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1  | INTRODUC TION

Evaluating absolute population density is an extremely complex task 
that requires strengthening the links between theorists and empir-
icists. Both, Campos‐Candela, Palmer, Balle, and Alós (2018) and 
Abolaffio, Forcadi, and Santini (2019), contributed to this challenge 
from the theoretical side; the first one by demonstrating a theoreti-
cal postulate to estimate absolute densities from camera counts; the 
second one by exploring the proposed method for a specific species 
(the moose, Alces alces). Note, however, that the undifferentiated 
use of model, method and simulation terms in Abolaffio et al. (2019), 
when addressing concerns exclusively about our simulation proce-
dure or the applicability of the method for a particular case, may be 
misleading.

Concerning the camera‐based method, our key contribution 
is that, for the case of animals whose movement leads to a sta-
tionary spatial pattern, absolute animal density can be properly 
estimated from the average number of animals counted per frame 
whenever a number of assumptions are met. The underlying 
model to this method states that, for a given camera, the num-
ber of animals’ counts per frame is given by a Poisson distribu-
tion with mean equals to the product of the true animal density, 
the detection area of the camera and the probability of detection. 
Essentially, our model is equivalent to determine the distribution 
of the space occupation in time, which is a question that has been 

largely discussed from the probabilistic perspective (Godrèche 
& Luck, 2001). The only strict condition for this model to apply 
is that animal density must be stationary within the scale of the 
sampled space and time. When focusing on moving animals, such 
a stationary property meets for animals displaying home range 
(HR) behaviour, which is a widespread movement type leading to 
the establishment of a bounded space‐use area (Börger, Dalziel, & 
Fryxell, 2008; Burt, 1943). In these cases, the stationary condition 
should apply to the density of HR centres. The model was theoret-
ically derived in Campos‐Candela et al. (2018) but provided that it 
may be counter‐intuitive, we also performed a number of simula‐
tions emulating a camera sampling program for demonstrating that 
animal density (i.e., number of HR centres per area unit) can be 
properly recovered by averaging the counts by frame.

In our extensive simulation analysis, a number of simplifications 
were stated (we refer the readership to the original work in Campos‐
Candela et al. (2018) for further details) because the objective was to 
demonstrate the generality of the model performance. Accordingly, 
our reported simulation results should be interpreted as a general 
guidance and not as species‐specific recommendations. Likewise, 
the work by Abolaffio et al. (2019) should be considered an improved 
simulation exercise that takes into account several species specifici-
ties but, even so, it may still leave behind some other hidden partic-
ularities of the system. Therefore, even after improving simulations, 
a pilot study is required to properly evaluate the applicability of the 
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method when confronted with the real cases of study and decide 
whether the use of cameras is feasible or may complement other 
methods (e.g., mark‐and‐recapture, animal tracking, environmental 
DNA).

We explicitly emphasized this point when claiming that ‘[…] 
notwithstanding the comprehensiveness of the method proposed 
here, a call of caution is necessary regarding the potential draw-
backs […]’, for instance identifying technological limitations such 
as the feasible operational time. Therefore, […], ‘it is strongly rec-
ommended to complete a pilot study (i.e., case‐specific simulation 
experiments), including both species specificities and case‐related 
constraints (e.g., budget available or technological limitations of 
the cameras), to assess whether the optimal settings are fulfilling 
or not the objectives in terms of expected accuracy and precision’. 
In line with this recommendation, a nice example of such pilot 
study has been recently published by Follana‐Berná et al. (2019), 
for the specific case of a coastal marine fish species using remote 
underwater video cameras when compared with other conven-
tional methods for marine fauna. Additionally, they accounted for 
detection probabilities smaller than one (i.e., adapting our model 
to the cases in which assumption (i) in Campos‐Candela et al., 
2018 does not meet).

Accordingly, we did not recommend an uncritical, cursory use 
of the proposed method in Campos‐Candela et al. (2018) by wild-
life managers and practitioners. Instead, we proposed a specific 
protocol to evaluate the feasibility of our theoretical approach and 
its usefulness for any given case in the ‘real world’. Therefore, the 
statement in Abolaffio et al. (2019): ‘Ideally, the method proposed 
by CC is perfect for wildlife managers: easy to use and cheap’ con-
stitutes itself a deceiving message out of its original context. Their 
claim, quoted here: ‘[…] the proposed statistical method […] is not 
recommended for the use by wildlife managers and practitioners’, is 
exaggerated and misleading in itself. In fact, the improved simulation 
work developed in Abolaffio et al. (2019), which considers speed in 
a more mechanistic way and includes variability in the movement 
patterns, is framed in the explicit recommendations given in our pre-
vious work.

2  | COMMITMENT SOLUTIONS IN 
SIMUL ATION PROCEDURES:  REPLYING TO 
CRITICISMS 1 ,  2 AND 3

In Campos‐Candela et al. (2018), we selected a few (six) archetypes 
with the aim of covering a wide range of space‐use strategies. In 
spite that the parameters selected for simulating the movement of 
each archetype were inspired in the values of HR size, animal den-
sity, movement speed and body mass for different species from the 
literature; they were not aimed to be species‐specific. Instead, they 
were pretended to be general (i.e., archetypes), as the main purpose 
for simulations was to demonstrate that the proposed method is po-
tentially useful for a wide range of species. However, potential ap-
plicability is always necessary but not sufficient condition because 

species specificities, violation of the model assumptions and/or 
technical or logistic limitations may constraint the optimal sampling 
settings.

In response to criticism (1), features for the implemented simula-
tions were dictated by mathematical convenience in order to avoid 
extremely large computing times. In sake of simplicity and general-
ity, we decided to use the simplest version of a biased random walk 
model (BRW; Codling, Plank, Benhamou, & Interface, 2008) as a 
mathematical approximation for movement to make inference about 
density estimates. BRW results from combining an elastic drift (k) 
that pulls the animal towards the HR centre, and a stochastic com-
ponent (Alós, Palmer, Balle, & Arlinghaus, 2016). The resulting space 
use will be characterized by a stationary probability density function 
with independence on the nature of the stochastic term (Dubkov & 
Spagnolo, 2007), and that will emerge when the stochastic part is 
either Gaussian (Codling et al., 2008; Godrèche & Luck, 2001) or, for 
example, a Lévy‐like diffusive term (Bartumeus, 2007). In the BRW 
model used, when the drift force equals 0, the movement reduces to 
a random walk diffusion model (Codling et al., 2008). Equalling the 
stochastic term to 0, as Abolaffio et al. (2019) discussed, will lead 
to a linear trajectory towards the HR centre, where the animal will 
remain forever, which is not biologically meaningful. In any case, a 
BRW with a Gaussian stochastic component is the simplest choice 
for simulating animal trajectories but any other movement model 
meeting the requirement of stationary criteria should be considered 
when addressing the particularities of a given species.

In response to criticism (2), fixing the mean number of counts 
per camera was a criterion for getting some invariance and thus for 
facilitating the comparison between archetypes. In this way, any po-
tential effect of density itself is not confounded with the effects of 
HR size and/or exploration rate.

In our simulations, the continuous movement trajectory was 
approximated as a series of discrete time steps, Δt, that may affect 
some properties of the movement pattern (Codling & Hill, 2005; Hill 
& Häder, 1997). In agreement with the criticism (3) in Abolaffio et al. 
(2019), as a consequence of the discretization for the BRW model in 
Campos‐Candela et al. (2018), the estimated speed depends on Δt. 
In general, speed spread increases and tends to be underestimated 
when Δt increases (Codling & Hill, 2005; Hill & Häder, 1997; Rosser, 
Fletcher, Maini, & Baker, 2013). Then, when simulating specific‐spe-
cies animal movement, setting a small Δt is advisable. However, 
given that animal movement is an inherently autocorrelated process 
in space and time (Fleming et al., 2015), counting animals at each 
tiny Δt may result in statistically dependent samples. Typically, tem-
poral autocorrelation diminishes as observations are made farther 
apart in time; but autocorrelation in movement data often persist 
over long‐time periods (Fleming et al., 2015). The optimal solution 
for the simulation settings would be to move the animals with a tiny 
Δt but to count the animals at a longer time period. The compromise 
solution we adopted was to set the product k * Δt small enough (i.e., 
0.1), which still ensured a reasonable discretization of the movement 
path while speeding up the iterative process in simulations. Besides, 
and more important, this commitment decision was not affecting 
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the main purpose of simulations: to obtain snapshots of the system 
while minimizing autocorrelation.

3  | THE FE A SIBILIT Y OF THE METHOD 
IN THE ‘RE AL WORLD’:  REPLYING TO 
CRITICISM 4

As stated above, the estimated sampling effort inferred from our 
simulations is only an approximation. When dealing for specific‐spe-
cies cases, many variables may modulate the actual effort needed 
for achieving a desired precision for density estimates. For example, 
the larger the area surveyed by the camera is, the smaller the num-
ber of frames/cameras needed for achieving a target precision will 
be. However, the pixels density imposes an obvious limit, which in 
addition will be species‐dependent because, for a given pixel den-
sity, a larger area could be covered by larger‐sized animals. Similarly, 
the larger the number of cameras is, the better the precision will be. 
However, the total number of cameras needed for a target precision 
can be out of the available budget for certain cases.

For two of the explored archetypes, the terrestrial mammal‐
based and the terrestrial reptile‐based archetypes, the optimal sam-
pling settings to recover stationary density of the HR centres with a 
target level of precision implied large sampling times along with big 
camera areas. Particularly, for the case of the terrestrial mammal‐
based archetype, when using 10 cameras with an area of detection 
of 630 m, the estimated sampling effort was of 11 days for a target 
level of precision of 0.2 (i.e., five frames analysed by camera); and 
645 days for a target level of precision of 0.05 (i.e., 300 frames ana-
lysed by camera). In both cases, frames were 2 days apart one from 
other to avoid autocorrelation. Interestingly, results from the terres-
trial mammal‐based archetype are not so far when evaluating the 
case of moose with a more detailed movement model by Abolaffio 
et al. (2019).

Abolaffio et al. (2019) explored our method from different 
perspectives and simulated scenarios as realistic as possible for a 
particular species case. Camera trapping (CT) radius was set to 5 
or 9 m and variable movement speed (with two behavioural states) 
was considered. From the results shown, to reach a target level of 
precision of 0.2 may require around 1,250 or 2,500 cameras, respec-
tively, sampling during 30  days (no information on the number of 
frames sampled by camera nor the time between frames to control 
for autocorrelation is provided). Therefore, both simulation strate-
gies agreed in that the target precision level can be reached within 
30 days either by increasing the camera radius (i.e., low number of 
cameras with wide range of detection; Campos‐Candela et al., 2018) 
or by increasing the number of cameras (i.e., with shorter detection 
radius; Abolaffio et al., 2019). These observations actually demon-
strate that the underlying dynamic system is ergodic.

In any case, the results from Abolaffio et al. (2019) corroborate 
the usefulness of our model, as they outlined in different parts of the 
text: ‘The statistical estimator proposed by CC yields asymptotically 
unbiased estimates of population size […]. In case of constant animal 

speed and large detection radius of CT […], the estimate attains the 
prescribed CV threshold in less than 30 days at least for large and 
intermediate populations, while, […], for the lowest density value, 
the precision is too low to be acceptable’. Certainly, some combi-
nation of sampling settings (either bigger area or a larger number of 
cameras) may be unreasonable, especially when camera trapping has 
limited distance of detection (Rovero, Zimmermann, Berzi, & Meek, 
2013). In this line, Abolaffio et al. (2019) pointed out that ‘[…] such 
a detection area needs an equivalent of 4,900 “true” CT with a de-
tection radius of 9 m to be sampled’, something ‘completely absurd’. 

However…why should it be considered ‘absurd’? We agree that at 
a first glance, and with the settings stated by Abolaffio et al. (2019), 
this sampling effort is discouraging but to consider it as a ‘completely 
absurd’ solution overlooks the real opportunities existing nowadays 
to make it more reliable than impossible. We believe that this state-
ment may be short‐sighted and unambitious.

4  | CONCLUSION: WALKING INTO THE 
FUTURE TO OVERCOME CRITICISM 4

In the last years, animal ecology is experiencing a revolution in im-
aging, camera technology and related technologies (e.g., remote 
control), which can provide automatically images covering big areas 
with enough resolution to identify the target species for long‐term 
periods. For example, images taken from the air (Groom, Stjernholm, 
Due, Fleetwood, & Krag, 2013; Martin et al., 2012; Williams, Hooten, 
Womble, & Bower, 2017) will benefit from the use of drones (UAS; 
Lejeune et al. 2013; Hodgson, Kelly, & Peel, 2013; Linchant, Lisein, 
Semeki, Lejeune, & Vermeulen, 2015; or UAVs; Groom et al., 2013), 
or particular vertical take‐off and landing aircraft versions (VTOL; 
Goebel et al., 2015); whose relatively low cost is an additional at-
tribute that makes these devices appealing for wildlife census appli-
cations (Goebel et al., 2015; Hodgson et al., 2018). Besides, the use 
of gigapixel snapshots discussed in Brady et al. (2012) and very high 
spatial resolution satellite image‐data for wildlife counts (Barber‐
Meyer, Kooyman, & Ponganis, 2007; Laidre & Heide‐Jørgensen, 
2011; Rozhnov, Yachmennikova, & Dobrynin, 2014) offer novel pan-
oramic windows for sampling very large areas.

In addition to that, remote camera sampling based on time‐
lapse cameras (Flynn et al., 2018) and camera trapping continue 
to be excellent tools in systems that cannot be sampled from the 
height‐top (e.g., dense forest and underwater systems). The smaller 
field of vision entails increasing sampling times and/or the number 
of cameras (to increase the sampled area). Nowadays, applications 
of remote cameras to biodiversity conservation are quickly pro-
gressing; expanding and improving in quality for diverse manage-
ment applications (see Burton et al., 2015 for a review in the use 
of camera trapping; and Steenweg et al., 2017 for a review of the 
opportunities of remote‐camera sampling at global scale). There 
is a global potential of remote cameras as a standardized moni-
toring platform for terrestrial vertebrate biodiversity, which will 
allow for expanding from individual, localized camera studies to 
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coordinated regional and global camera networks (Steenweg et 
al., 2017). At this point, we can list several examples of sampling 
platforms collecting data from fixed cameras during long periods 
that can benefit from using our model: the Snapshot Wisconsin 
project (https​://www.zooni​verse.org/proje​cts/zooni​verse/​snaps​
hot-wisco​nsin), the Snapshot Serengeti project (www.snaps​hotse​
renge​ti.org), the NEPTUNE Canada network (Matabos et al., 2014) 
or the Sub‐eye Underwater Observatory in Mallorca (https​://
imedea.uib-csic.es/sites/​sub-eye/home/). For more examples of 
coordinated networks for remote sampling, see Steenweg et al. 
(2017). Overall, the list of projects engaging the collection of data 
from remote cameras is long and increasing, in both terrestrial 
(Steenweg et al., 2017) and aquatic systems (Aguzzi et al., 2013, 
2015; Matabos et al., 2015), and brings the hope of making esti-
mates of absolute abundances much more realistic and unbiased.

Animal population studies will benefit from moving to such larger 
scales, not only on the technological side but also in terms of col-
laborative networks, smartphone applications and citizen science 
(Swanson et al., 2015; Willi et al., 2019), where theoretical and em-
pirical perspectives must converge and play together. Abolaffio et 
al. (2019) pointed out that they would need an equivalent of 4,900 
cameras to estimate abundance in their species case study. Around 
300,000 participants (cameras) have submitted around 300 million 
bird pictures to the citizen science programme ‘eBird’ since 2002 
(https​://ebird.org/home). Obviously, it is not comparable for the 
case of the moose (but see Swanson et al., 2015); however, it offers 
an idea of the potential working frame for methods like the one de-
veloped in Campos‐Candela et al. (2018). Moreover, to efficiently 
exploit the increasing resources from digital imagery, there is a need 
for an urgent shift from manually counting animals by human ex-
perts, which is certainly expensive, to automatic methods (Hodgson 
et al., 2018), where machine learning offers a big window of oppor-
tunities for extracting information (Tabak et al., 2019).

These opportunities altogether will provide a huge amount 
of data in the next future that will require proper statistical ap-
proaches to estimate abundance. In such a context, the main con-
tribution in Campos‐Candela et al. (2018): for the case of animals 
whose movement leads to a stationary spatial pattern, absolute 
animal density can be properly estimated by the average number 
counts per frame whenever assumptions for the model meet; can 
provide the basis for the further assessment of wildlife by using 
camera sampling. We must continue to strive to accommodate 
our proposed model to the particularities of the study system and 
overcome its potential drawbacks (e.g., Follana‐Berná et al., 2019). 
However, we really feel that the debate should not only focus on 
the applicability of the proposed method in Campos‐Candela et al. 
(2018) for some species and case studies; but on the opportunities 
that it offers in the nearest future for wildlife assessment to many 
scientists and managers. Overall, this task requires strengthening 
the links between theorists, empiricists and engineers, but per-
haps it would provide one of the most exciting fields for modern 
ecology in light of the increasing and unprecedented amount of 
ecological data.
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