
Table  3). Performance of the three classifier varied between species. For 
example, SVM performed best on northern shrimp target spectra (0.92 
for the higher bandwidth) and LightGBM performed best on Atlantic 
cod (0.85 and 0.92 for the lower and higher bandwidth, respectively). 
Both complex and computationally expensive classifiers, LightGBM and 
SVM, had notably higher performance than kNN.

4. Discussion

4.1. Species-specific patterns

The high classification performance (mean class-weighted F1 score 
of 89%) for three sympatric marine species is a promising result for 
spectral-based classification of targets from broadband echosounders. 
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The results show that Atlantic cod, polar cod, and northern shrimp can 
be differentiated using their target spectra with a single 200 kHz trans-
ducer. Presumably, the range of target spectra complexity and morpho-
logical differences of the three species ensured the high performance of 
the classifiers.

Atlantic cod’s target spectra were found to be the most complex, 
with the greatest total variation in the target spectra. The spectral 
complexity observed in the Atlantic cod target spectra could have 
suggested that the SEDs contained interferences from other targets 
(Fig.  3G; Khodabandeloo et al., 2021; Stanton et al., 1996). However, 
the rigorous manual target selection process ensured that only one 
individual was included per SED and no adjacent targets were included 
in the Fourier transform window (∼0.25 m above and below the target). 
Therefore, the multiple scattering features (constructive and destructive 
interference) within the individual Atlantic cod targets must have 
originated from the backscatter of different organs interfering with 
each other (Demer et al., 2017; Reeder et al., 2004). We thus expect 
that discriminating and classifying between several morphologically 
complex species, such as Atlantic cod, will be more challenging (Au 
and Benoit-Bird, 2003; Clay, 1991, 1992), especially in aggregations.

In contrast, polar cod target spectra had an intermediate spectral 
complexity with some ripples and a relatively consistent slope across 
the spectra. During the target selection of polar cod, there was only 
one central dominant SED per ping, which suggested each individual 
had a single dominant scattering feature (i.e., the swimbladder) and 
explained the absence of large nulls and peaks (Fig.  3H). The northern 
shrimp had the lowest total variation in the target spectra with some 
ripples in the 94–158 kHz bandwidth but predominantly flat normal-
ized target spectra, especially in the 189–249 kHz bandwidth (Fig. 
4D). The emitted chirp from the 120 kHz transducer had a 10 kHz 
wider bandwidth than the 200 kHz transducer, which increased the 
spatial resolution to 9 mm (compared to 11 mm for the 200 kHz). The 
finer temporal resolution from the wider bandwidth may have revealed 
finer-scale scattering features, which are typically only discernible with 
higher frequencies (Reeder et al., 2004).

Target spectra amplitude and slope were used by Cotter et al. 
(2021) to classify target spectra into four classes based on selected 
scattering models (i.e., above, at, or below resonance for gas-bearing 
organisms or fluid-like organisms). These categories were used to clas-
sify mesopelagic fish into size classes with a mean F1 score of 0.90. 
Similarly, Roa et al. (2022) had a high performance (the best mean 
class-weighted F1 score was 0.96) with classifiers trained on scattering 
models for six different reef fish. They found that the nodes or ‘‘ripples’’, 
typically found at higher frequencies, were the prominent source of 
discriminating information. Discriminating nodes and ripples were not 
found in three of the four modelled zooplankton groups in Dunn et al. 
(2024), which resulted in moderate performance for the classifiers (best 
mean class-weighted F1 score was 0.71). Based on previous studies and 
the results from this study, we conclude that selecting classification 
groups that have different levels of spectral complexity, or average total 
variation, can positively impact classification performance.
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4.2. Intensity variability of broadband target spectra

Broadband acoustic backscattering signals exhibit large unexplained 
variability between detections of a single target (Reeder et al., 2004; 
Gugele et al., 2021; Dunning et al., 2023). Our results show that 
this variability can be used to discriminate between different pelagic 
organisms. For example, an Atlantic cod target spectra study recorded 
a maximum target strength variation of 30 dB re 1 m2 within a track 
of a single fish at 38 kHz (Dunning et al., 2023). Here, we observed a 
comparable maximum variation in target strength of 33 dB re 1 m2 at 
200 kHz within an Atlantic cod track. However, polar cod and northern 
shrimp exhibited a smaller variation of target strength per track. The 
target strength variability in broadband acoustics for a single target 
was found to be greater than could be explained with tilt angle or fish 
length (Dunning et al., 2023), which are traditionally used to explain 
the variability in narrowband target strength measurements (Khoda-
bandeloo et al., 2021; Zhang et al., 2021). Presumably, the stochasticity 
found in the Atlantic cod target spectra tracks could be due to variations 
in the section of the fish being ensonified from ping to ping. In particu-
lar, the Atlantic cod had a similar length to the beam width; therefore, 
different parts of the fish body were likely impinged separately, adding 
variability to the measurements in this study. Different target spectra 
could be obtained at a farther detection range in the wild. A mesocosm 
experiment, similar to this study but with fewer individuals with a 
larger measurement range and optical verification, could develop a 
better understanding of broadband acoustic target strength variability.

In the classification process, the normalizing preprocessing algo-
rithm removes the intensity component of the target spectra (Fig.  4I–L). 
Normalizing the target spectra had the largest effect on the within-
spectra variability of northern shrimp. Though northern shrimp had 
the smallest maximum variability per track, 7 dB re 1 m2 at 120 kHz 
and 8 dB re 1 m2 at 200 kHz, the intensity between individuals varied 
greatly, especially over the 189–249 kHz bandwidth (Fig.  4D). The 
normalized shrimp target spectra reduced variance, which showed that 
the northern shrimp had the most consistent target spectra pattern 
despite the large variability in target strength intensity.

4.3. Recommendations for the acoustic classification of  in situ targets

The high performance of the classifiers in a controlled experiment 
is an important step towards in situ target classification. However, fun-
damental challenges should be addressed before in situ target classifi-
cation can be achieved with mesocosm-trained classifiers. A significant 
limitation of supervised classification is the dependence on collecting 
training datasets for all classes (Handegard et al., 2021). Collecting tar-
get spectra from mesocosm experiments for all species and size groups 
in complex and dynamic environments such as the ocean, even in Arctic 
regions with relatively low species diversity, is unrealistic. A series 
of ship-based downward-looking lowered acoustic probe experiments 
were completed as part of this study, attempting to classify in situ
targets using the trained classifiers. However, the trawls showed the 
community was dominated by herring and capelin among the Atlantic 
cod, polar cod and northern shrimps, which prevented validation of in 
situ classification. One method to validate the classifiers would be to 
repeat the lowered acoustic probe experiments in an enclosed region, 
such as a lake or smaller fjord, dominated by a single species to 
assess the error for that species. Single species-dominated regions are 
commonly used in fisheries acoustics to associate the backscatter to a 
single species (e.g., Geoffroy et al., 2016; De Robertis et al., 2019). A 
more widespread method to use mesocosm-trained classifiers would be 
to have broader classes and to group species based on morphological 
features and expected backscattering (Gugele et al., 2021). Alterna-
tively, mesocosm measurements could be used to validate and improve 
broadband sound scattering models to improve on model-informed 
classification (Dunn et al., 2024) However, better knowledge of the 
impact of multiple scattering features and their contribution to target 
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spectra complexity will also be necessary to successfully classify in situ
broadband acoustic signals.

Another practical limitation to in situ broadband acoustic target clas-
sification is the manual track selection requirements. Better tracking 
algorithms for broadband data with reduced risk of interference from 
contaminating targets within the Fourier transform window will need 
to be developed. Currently, tracking algorithms (based on Blackman 
(1986) require manual validation for broadband measurements using 
frequency response and target location algorithms (Khodabandeloo 
et al., 2021), which is time-consuming and subjective. Manual selection 
of single echoes and tracks halts the potential of automation and repro-
ducibility. With automatic and reproducible track selections, classifiers 
could be quickly applied to new datasets for large-scale analysis of 
hydroacoustic survey datasets.

Another challenge with applying mesocosm results to in situ mea-
surements is the limited possible replicates of target spectra available 
from the enclosed species. There is a much wider range of shapes 
and swimming behaviour found in naturally occurring individuals. For 
the Atlantic cod experiment, only 16 individuals were enclosed in the 
mesocosm. Therefore, there were limited detection replicates possi-
ble from the experiment and their swimming behaviour is a limited 
representation of that from fish in the wild. The repeatability of the 
results from the two polar cod experiments showed consistency in the 
target spectra results between two groups of the same species; however, 
they were from the same fjord and trawl haul. Further mesocosm 
experiments with populations from different fjords could improve our 
understanding of the interspecies variability of target spectra and limit 
pseudoreplication (Hurlbert, 1984). The individual detections were 
used for the study because target spectra were variable within a track, 
and the spectral complexity factors from the target spectra would be 
flattened by averaging multiple detections from a track. Yet, even 
though challenges remain before applying classification algorithms to
in situ targets, this study demonstrates: (1) that pelagic organisms can 
be discriminated based on the complexity of their target spectra shape 
using a single transducer, and (2) that machine learning algorithms can 
efficiently identify these target spectra.

5. Conclusion

Three sympatric species, Atlantic cod, polar cod, and northern 
shrimp, were found to have distinct enough target spectra relative to 
each other in monospecific mesocosm experiments. Machine learning 
classifiers achieved high performance, especially the LightGBM and 
SVM classifiers. We speculate the variability in the level of complexity 
from the target spectra shape of the different species lead to the high 
performance of the classifiers on the normalized target spectra. The 
within channel target spectra variability was distinct enough demon-
strating that a classification can be conducted with a single-channel 
transducer centred at 200 kHz. Further studies should consider includ-
ing target strength intensity in classification by not normalizing the 
target spectra to account for important target strength information. 
Based on a case study from Arctic species, this study advances the 
knowledge towards automating spectral classification for in situ clas-
sification from a lowered acoustic probes or autonomous underwater 
vehicles with payloads limited to a broadband echosounder and a single 
transducer. Further mesocosm studies could help determine the taxo-
nomic resolution to which mesocosm-trained classifiers can be used for
in situ classification, either by adding new classes of additional spatially 
coinciding species, such as herring and capelin, or by joining new 
classes in the existing ones based on their target spectra complexity. An 
important application of spectral classification is real-time warnings of 
bycatch risks to reduce cost and trawling impact. In Arctic regions, fore-
casting bycatch risks could greatly impact the shrimp fishery because 
excessive retention of non-regulated bycatch can increase fuel costs, 
loss of revenue, and practical problems of onboard with sorting the 
catch (Jacques et al., 2022). Finally, automated acoustic classification 
methods could increase our ability to monitor pelagic fish stocks using 
acoustic surveys (Fossheim et al., 2015; Morley et al., 2018; Morato 
et al., 2020).
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