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1  | INTRODUC TION

Evaluating	absolute	population	density	is	an	extremely	complex	task	
that	requires	strengthening	the	links	between	theorists	and	empir-
icists.	 Both,	 Campos‐Candela,	 Palmer,	 Balle,	 and	 Alós	 (2018)	 and	
Abolaffio,	Forcadi,	and	Santini	(2019),	contributed	to	this	challenge	
from	the	theoretical	side;	the	first	one	by	demonstrating	a	theoreti-
cal	postulate	to	estimate	absolute	densities	from	camera	counts;	the	
second	one	by	exploring	the	proposed	method	for	a	specific	species	
(the	moose,	Alces alces).	 Note,	 however,	 that	 the	 undifferentiated	
use	of	model,	method and simulation	terms	in	Abolaffio	et	al.	(2019),	
when	addressing	concerns	exclusively	about	our	simulation	proce-
dure	or	the	applicability	of	the	method	for	a	particular	case,	may	be	
misleading.

Concerning	 the	 camera‐based	method,	 our	 key	 contribution	
is	 that,	 for	 the	 case	of	 animals	whose	movement	 leads	 to	 a	 sta-
tionary	 spatial	 pattern,	 absolute	 animal	 density	 can	 be	 properly	
estimated	from	the	average	number	of	animals	counted	per	frame	
whenever	 a	 number	 of	 assumptions	 are	 met.	 The	 underlying	
model	 to	 this	method	 states	 that,	 for	 a	 given	 camera,	 the	 num-
ber	 of	 animals’	 counts	 per	 frame	 is	 given	 by	 a	 Poisson	 distribu-
tion	with	mean	equals	to	the	product	of	the	true	animal	density,	
the	detection	area	of	the	camera	and	the	probability	of	detection.	
Essentially,	our	model	is	equivalent	to	determine	the	distribution	
of	the	space	occupation	in	time,	which	is	a	question	that	has	been	

largely	 discussed	 from	 the	 probabilistic	 perspective	 (Godrèche	
&	 Luck,	 2001).	 The	 only	 strict	 condition	 for	 this	model	 to	 apply	
is	 that	animal	density	must	be	stationary	within	 the	scale	of	 the	
sampled	space	and	time.	When	focusing	on	moving	animals,	such	
a	 stationary	 property	 meets	 for	 animals	 displaying	 home	 range	
(HR)	behaviour,	which	is	a	widespread	movement	type	leading	to	
the	establishment	of	a	bounded	space‐use	area	(Börger,	Dalziel,	&	
Fryxell,	2008;	Burt,	1943).	In	these	cases,	the	stationary	condition	
should	apply	to	the	density	of	HR	centres.	The	model	was	theoret-
ically	derived	in	Campos‐Candela	et	al.	(2018)	but	provided	that	it	
may	be	counter‐intuitive,	we	also	performed	a	number	of	simula‐
tions	emulating	a	camera	sampling	program	for	demonstrating	that	
animal	 density	 (i.e.,	 number	 of	HR	 centres	 per	 area	 unit)	 can	be	
properly	recovered	by	averaging	the	counts	by	frame.

In	our	extensive	simulation	analysis,	a	number	of	simplifications	
were	stated	(we	refer	the	readership	to	the	original	work	in	Campos‐
Candela	et	al.	(2018)	for	further	details)	because	the	objective	was	to	
demonstrate	the	generality	of	the	model	performance.	Accordingly,	
our	 reported	simulation	 results	 should	be	 interpreted	as	a	general	
guidance	 and	 not	 as	 species‐specific	 recommendations.	 Likewise,	
the	work	by	Abolaffio	et	al.	(2019)	should	be	considered	an	improved	
simulation	exercise	that	takes	into	account	several	species	specifici-
ties	but,	even	so,	it	may	still	leave	behind	some	other	hidden	partic-
ularities	of	the	system.	Therefore,	even	after	improving	simulations,	
a	pilot	study	is	required	to	properly	evaluate	the	applicability	of	the	
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method	when	confronted	with	 the	 real	 cases	of	 study	and	decide	
whether	 the	 use	 of	 cameras	 is	 feasible	 or	may	 complement	 other	
methods	 (e.g.,	mark‐and‐recapture,	 animal	 tracking,	environmental	
DNA).

We	 explicitly	 emphasized	 this	 point	 when	 claiming	 that	 ‘[…]	
notwithstanding	the	comprehensiveness	of	the	method	proposed	
here,	a	call	of	caution	 is	necessary	regarding	the	potential	draw-
backs	 […]’,	 for	 instance	 identifying	 technological	 limitations	such	
as	the	feasible	operational	time.	Therefore,	[…],	‘it	is	strongly	rec-
ommended	to	complete	a	pilot	study	(i.e.,	case‐specific	simulation	
experiments),	including	both	species	specificities	and	case‐related	
constraints	 (e.g.,	 budget	 available	 or	 technological	 limitations	 of	
the	cameras),	to	assess	whether	the	optimal	settings	are	fulfilling	
or	not	the	objectives	in	terms	of	expected	accuracy	and	precision’.	
In	 line	 with	 this	 recommendation,	 a	 nice	 example	 of	 such	 pilot	
study	has	been	recently	published	by	Follana‐Berná	et	al.	(2019),	
for	the	specific	case	of	a	coastal	marine	fish	species	using	remote	
underwater	 video	 cameras	 when	 compared	 with	 other	 conven-
tional	methods	for	marine	fauna.	Additionally,	they	accounted	for	
detection	probabilities	smaller	than	one	(i.e.,	adapting	our	model	
to	 the	 cases	 in	 which	 assumption	 (i)	 in	 Campos‐Candela	 et	 al.,	
2018	does	not	meet).

Accordingly,	we	 did	 not	 recommend	 an	 uncritical,	 cursory	 use	
of	 the	proposed	method	 in	Campos‐Candela	et	al.	 (2018)	by	wild-
life	 managers	 and	 practitioners.	 Instead,	 we	 proposed	 a	 specific	
protocol	to	evaluate	the	feasibility	of	our	theoretical	approach	and	
its	usefulness	for	any	given	case	 in	the	 ‘real	world’.	Therefore,	 the	
statement	 in	Abolaffio	et	al.	 (2019):	 ‘Ideally,	 the	method	proposed	
by	CC	is	perfect	for	wildlife	managers:	easy	to	use	and	cheap’	con-
stitutes	itself	a	deceiving	message	out	of	its	original	context.	Their	
claim,	quoted	here:	 ‘[…]	 the	proposed	statistical	method	 […]	 is	not	
recommended	for	the	use	by	wildlife	managers	and	practitioners’,	is	
exaggerated	and	misleading	in	itself.	In	fact,	the	improved	simulation	
work	developed	in	Abolaffio	et	al.	(2019),	which	considers	speed	in	
a	more	mechanistic	way	 and	 includes	 variability	 in	 the	movement	
patterns,	is	framed	in	the	explicit	recommendations	given	in	our	pre-
vious	work.

2  | COMMITMENT SOLUTIONS IN 
SIMUL ATION PROCEDURES:  REPLYING TO 
CRITICISMS 1 ,  2 AND 3

In	Campos‐Candela	et	al.	(2018),	we	selected	a	few	(six)	archetypes	
with	 the	 aim	 of	 covering	 a	wide	 range	 of	 space‐use	 strategies.	 In	
spite	that	the	parameters	selected	for	simulating	the	movement	of	
each	archetype	were	inspired	in	the	values	of	HR	size,	animal	den-
sity,	movement	speed	and	body	mass	for	different	species	from	the	
literature;	they	were	not	aimed	to	be	species‐specific.	Instead,	they	
were	pretended	to	be	general	(i.e.,	archetypes),	as	the	main	purpose	
for	simulations	was	to	demonstrate	that	the	proposed	method	is	po-
tentially	useful	for	a	wide	range	of	species.	However,	potential	ap-
plicability	is	always	necessary	but	not	sufficient	condition	because	

species	 specificities,	 violation	 of	 the	 model	 assumptions	 and/or	
technical	or	logistic	limitations	may	constraint	the	optimal	sampling	
settings.

In	response	to	criticism	(1),	features	for	the	implemented	simula-
tions	were	dictated	by	mathematical	convenience	in	order	to	avoid	
extremely	large	computing	times.	In	sake	of	simplicity	and	general-
ity,	we	decided	to	use	the	simplest	version	of	a	biased	random	walk	
model	 (BRW;	 Codling,	 Plank,	 Benhamou,	 &	 Interface,	 2008)	 as	 a	
mathematical	approximation	for	movement	to	make	inference	about	
density	estimates.	BRW	results	 from	combining	an	elastic	drift	 (k)	
that	pulls	the	animal	towards	the	HR	centre,	and	a	stochastic	com-
ponent	(Alós,	Palmer,	Balle,	&	Arlinghaus,	2016).	The	resulting	space	
use	will	be	characterized	by	a	stationary	probability	density	function	
with	independence	on	the	nature	of	the	stochastic	term	(Dubkov	&	
Spagnolo,	2007),	and	 that	will	emerge	when	 the	stochastic	part	 is	
either	Gaussian	(Codling	et	al.,	2008;	Godrèche	&	Luck,	2001)	or,	for	
example,	a	Lévy‐like	diffusive	term	(Bartumeus,	2007).	In	the	BRW	
model	used,	when	the	drift	force	equals	0,	the	movement	reduces	to	
a	random	walk	diffusion	model	(Codling	et	al.,	2008).	Equalling	the	
stochastic	 term	 to	0,	as	Abolaffio	et	al.	 (2019)	discussed,	will	 lead	
to	a	linear	trajectory	towards	the	HR	centre,	where	the	animal	will	
remain	forever,	which	 is	not	biologically	meaningful.	 In	any	case,	a	
BRW	with	a	Gaussian	stochastic	component	is	the	simplest	choice	
for	 simulating	 animal	 trajectories	 but	 any	 other	movement	model	
meeting	the	requirement	of	stationary	criteria	should	be	considered	
when	addressing	the	particularities	of	a	given	species.

In	 response	 to	 criticism	 (2),	 fixing	 the	mean	number	 of	 counts	
per	camera	was	a	criterion	for	getting	some	invariance	and	thus	for	
facilitating	the	comparison	between	archetypes.	In	this	way,	any	po-
tential	effect	of	density	itself	is	not	confounded	with	the	effects	of	
HR	size	and/or	exploration	rate.

In	 our	 simulations,	 the	 continuous	 movement	 trajectory	 was	
approximated	as	a	series	of	discrete	time	steps,	Δt,	that	may	affect	
some	properties	of	the	movement	pattern	(Codling	&	Hill,	2005;	Hill	
&	Häder,	1997).	In	agreement	with	the	criticism	(3)	in	Abolaffio	et	al.	
(2019),	as	a	consequence	of	the	discretization	for	the	BRW	model	in	
Campos‐Candela	et	al.	(2018),	the	estimated	speed	depends	on	Δt. 
In	general,	speed	spread	increases	and	tends	to	be	underestimated	
when	Δt	increases	(Codling	&	Hill,	2005;	Hill	&	Häder,	1997;	Rosser,	
Fletcher,	Maini,	&	Baker,	2013).	Then,	when	simulating	specific‐spe-
cies	 animal	 movement,	 setting	 a	 small	 Δt	 is	 advisable.	 However,	
given	that	animal	movement	is	an	inherently	autocorrelated	process	
in	 space	 and	 time	 (Fleming	 et	 al.,	 2015),	 counting	 animals	 at	 each	
tiny	Δt	may	result	in	statistically	dependent	samples.	Typically,	tem-
poral	 autocorrelation	diminishes	as	observations	are	made	 farther	
apart	 in	 time;	 but	 autocorrelation	 in	movement	data	often	persist	
over	 long‐time	periods	 (Fleming	et	al.,	2015).	The	optimal	solution	
for	the	simulation	settings	would	be	to	move	the	animals	with	a	tiny	
Δt	but	to	count	the	animals	at	a	longer	time	period.	The	compromise	
solution	we	adopted	was	to	set	the	product	k * Δt	small	enough	(i.e.,	
0.1),	which	still	ensured	a	reasonable	discretization	of	the	movement	
path	while	speeding	up	the	iterative	process	in	simulations.	Besides,	
and	more	 important,	 this	 commitment	 decision	was	 not	 affecting	
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the	main	purpose	of	simulations:	to	obtain	snapshots	of	the	system	
while	minimizing	autocorrelation.

3  | THE FE A SIBILIT Y OF THE METHOD 
IN THE ‘RE AL WORLD’:  REPLYING TO 
CRITICISM 4

As	 stated	 above,	 the	 estimated	 sampling	 effort	 inferred	 from	 our	
simulations	is	only	an	approximation.	When	dealing	for	specific‐spe-
cies	cases,	many	variables	may	modulate	 the	actual	effort	needed	
for	achieving	a	desired	precision	for	density	estimates.	For	example,	
the	larger	the	area	surveyed	by	the	camera	is,	the	smaller	the	num-
ber	of	frames/cameras	needed	for	achieving	a	target	precision	will	
be.	However,	the	pixels	density	 imposes	an	obvious	 limit,	which	in	
addition	will	be	species‐dependent	because,	 for	a	given	pixel	den-
sity,	a	larger	area	could	be	covered	by	larger‐sized	animals.	Similarly,	
the	larger	the	number	of	cameras	is,	the	better	the	precision	will	be.	
However,	the	total	number	of	cameras	needed	for	a	target	precision	
can	be	out	of	the	available	budget	for	certain	cases.

For	 two	 of	 the	 explored	 archetypes,	 the	 terrestrial	 mammal‐
based	and	the	terrestrial	reptile‐based	archetypes,	the	optimal	sam-
pling	settings	to	recover	stationary	density	of	the	HR	centres	with	a	
target	level	of	precision	implied	large	sampling	times	along	with	big	
camera	areas.	Particularly,	 for	 the	case	of	 the	 terrestrial	mammal‐
based	archetype,	when	using	10	cameras	with	an	area	of	detection	
of	630	m,	the	estimated	sampling	effort	was	of	11	days	for	a	target	
level	of	precision	of	0.2	 (i.e.,	 five	frames	analysed	by	camera);	and	
645	days	for	a	target	level	of	precision	of	0.05	(i.e.,	300	frames	ana-
lysed	by	camera).	In	both	cases,	frames	were	2	days	apart	one	from	
other	to	avoid	autocorrelation.	Interestingly,	results	from	the	terres-
trial	mammal‐based	 archetype	 are	 not	 so	 far	when	evaluating	 the	
case	of	moose	with	a	more	detailed	movement	model	by	Abolaffio	
et	al.	(2019).

Abolaffio	 et	 al.	 (2019)	 explored	 our	 method	 from	 different	
perspectives	 and	 simulated	 scenarios	 as	 realistic	 as	 possible	 for	 a	
particular	 species	 case.	 Camera	 trapping	 (CT)	 radius	was	 set	 to	 5	
or	9	m	and	variable	movement	speed	(with	two	behavioural	states)	
was	considered.	From	the	results	shown,	to	reach	a	target	 level	of	
precision	of	0.2	may	require	around	1,250	or	2,500	cameras,	respec-
tively,	 sampling	 during	 30	 days	 (no	 information	 on	 the	 number	 of	
frames	sampled	by	camera	nor	the	time	between	frames	to	control	
for	autocorrelation	 is	provided).	Therefore,	both	simulation	strate-
gies	agreed	in	that	the	target	precision	level	can	be	reached	within	
30	days	either	by	increasing	the	camera	radius	(i.e.,	low	number	of	
cameras	with	wide	range	of	detection;	Campos‐Candela	et	al.,	2018)	
or	by	increasing	the	number	of	cameras	(i.e.,	with	shorter	detection	
radius;	Abolaffio	et	al.,	2019).	These	observations	actually	demon-
strate	that	the	underlying	dynamic	system	is	ergodic.

In	any	case,	the	results	from	Abolaffio	et	al.	(2019)	corroborate	
the	usefulness	of	our	model,	as	they	outlined	in	different	parts	of	the	
text:	‘The	statistical	estimator	proposed	by	CC	yields	asymptotically	
unbiased	estimates	of	population	size	[…].	In	case	of	constant	animal	

speed	and	large	detection	radius	of	CT	[…],	the	estimate	attains	the	
prescribed	CV	threshold	in	less	than	30	days	at	 least	for	 large	and	
intermediate	 populations,	while,	 […],	 for	 the	 lowest	 density	 value,	
the	precision	 is	 too	 low	 to	 be	 acceptable’.	Certainly,	 some	 combi-
nation	of	sampling	settings	(either	bigger	area	or	a	larger	number	of	
cameras)	may	be	unreasonable,	especially	when	camera	trapping	has	
limited	distance	of	detection	(Rovero,	Zimmermann,	Berzi,	&	Meek,	
2013).	In	this	line,	Abolaffio	et	al.	(2019)	pointed	out	that	‘[…]	such	
a	detection	area	needs	an	equivalent	of	4,900	“true”	CT	with	a	de-
tection	radius	of	9	m	to	be	sampled’,	something	‘completely	absurd’.	

However…why	should	it	be	considered	‘absurd’?	We	agree	that	at	
a	first	glance,	and	with	the	settings	stated	by	Abolaffio	et	al.	(2019),	
this	sampling	effort	is	discouraging	but	to	consider	it	as	a	‘completely	
absurd’	solution	overlooks	the	real	opportunities	existing	nowadays	
to	make	it	more	reliable	than	impossible.	We	believe	that	this	state-
ment	may	be	short‐sighted	and	unambitious.

4  | CONCLUSION: WALKING INTO THE 
FUTURE TO OVERCOME CRITICISM 4

In	the	last	years,	animal	ecology	is	experiencing	a	revolution	in	im-
aging,	 camera	 technology	 and	 related	 technologies	 (e.g.,	 remote	
control),	which	can	provide	automatically	images	covering	big	areas	
with	enough	resolution	to	identify	the	target	species	for	long‐term	
periods.	For	example,	images	taken	from	the	air	(Groom,	Stjernholm,	
Due,	Fleetwood,	&	Krag,	2013;	Martin	et	al.,	2012;	Williams,	Hooten,	
Womble,	&	Bower,	2017)	will	benefit	from	the	use	of	drones	(UAS;	
Lejeune	et al.	2013;	Hodgson,	Kelly,	&	Peel,	2013;	Linchant,	Lisein,	
Semeki,	Lejeune,	&	Vermeulen,	2015;	or	UAVs;	Groom	et	al.,	2013),	
or	particular	vertical	 take‐off	and	 landing	aircraft	versions	 (VTOL;	
Goebel	et	 al.,	 2015);	whose	 relatively	 low	cost	 is	 an	additional	 at-
tribute	that	makes	these	devices	appealing	for	wildlife	census	appli-
cations	(Goebel	et	al.,	2015;	Hodgson	et	al.,	2018).	Besides,	the	use	
of	gigapixel	snapshots	discussed	in	Brady	et	al.	(2012)	and	very	high	
spatial	 resolution	 satellite	 image‐data	 for	 wildlife	 counts	 (Barber‐
Meyer,	 Kooyman,	 &	 Ponganis,	 2007;	 Laidre	 &	 Heide‐Jørgensen,	
2011;	Rozhnov,	Yachmennikova,	&	Dobrynin,	2014)	offer	novel	pan-
oramic	windows	for	sampling	very	large	areas.

In	 addition	 to	 that,	 remote	 camera	 sampling	 based	 on	 time‐
lapse	cameras	 (Flynn	et	al.,	2018)	and	camera	 trapping	continue	
to	be	excellent	tools	in	systems	that	cannot	be	sampled	from	the	
height‐top	(e.g.,	dense	forest	and	underwater	systems).	The	smaller	
field	of	vision	entails	increasing	sampling	times	and/or	the	number	
of	cameras	(to	increase	the	sampled	area).	Nowadays,	applications	
of	 remote	 cameras	 to	biodiversity	 conservation	 are	quickly	 pro-
gressing;	expanding	and	improving	in	quality	for	diverse	manage-
ment	applications	(see	Burton	et	al.,	2015	for	a	review	in	the	use	
of	camera	trapping;	and	Steenweg	et	al.,	2017	for	a	review	of	the	
opportunities	of	 remote‐camera	 sampling	 at	 global	 scale).	 There	
is	 a	 global	 potential	 of	 remote	 cameras	 as	 a	 standardized	moni-
toring	 platform	 for	 terrestrial	 vertebrate	 biodiversity,	which	will	
allow	 for	 expanding	 from	 individual,	 localized	 camera	 studies	 to	
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coordinated	 regional	 and	 global	 camera	 networks	 (Steenweg	 et	
al.,	2017).	At	this	point,	we	can	list	several	examples	of	sampling	
platforms	collecting	data	from	fixed	cameras	during	long	periods	
that	 can	 benefit	 from	 using	 our	model:	 the	 Snapshot	Wisconsin	
project	 (https	://www.zooni	verse.org/proje	cts/zooni	verse/	snaps	
hot‐wisco	nsin),	the	Snapshot	Serengeti	project	(www.snaps	hotse	
renge	ti.org),	the	NEPTUNE	Canada	network	(Matabos	et	al.,	2014)	
or	 the	 Sub‐eye	 Underwater	 Observatory	 in	 Mallorca	 (https	://
imedea.uib‐csic.es/sites/	sub‐eye/home/).	 For	 more	 examples	 of	
coordinated	 networks	 for	 remote	 sampling,	 see	 Steenweg	 et	 al.	
(2017).	Overall,	the	list	of	projects	engaging	the	collection	of	data	
from	 remote	 cameras	 is	 long	 and	 increasing,	 in	 both	 terrestrial	
(Steenweg	et	al.,	2017)	and	aquatic	systems	 (Aguzzi	et	al.,	2013,	
2015;	Matabos	et	al.,	2015),	and	brings	the	hope	of	making	esti-
mates	of	absolute	abundances	much	more	realistic	and	unbiased.

Animal	population	studies	will	benefit	from	moving	to	such	larger	
scales,	not	only	on	the	technological	side	but	also	 in	 terms	of	col-
laborative	 networks,	 smartphone	 applications	 and	 citizen	 science	
(Swanson	et	al.,	2015;	Willi	et	al.,	2019),	where	theoretical	and	em-
pirical	perspectives	must	converge	and	play	 together.	Abolaffio	et	
al.	(2019)	pointed	out	that	they	would	need	an	equivalent	of	4,900	
cameras	to	estimate	abundance	in	their	species	case	study.	Around	
300,000	participants	(cameras)	have	submitted	around	300	million	
bird	 pictures	 to	 the	 citizen	 science	 programme	 ‘eBird’	 since	 2002	
(https	://ebird.org/home).	 Obviously,	 it	 is	 not	 comparable	 for	 the	
case	of	the	moose	(but	see	Swanson	et	al.,	2015);	however,	it	offers	
an	idea	of	the	potential	working	frame	for	methods	like	the	one	de-
veloped	 in	Campos‐Candela	 et	 al.	 (2018).	Moreover,	 to	 efficiently	
exploit	the	increasing	resources	from	digital	imagery,	there	is	a	need	
for	 an	 urgent	 shift	 from	manually	 counting	 animals	 by	 human	 ex-
perts,	which	is	certainly	expensive,	to	automatic	methods	(Hodgson	
et	al.,	2018),	where	machine	learning	offers	a	big	window	of	oppor-
tunities	for	extracting	information	(Tabak	et	al.,	2019).

These	 opportunities	 altogether	 will	 provide	 a	 huge	 amount	
of	data	 in	 the	next	 future	 that	will	 require	proper	 statistical	 ap-
proaches	to	estimate	abundance.	In	such	a	context,	the	main	con-
tribution	in	Campos‐Candela	et	al.	(2018):	for	the	case	of	animals	
whose	movement	 leads	 to	 a	 stationary	 spatial	 pattern,	 absolute	
animal	density	can	be	properly	estimated	by	the	average	number	
counts	per	frame	whenever	assumptions	for	the	model	meet;	can	
provide	 the	basis	 for	 the	 further	assessment	of	wildlife	by	using	
camera	 sampling.	 We	 must	 continue	 to	 strive	 to	 accommodate	
our	proposed	model	to	the	particularities	of	the	study	system	and	
overcome	its	potential	drawbacks	(e.g.,	Follana‐Berná	et	al.,	2019).	
However,	we	really	feel	that	the	debate	should	not	only	focus	on	
the	applicability	of	the	proposed	method	in	Campos‐Candela	et	al.	
(2018)	for	some	species	and	case	studies;	but	on	the	opportunities	
that	it	offers	in	the	nearest	future	for	wildlife	assessment	to	many	
scientists	and	managers.	Overall,	this	task	requires	strengthening	
the	 links	 between	 theorists,	 empiricists	 and	 engineers,	 but	 per-
haps	it	would	provide	one	of	the	most	exciting	fields	for	modern	
ecology	 in	 light	 of	 the	 increasing	 and	unprecedented	 amount	 of	
ecological	data.
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