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A B S T R A C T

Precision aquaculture requires the use of advanced technologies to optimize fish management. Substantial 
progress has been achieved in modeling Atlantic salmon (Salmon salar) growth and feeding behavior. However, 
there is still no simple mathematical model to predict feed intake that can be used for reference and bench-
marking. This study aims to infer basic parametrized equations for Atlantic salmon feed intake using a minimal 
number of predictors: body weight and temperature. We used data from 64 previous publications and 25 
commercial feeding tables. Various mathematical models were tested, incorporating different temperature 
functions and fitting methods. The following model provided the most accurate predictions under a wider range 
of temperatures and fish body weights:

FI = 0.006× BW0.80 × e(0.287 × temperature− 0.012 × temperature2)

where FI is the feed intake (g/fish/day), BW the average body weight of fish (g) and temperature the water 
temperature (◦C). Using simple least squares and robust fitting methods yields better prediction capacities, while 
data from commercial feeding tables does not significantly enhance model accuracy. This basic reference model 
developed on this study can be readily used as an applied tool, e.g. estimating the feed amount required for 
production or trials, determining baseline feed intake when building more complex models accounting for other 
factors, developing growth models taking feed intake as input, evaluating current feeding practices. Its 
simplicity, adaptability, and broad applicability represent a valuable contribution to the field, providing a 
practical foundation for future model development and decision-making in Atlantic salmon farming 
management.

1. Introduction

Atlantic salmon (Salmo salar) is the predominant aquaculture species 
in Norway, with an export volume of approximately 1.5 million tons in 
2023 (Fiskeridirektoratet, 2024), and it holds significant economic 
importance in other countries as well. Like other fish species, feed 
constitutes the largest operational cost in Atlantic salmon farming, often 
exceeding 50 % of total expenses (Buentello et al., 2000; Iversen et al., 
2020). The current feeding management practices for Atlantic salmon 
primarily rely on biomass estimates and feeding tables outlining feeding 
rates based on fish size and water temperature classes. Administration of 
each meal, however, is largely guided by the intuition and experience of 
the individual farm personnel, supplemented by underwater cameras to 

monitor fish behavior as a proxy for appetite (Berckmans, 2017; Føre 
et al., 2018). Sonar systems are also sometimes employed to track 
feeding activity and fish distribution. These also provide essential data 
on biomass, size distribution, and density for effective farm management 
(Knudsen et al., 2004; Pettersen et al., 2019; Ubina et al., 2022). Despite 
these tools, current practices often lead to inaccuracies in feed intake 
estimates, frequently resulting in overfeeding (Webster et al., 2023). 
Farmers, cautious of underfeeding and losing growth potential, tend to 
provide excess feed, leading to resource waste and significant environ-
mental, economic, and reputational impacts (Sun et al., 2016).

Mathematical modeling offers a promising solution to address these 
inefficiencies. Such models, when integrated into advanced frameworks 
like digital twins and decision systems, can improve the accuracy and 
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efficiency of feed management strategies. Significant progress was 
achieved in developing models to estimate growth and feeding behavior 
in Atlantic salmon (Føre et al., 2013, 2016, 2017). Some simple models 
for feed intake have also been proposed (Gomes et al., 2023). However, 
there is currently no published model specifically designed to predict 
feed intake in this species using a minimum number of input variables. A 
baseline model designed with body weight and temperature as its pri-
mary variables is essential for advancing feed intake predictions. These 
predictors, chosen for their well-documented roles in feed intake regu-
lation, ensure a balance between simplicity and biological relevance.

This simple reference model is crucial for several reasons. First, it can 
serve as the simplest benchmark for validating more complex models 
that incorporate additional factors, such as oxygen, salinity, pH, or meal 
frequency. Second, validation of nutrient-dependent or dynamic agent- 
based models requires matching their results with the data based on this 
baseline reference equation. For example, Føre et al. (2016) reported a 
nutrient-dependent agent-based feed intake model, but its validation 
failed to provide reliable predictions of feed intake.

For its development, the model uses existing published literature, 
providing a cost-effective and scientifically robust approach to mathe-
matical modeling. This reduces the need for new experiments, aligning 
with the Reduction principle of the 3Rs (Replacement, Reduction, and 
Refinement) in animal research. It also enhances model replicability 
across diverse contexts ("large world modeling") rather than limiting it 
to specific trial conditions ("small world modeling"). For Atlantic 
salmon, ample datasets are available from feeding tables and prior 
studies, providing a strong foundation for model development.

The choice of candidate exponential equations was grounded in 
mechanistic insights into feed intake regulation. Furthermore, expo-
nential equations with multiplicative components provide a general 
extensible framework to add further factors. More complex models can 
build on this baseline by adding multiplicative (or additive) compo-
nents, enhancing our understanding of the physiological and environ-
mental factors that influence appetite and feed intake. This, in turn, is 
crucial for growth models and feeding optimization. Cross-validation, 
involving fitting the model on one dataset and then testing it on an 
unrelated dataset (e.g., Rhinehart, 2016; Yates et al., 2023), ensures 
uncertainty estimation, generalization, and robust prediction.

By serving as both a practical tool and a benchmark, this baseline 
model aims to improve understanding of the factors influencing appetite 
and feed intake. For example, it can support trials of new feed in-
gredients by estimating satiation levels, thereby optimizing resource 
allocation and experimental design.

This study represents the first step toward developing a reference 
mathematical model to estimate feed intake in Atlantic salmon based on 
key predictors, specifically body weight and temperature. Using com-
mercial feeding tables and published data, the model was developed to 
replace traditional feeding tables, support growth models, and serve as a 
benchmark for improving feeding practices in aquaculture.

2. Materials and methods

2.1. Data collection

The mathematical model was developed using data from published 
literature and online commercial feeding tables. Therefore, no experi-
mental work was performed during this research. Data from 64 scientific 
publications published between 1991 and 2020 describing measured 
feed intake rates for Atlantic salmon was systematically gathered (see 
Supplementary material).

According to the description of each paper, the experimental con-
ditions (temperature, number of trial days, initial and final weight) were 
recorded. The daily feed intake was calculated by distributing the cu-
mulative feed intake over the trial period as a fixed proportion of the 
estimated daily body weight. The daily body weight was estimated using 
exponential interpolation between the measured body weights at 

sampling points. The range of temperatures and body weights covered 
by this data was 6.0–19.1 ºC and 0.92–4075.84 g, respectively.

Commercial feeding tables, available online, were used to increase 
the range of body weight and temperature data. In total, 25 feeding 
tables from fry to adult life stages, ranging in body weight from 0.20 g to 
5000 g and covering a temperature range of 2–20 ºC. Feed intake (kg of 
feed per 100 kg fish per day) was directly retrieved from the information 
provided in the commercial feeding tables.

Fig. 1 provides an overall view of the body weight and temperature 
range from scientific publications and commercial feeding tables.

2.2. Model design

All the evaluated models followed the same general shape mathe-
matically, wherein the effects of temperature and body weight (BW) are 
regarded as multiplicatively separable. The f(BW) function for every 
model exhibits a power-law connection (Eq. 1). 

FI(BW, temperature) = a × BWb × g(temperature) (1) 

Three different categories of models were considered with different 
relations for g(temperature); exponential (Eq. 2), log-quadratic (Eq. 3) 
and log-cubic (Eq. 4). Fig. 2 illustrates the distinct relationships of 
temperature function with the varying degrees of complexity.

Category 1 

FI(BW, temperature) = a × BWb × e(c ×temperature) (2) 

Category 2 

FI(BW, temperature) = a × BWb

× e(c ×temperature− d × temperature2) (3) 

Category 3 

FI(BW, temperature) = a × BWb × e(c ×temperature+ d 

× temperature2 − e × temperature3)

(4) 

2.3. Model fitting method

An “inductivist” approach to modeling was used, considering a range 
of fitting methods with little a priori constraints. To test different as-
sumptions of the underlying data structure different model fitting 
methods (implemented in R version 4.2.1) were used. 

1) Least squares regression, (“simple” methods, using function lm()).
2) Huber loss minimization (“robust” methods, using function MASS:: 

rlm()).
3) Mixed-effect modelling (“mixed” methods, source being the random 

effect, using function lme4::lmer()).

In addition, 3 variations of model fitting were performed: 

1) Dynamic Energy Budget (DEB) theory, with fixed body weight 
exponent 2/3 (“fixed23” variants);

2) excluding the auxiliary feeding table data during calibration (“i” 
variants). This method was not applied to mixed model-effect 
models, since the random effect applied was the source of the 
feeding table;

3) recalibrating the “a” parameter using only the data from scientific 
publications data (“r” variants).

Therefore, 33 different models with fitting combinations were tested 
in total.
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2.4. Model evaluation and model analysis

To determine the best process to obtain reference models it was used 
the cross-validation method. Cross-validation is a robust statistical 
technique that assesses model performance by partitioning the dataset 
into multiple subsets (folds). In this technique, the model is trained on a 
subset of the data and validated on the remaining fold, with this process 
repeated multiple times to ensure each subset is used for validation at 
least once. Therefore, a series of 5-fold cross-validations with 5 repeti-
tions (totaling 825 evaluations) using 454 data points was performed to 
estimate, for each model and fitting method combination, the expected 
mean absolute percentage error (MAPE; Eq. 5). 

MAPE(%) =
100
n

∑n

i=1

⃒
⃒
⃒
⃒
Pi − Oi

Oi

⃒
⃒
⃒
⃒ (5) 

Where n is the number of predicted-observed value pairs, Pi is the pre-
dicted value, and Oi is the observed value.

The model evaluation was performed by assessing the MAPE values 
of each model and fitting method using cross-validation method. The 
smaller the percentage of MAPE value, the smaller was the deviation of 
the pattern predicted by the model from the observed data that was not 
used for model fitting. Subsequently, the three models with the lowest 
MAPE value of each category were selected to perform a model analysis. 

The model analysis consisted of evaluating the raw residual values of 
feed intake predictions and evaluating the predicted performance, by 
testing the models’ prediction using different temperatures and body 
weights.

Additionally, model selection was further supported by using Infor-
mation Criteria using Akaike Information Criterion corrected for small 
sample sizes (AICc; Eq. 6) values to assess the relative quality of the 
models, considering both their predictive performance and complexity. 

AICc = nln
(

SEE
n

)

+
2k(k + 1)
n − k − 1

(6) 

Where n is the number of observations, SEE is sum of the square errors, 
and k is the number of parameters in the model.

3. Results and discussion

3.1. Model evaluation

The overall result of the cross-validation of the models (Table 1) 
indicates substantial unmodelled variation in feed intake rates, with 
MAPE values ranging from 28.19 % to 59.93 %, suggesting a variability 
in prediction accuracy across models and fitting techniques. The 
elevated MAPE can be attributed to the considerable variability in the 

Fig. 1. Violin plot of the range of body weight (g) and temperature (ºC) of the scientific publications (light grey) and commercial feeding tables (dark grey).

Fig. 2. The distinct relationships of temperature function with varying degrees of complexity. A illustrates an exponential correlation of temperature with the 

equation e(temperature). B illustrates a log-quadratic correlation of temperature with the equation e(temperature− temperature2). C illustrates a log-cubic correlation with 
temperature with the equation e(temperature+ temperature2 − temperature3).
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dataset derived from scientific publications. This extensive dataset 
contains a wide range in unmodelled factors influencing feed intake, 
such as daily meals, feeding schedules, and dissolved oxygen levels, 
contributing significantly to the error. Moreover, achieving a high level 
of prediction (very low MAPE) is hardly possible due to the inherent 
variability in fish behavior (Assan et al., 2021; Martins et al., 2011). We 
therefore used a value of 40 % as a cutoff defining satisfactory model 
prediction level.

The model “FI3/robust_i” exhibits the lowest cross-validation MAPE 
value of 28.19 %, that indicates the best accuracy of prediction. In 
general, models using the “simple” (Least squares regression) and 
“robust” (Huber loss minimization) fitting tended to have better pre-
diction accuracy. The use of “mixed” (Mixed-Effect Modeling) did not 
provided any improvement on the quality of the model (MAPE). 
Consequently, including the feeding tables (as a random effect) did not 
provide any improvement to the accuracy of the model. Therefore, it can 
be concluded that for this model using simpler calibration methods, such 
as “simple” and “robust,” resulted in better prediction capacity.

In addition, models ignoring the feeding tables (the “i” category) 
demonstrated a lower MAPE. This indicates that adding the data from 
the feeding tables may not have contributed to the model quality for a 
variety of reasons, e.g. high homogeneity of these data with minuscule 
deviations from the main biological pattern.

The models using the variation “fixed23” with fixed weight raised to 
the power of 2/3 had the highest MAPE values and, therefore, low 
prediction accuracy. Models based on DEB theory have been utilized 
with various aquaculture species in the Mediterranean region, including 
the European sea bass (Dicentrarchus labrax), seabream (Diplodus sargus), 
and gilthead seabream (Sparus aurata). In these models, the ingestion 
rates {ṗx} and assimilation rate {ṗA} were calculated as proportionally 
to the surface area of the structural body volume (V2/3). This approach 
has allowed the development of models capable of quantifying feeding 

and growth dynamics for the species mentioned above (Serpa et al., 
2013; Stavrakidis-Zachou et al., 2019). Furthermore, the application of 
the DEB theory model has been widely applied to bivalves in aquacul-
ture, especially to the Pacific oyster (Crassostrea gigas). The assimilation 
rate {ṗA} has also a direct relation with the body volume (V2/3),

resulting in reliable growth models in various environments (Bourlès 
et al., 2009; Pouvreau et al., 2006; Van der Veer and Alunno-Bruscia, 
2006).

A study that modeled the growth performance and feeding behavior 
of Atlantic salmon using a DEB model approach calculated feed intake 
depending on the maximum gut capacity (Føre et al., 2016). In addition, 
a model developed with a behavior approach in sea cages of Atlantic 
salmon used the stomach content to predict the fish’s appetite and 
therefore the feed intake (Føre et al., 2009). Hence, the assumption of 
the assimilation rate directly proportional to (V2/3) does not appear to 
hold consistently across Atlantic salmon, which can explain why the 
variable “fixed23” did not help to improve the model accuracy. In 
addition, the exponent value for species-specific and rapidly growing 
animals in agriculture has been questioned, which might be the case of 
the Atlantic salmon (Baldwin and Bywater, 1984; Kil et al. 2013; 
Thonney et al., 1976).

Furthermore, using the temperature as log-cubic seemed to improve 
the model accuracy: there was an improvement in prediction capacity by 
considering additional complexity on the temperature effect. First, the 
temperature range may have provided sufficient variability for the more 
complex models. Second, the log-cubic model (Eq. 4) defines a biphasic 
effect: increased FI up to a point and then reduction at exceedingly high 
temperature (see Fig. 2C). This agrees with the commonly observed 
suppression of feed intake at higher temperatures in the Atlantic salmon 
(Handeland et al., 2008; Kullgren et al., 2013).

By comparing the model "FI3/robust_i" with "FI2/robust_i" and "FI1/ 
robust_i", there was an increase in MAPE of approximately 1.32 % and 
2.24 %, respectively.

3.2. Model analysis

Following model evaluation, the top-performing model from each 
model type (FI1, FI2, FI3) was selected for analysis of residuals (Fig. 3). 
The variables and corresponding values of these chosen models are 
outlined in Table 2. Notably, the “FI3/robust_i” model exhibited the 
lowest MAPE of 28.19 %, indicating the robust predictive performance. 
While the “FI2/simple_i” model demonstrated a MAPE of 29.40 % and 
“FI1/robust_i” model recorded a MAPE of 30.43 %. However, when 
analyzing the AICc values, it becomes evident that the "FI2/simple_i" 
model has the lowest AICc (595.44), indicating the best trade-off be-
tween goodness-of-fit and model complexity among the evaluated 
options.

Table 1 
Mean absolute percentage error (MAPE) of each model, 
obtained through cross-validation on evaluation datasets.

Model/Fitting MAPE (%)

FI3/robust_i 28.19
FI3/simple_i 28.45
FI2/simple_i 29.40
FI2/robust_i 29.51
FI1/robust_i 30.43
FI1/simple_i 30.44
FI2/simple_r 33.20
FI2/robust_r 34.62
FI3/simple_r 34.84
FI2/mixed_r 35.25
FI2/mixed 35.37
FI2/robust 35.75
FI3/robust_r 36.63
FI3/mixed_r 36.82
FI3/mixed 36.94
FI3/robust 37.21
FI1/robust 37.41
FI2/simple 37.61
FI1/simple 38.13
FI1/mixed 38.83
FI1/mixed_r 39.00
FI3/simple 39.10
FI1/simple_r 40.07
FI1/robust_r 41.01
FI2/mixed_fixed23 52.33
FI3/mixed_fixed23 53.56
FI1/simple_fixed23 54.57
FI2/simple_fixed23 55.19
FI1/mixed_fixed23 55.30
FI3/simple_fixed23 56.40
FI1/robust_fixed23 57.18
FI2/robust_fixed23 58.87
FI3/robust_fixed23 59.93

Fig. 3. Box plots of the prediction error (PE%) for model “FI1/robust_i”, “FI2/ 
simple_i” and “FI3/robust_i” respectively.
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The distribution of Percentage Error (PE) values for the best models 
in each category is symmetrical and centered around zero, indicating 
that the models exhibit similar performance across the range of pre-
dictions, with errors evenly distributed around the mean. Additionally, 
approximately 75 % of the points exhibited a percentage error below 
40 %. This indicates that, in most cases, the model’s error falls within 
the pre-defined threshold of 40 %, which was established as the 
benchmark for satisfactory prediction accuracy prior to the development 
of this work.

3.3. Model performance evaluation

3.3.1. Temperature
Three different temperatures were selected to evaluate the prediction 

capacity of the models based on a previous study by Handeland et al. 
(2008) that investigated the effect of temperature on feed intake. The 
study found that fish reared at 6ºC and 18ºC had significantly lower feed 
intake, while 14ºC was the optimal temperature for growth and feed 
intake. Consequently, for our evaluation, we chose temperatures of 5ºC, 
15ºC, and 20ºC, considering both the literature and the available data 
range of the dataset used to develop the models. To facilitate the visu-
alization of the accuracy of the models a range of 20 % lower and 20 % 
higher than the reference temperature was defined. This enabled a clear 
comparison of the model predictions within a ± 20 % margin around 
the chosen temperatures (Figs. 4 to 6).

When comparing the predicting performance of the models at 5ºC, 
which is considered a temperature below optimal for Atlantic salmon 
cultivation, it is clear that “FI2/simple_i" has closer predictions to the 
data from the trials and auxiliary data from commercial feeding tables 
that were performed with temperature range from 4–6ºC (Fig. 4). “FI1/ 
robust_i " and “FI3/ robust _i" overestimate and underestimate the feed 
intake, respectively.

At 15 ºC, which is close to the optimal temperature for Atlantic 
salmon cultivation, all three models show similar predictions (Fig. 5). 
This temperature range is well-studied, with extensive data from both 

scientific publications and commercial feeding tables. However, feed 
intake rates (g/fish/day) reported in scientific studies tend to be lower 
than those provided in commercial feeding tables.

Analysis of the prediction accuracy at the temperature 20 ºC (which 
is above the optimal level for the Atlantic salmon) shows that model 
“FI3/robust_i" and model “FI1/simple_i" have better feed intake pre-
diction capacity (Fig. 6) while “FI2/robust_i" underestimates the feed 
intake. Therefore, the Atlantic salmon’s feed intake prediction is better 
performed by temperature described as a log-cubic or an exponential 
function.

In summary, the evaluation of model performance for predicting feed 
intake in Atlantic salmon cultivation reveals nuanced findings across 
different temperature conditions. At temperatures below optimal levels, 
such as 5 ◦C, the "FI2/simple_i" model demonstrates closer alignment 
with trial data compared to " FI1/robust_i " and "FI3/simple_i. At 15 ◦C, 
considered as optimal cultivation temperature, all three models produce 
similar predictions with a good fit. However, at 20 ◦C, above optimal 
levels, "FI3/robust_i" and "FI1/simple_i" outperform "FI2/robust_i" in 
predicting feed intake.

3.3.2. Body weight
We also evaluated the performance of each model to predict the feed 

intake under three different body weights, 10, 100, and 1000 g with 
variable temperature (Figs. 7 to 9).

First, the performance of the model “FI1/robust_i” was evaluated 
(Fig. 7). There was a slight decrease in feed intake from 5 to 20 ºC. 
However, as previously stated, an increase in feed intake from 5 to 14 
would be expected, followed by a decrease of feed intake at higher 
temperatures (Handeland et al., 2008).

The model "FI2/simple_i" performance was subsequently evaluated 
(Fig. 8). The model shows an increase in feed intake until 12 ◦C, the 
temperature at which the highest feed intake occurs, followed by a 
decline. Previous studies indicate that feed intake should peak at 14 ◦C, 
with lower intake at 6◦C and 18◦C (Handeland et al., 2008). Thus, while 
the model’s peak occurs at 12 ◦C instead of 14 ◦C, it accurately 

Table 2 
Equations with parameter values for model “FI3/robust_i,” “FI2/simple_i,” and “FI1/robust_i”, their mean absolute percentage error (MAPE) and Akaike Information 
Criterion (AICc) during the evaluation phase. Standard deviation errors were ± 1.96, 1.93, and 2.15, respectively.

Model/Fitting Equation MAPE (%) AICc

FI3/robust_i 0.0000814 × BW0.80 × e(1.43 ×temperature − 0.11 × temperature2 − 0.003 × temperature3) 28.19 609.55

FI2/simple_i 0.006 × BW0.80 × e(0.287 ×temperature− 0.012 × temperature2) 29.40 595.44

FI1/robust_i 0.028 × BW0.80 × e(− 0.004 ×temperature) 30.43 697.12

Fig. 4. Evaluation of the best-performing models for Atlantic salmon at 5ºC (purple: “FI3/robust_i”, green: “FI2/simple_i”, yellow: “FI1/robust_i”). Black dots 
represent scientific publications, grey dots are from commercial feeding data, blue dots are scientific data within ± 20 % of 5ºC, and red crosses are commercial 
feeding data within the same range. The x-axis shows body weight (grams), and the y-axis shows feed intake rate (g/fish/day), both in log scale.
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represents the overall pattern of feed intake variation with temperature, 
providing a good fit to the observed data.

When evaluating the model "FI3/robust_i" (Fig. 9), the feed intake 
increases from 5 ◦C to 10 ◦C, then decreases between 10 ◦C and 16 ◦C, 
followed by another increase up to 20 ◦C. However, according to 
empirical data, an increase in feed intake is expected from 5 ◦C to 14 ◦C, 
which differs from the model’s predictions. This discrepancy highlights 
the need to refine the model further to align more closely with observed 
feeding behavior.

3.3.3. Overall evaluation of models
The final analysis concerns the evaluation of the models with all the 

three different variables, feed intake, temperature and body weight 
(Figs. 10 to 12). Fig. 10 illustrates the model "FI1/robust_i" pattern 
across the three dimensions. Given that the relationship between feed 
intake and temperature g(temperature) is exponential, it is evident that 
feed intake decreases as temperature increases. Consequently, in this 

scenario, the highest feed intake is observed at a temperature of 5 ◦C and 
a body weight of 1000 g.

Fig. 11 shows the relationship between the three variables for model 
“FI2/simple_i.” The feed intake behavior in this model is similar to Fig. 2
B due to the log-quadratic relationship. In this model, the highest feed 
intake occurred at a temperature of 12 ◦C and a body weight of 1000 g, 
indicating an optimal condition within the modeled parameters. Over-
all, the model “FI2/simple_i” shows the biphasic pattern with the 
optimal temperature effect that agrees best with the qualitative pattern 
observed in the Atlantic salmon trials (Handeland et al., 2008).

Finally, Fig. 12 shows the relationship between the three variables 
for model “FI3/robust_i”. The feed intake behavior in this model is 
similar to Fig. 2 C due to the log-cubic relationship, which has inflection 
points where the curve changes concavity. In this model the highest feed 
intake occurred at temperature 20 ◦C and a body weight of 1000 g.

Fig. 5. Evaluation of the best-performing models for Atlantic salmon at 15ºC (purple: “FI3/robust_i”, green: “FI2/simple_i”, yellow: “FI1/robust_i”). Black dots 
represent scientific publications, grey dots are from commercial feeding data, blue dots are scientific data within ± 20 % of 15ºC, and red crosses are commercial 
feeding data within the same range. The x-axis shows body weight (grams), and the y-axis shows feed intake rate (g/fish/day), both in log scale.

Fig. 6. Evaluation of the best-performing models for Atlantic salmon at 20ºC (purple: “FI3/robust_i”, green: “FI2/simple_i”, yellow: “FI1/robust_i”). Black dots 
represent scientific publications, grey dots are from commercial feeding data, blue dots are scientific data within ± 20 % of 20ºC, and red crosses are commercial 
feeding data within the same range. The x-axis shows body weight (grams), and the y-axis shows feed intake rate (g/fish/day), both in log scale.
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4. Perspectives and conclusions

The model developed in this study offers a cost-effective and scien-
tifically solid approach to mathematical modeling in aquaculture. It 
focuses on predicting feed intake, which is a key factor that directly 
affects fish growth. While many existing models in aquaculture are 

designed to predict growth based on environmental and physiological 
factors, they often treat feed intake as a fixed or known value. This 
model provides reliable prediction of feed intake under specific condi-
tions, that can be used as a complement to growth models. In addition, 
while this model focuses explicitly on Atlantic salmon (Salmo salar), its 
structure is based on general principles that could be adapted to other 

Fig. 7. Evaluation of “FI1/robust_i” model relationship between temperature and feed intake in three different sizes of fish (purple: 1000 g; green: 100 g; yellow: 
10 g). The vertical axis shows the feed intake in percentage of body weight per day. The horizontal axis shows the temperature in degrees Celsius. Grey shaded areas 
indicate suboptimal temperature ranges (< 6 ◦C or > 18 ◦C), where feed intake should be reduced.

Fig. 8. Evaluation of “FI2/simple_i” model relationship between temperature and feed intake in three different sizes of fish (purple: 1000 g; green: 100 g; yellow: 
10 g). The vertical axis shows the feed intake in percentage of body weight per day. The horizontal axis shows the temperature in degrees Celsius. Grey shaded areas 
indicate suboptimal temperature ranges (< 6 ◦C or > 18 ◦C), where feed intake should be reduced.

Fig. 9. Evaluation of “FI3/robust_i” model relationship between temperature and feed intake in three different sizes of fish (purple: 1000 g; green: 100 g; yellow: 
10 g). The vertical axis shows the feed intake in percentage of body weight per day. The horizontal axis shows the temperature in degrees Celsius (◦C). Grey shaded 
areas indicate suboptimal temperature ranges (< 6 ◦C or > 18 ◦C), where feed intake should be reduced.
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species in aquaculture, that can be adapted for other species and envi-
ronmental conditions, showing its potential to be applied widely across 
different aquaculture systems.

Simple static models allow the prediction of feed intake through 
application of a single equation that relies on the most important factors: 
fish body weight and temperature. Our work demonstrates that, despite 
simplicity, such models can provide sufficient accuracy for the predic-
tion of feed intake of Atlantic salmon. Unlike more traditional ap-
proaches, cross-validation assesses prediction accuracy on samples 
different from those used for fitting and provides a reasonable estimate 
of prediction error and uncertainty.

Simple and robust fitting methods had better prediction capacities, 
but adding data from commercial feeding tables does not significantly 
improve model accuracy. The comparisons across multiple models using 
various fitting methods suggest that many other factors, such as stress, 
dissolved oxygen, and dynamic behavioral processes, contribute to the 
high variability in the data points, reducing the model’s prediction ca-
pacity. However, including every additional independent variable in-
curs increasingly high cost for practical applications. Our results 
demonstrate that the simplest models had sufficient accuracy for many 
practical purposes. Although the model "FI3/robust_i" exhibited the 

lowest MAPE value, utilizing "FI2/simple_i" is recommended due to its 
closer alignment with the actual relationships between temperature, 
body weight, and feed intake, especially the biphasic temperature effect. 
Even though the log-cubic models generally display the same biphasic 
pattern, the predicted feed intake increases drastically when the model 
extrapolates to higher temperatures, which is not realistic.

Simple models allow to distill the most important factors influencing 
feed intake, assisting in various practical applications. This model relies 
only on body weight and temperature—two variables that are routinely 
monitored in production systems—it offers a practical and easily 
implementable tool for predicting feed intake in real-world farming 
conditions. Additionally, they can assist in evaluating the relative roles 
of additional factors like diet composition and dissolved oxygen on feed 
intake. In commercial fish farming activities, these models can aid in 
identifying over- or underfeeding scenarios and optimizing overall feed 
strategies. Their simplicity enables easy implementation across different 
platforms, rendering them versatile tools for both research and practical 
purposes. For instance, a salmon producer could use the model to adjust 
feeding schedules based on seasonal temperature changes, while a 
researcher could apply it to determine standardized rations across 
experimental groups. Feed conversion ratio (FCR) can also be used to 
estimate feed requirements, especially when modeled as a function of 
body weight and temperature (Handeland et al., 2008). Ultimately, the 
superiority of either approach depends on model performance when 
applied to the same dataset. Comparative validation using common 
input data and performance metrics is necessary to objectively assess 
their relative accuracy and usefulness. Moreover, in production settings, 
both FCR and feed intake models are often used in conjunction to esti-
mate fish growth and feeding rates. Although these models can indi-
vidually be used to estimate feed intake based on a known growth curve, 
their combined use enables the estimation of both feed intake and 
growth. Therefore, they should be viewed as complementary rather than 
competing approaches.

In conclusion, the current model provides a practical framework for 
predicting feed intake in Atlantic salmon based on body weight and 
temperature. A promising direction for future research is the incorpo-
ration of additional environmental variables, such as dissolved oxygen 
and stress levels, which significantly influence feeding behavior and 
metabolic rates. By incorporating these often-overlooked factors, the 
model could offer more accurate and responsive feed intake predictions. 
Unlike commercial feeding tables, which are typically rely on general-
ized averages and lack transparency, this model uses clearly defined, 
measurable inputs, enabling the development of customized feeding 

Fig. 10. 3D surface plot illustrates the relationship between feed intake (g/ 
fish/day), body weight (grams), and temperature (◦C) according to the model 
"FI1/robust_i".

Fig. 11. 3D surface plot illustrates the relationship between feed intake (g/ 
fish/day), body weight (grams), and temperature (◦C) according to the model 
“FI2/simple_i”.

Fig. 12. 3D surface plot illustrates the relationship between feed intake (g/ 
fish/day), body weight (grams), and temperature (◦C) according to the model 
“FI3/robust_i”.
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strategies that better reflect real farms conditions. This will help farmers 
avoid both over- and underfeeding, thereby improving operational ef-
ficiency. However, it should be noted that the present model was 
developed using data from multiple and diverse contexts, so it’s current 
estimates represent generalizations that may not fully capture the nu-
ances of specific environments. Nevertheless, the modeling approach 
used is adaptable and the model can be recalibrated with site-specific 
data to enhance local accuracy.
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