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A B S T R A C T

The aim of the study was to identify a basic reference feed intake model to facilitate understanding of the impact 
of temperature as the key environmental factor, along with body weight and dietary composition. These basic 
models should provide the baseline for further research to advance precision farming practices and support 
efficient production for meagre (Argyrosomus regius). Several reference models, with different levels of 
complexity, were built using data from scientific publications and feeding tables, followed by evaluating 27 
different models using various fitting methods. Each model’s mean absolute percentage error was estimated 
through repeated 5-fold cross-validation (with n = 200 iterations). Models were divided into four categories 
based on the inclusion of temperature and diet composition parameters: simple feed-independent models, 
complex feed-independent models, simple feed-dependent models, and complex feed-dependent models. The 
best model from each category was identified, followed by an assessment of the overall best. Consistent with 
dynamic energy budget theory, models using a fixed body weight exponent of 2/3 demonstrated better fit. Feed- 
dependent models incorporating lipid levels outperformed feed-independent ones. Additionally, simpler models 
with temperature parameters effectively predicted feed intake at optimal temperatures, while more complex 
models predicted intake better above the thermal optimum. The reference models selected in this study can be 
applied to estimate feed requirements over time for production or experimental trials, benchmark feeding to 
isolate the effect of other variables, support growth models and alternative feeding tables, and provide decision 
support.

1. Introduction

Meagre (Argyrosomus regius) is a promising emerging species that can 
contribute to the diversification of Mediterranean aquaculture. Meagre 
stands out as an appealing species for aquaculture due to several 
enticing characteristics, including its rapid growth potential, flesh 
quality, economic value, adaptability to captivity, and resilience in 
diverse environmental conditions (Monfort, 2010; Pfalzgraff et al., 
2023). The cultivation commenced in the 1990s in France and, since 
then, different aspects of cultivation technology have been developed: 
larval rearing, nutritional requirements, and production technology 
(Martìnez-Llorens et al., 2011; Pérez et al., 2014; Pfalzgraff et al., 2023; 
Ribeiro et al., 2015; Roo et al., 2010; Saavedra et al., 2018, Saavedra 
et al., 2022).

Over the last few years, there has been a growing interest in rearing 
meagre as a strategy to mitigate the potential risks associated with 
market saturation of the Mediterranean marine aquaculture, which is 
currently dominated by gilthead seabream (Sparus aurata) and European 
seabass (Dicentrarchus labrax) (Couto et al., 2016). To reach the full 
potential of meagre cultivation and to increase its production, fish 
farming companies seek to reduce the production costs of the species.

Efficient feed management is crucial for a successful and sustainable 
aquaculture production for all species, including meagre. Feed consti
tutes the primary fraction of production expenses and can exceed 50 % 
of total running costs (Buentello et al., 2000; Iversen et al., 2020). This 
underscores the importance of developing tools to support development 
of improved feeding management practices, aiming to improve eco
nomic performance and advancing precision farming. This is especially 
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important for species like meagre, where comprehensive information on 
feeding and nutrition is still lacking, including key information 
regarding biological, nutritional, and environmental factors that drive 
feed intake. Developing a reference feed intake model provides the 
simplest baseline equations that can be extended in further studies. This 
is a critical step to establish precision farming practices in meagre 
production.

Feeding fish in culture still relies on intuition and experience, leading 
to economic losses and environmental impact due to feed waste (Sun 
et al., 2016). Mathematical models can address these issues by using 
mathematical equations to represent biological and environmental 
processes to estimate daily feed intake and predict growth. By incor
porating factors such as body weight, temperature, and dietary 
composition, mathematical models can help to refine feeding strategies, 
enhance efficiency, and support sustainable aquaculture.

Over the past few decades, numerous mathematical models have 
been developed in aquaculture to optimize feed administration. At the 
individual level, the most widely used approaches for modeling feed 
intake in fish include models for digestive tract content, and bio
energetics. Digestive tract content models estimate feed intake by 
analyzing the temporal changes in stomach or gastrointestinal contents, 
incorporating factors such as transit and evacuation rates to simulate the 
return of appetite and feed intake. For example, the MAXIMS model, 
developed by ICLARM (Sainsbury, 1986), has been applied to estimate 
the intake of various fish species, and Burton and Boisclair (2013)
developed a model to predict consumption rates in juvenile Atlantic 
salmon (Salmo salar) based on stomach content analysis. On the other 
hand, the bioenergetic model is based on the principles of bioenergetics 
to predict feed intake. Bioenergetic models have been applied in many 
different studies and different species, such as rainbow trout (Onco
rhynchus mykiss), gibel carp (Carassius auratus gibelio), gilthead seab
ream (Sparus aurata), and Barramundi (Lates calcarifer) (Bermudes et al., 
2010; Libralato and Solidoro, 2008; Railsback and Rose, 1999; Serpa 
et al., 2012; Zhou et al., 2005).

The aim of this study was to establish one or more mathematical 
reference feed intake models to characterize the influence of three pri
mary factors affecting feed intake: (i) temperature, representing the key 
environmental determinant, (ii) body weight and (iii) dietary compo
sition. To achieve this, several models with different levels of complexity 
were tested by integrating existing published data with commercial 
feeding tables. The models evaluated and fitted to the data are widely 
utilized in aquaculture research, with the novelty of this study arising 
from their specific application to meagre (Argyrosomus regius), a species 
of increasing significance in aquaculture.

The selected reference models provide a basic framework for 
developing more advanced models of feed intake, metabolism, and 
growth in meagre. Additionally, they serve as a benchmark for evalu
ating and optimizing feeding management practices, contributing to 
more efficient and sustainable meagre farming. Furthermore, these 
models offer a platform for future research to incorporate the effects of 
additional environmental factors, such as oxygen levels, pH, and nitrate 
concentrations, on feed intake, thereby expanding its applicability in 
precision aquaculture.

2. Materials and methods

2.1. Data collection

The present study was performed based on published literature data 
and commercial feeding tables available online for meagre (Argyrosomus 
regius). Therefore, no experimental work was performed during this 
research. Data describing meagre feed intake rates was systematically 
gathered from 42 sources published between 2010 and 2022. A com
plete list of these publications is provided in the supplementary data. 
According to the description of each paper, the nutritional values of the 
experimental feeds were collected (protein, lipids, fiber, ash, moisture, 

digestible protein, gross energy, digestible energy) and experimental 
conditions (initial and final weight, number of days of the trial, tem
perature). It is important to note that while not all studies clearly 
distinguish between feed intake and feed offer, for this study, the data 
from these publications were assumed to reflect feed intake. Feed intake 
was calculated as the average feed consumption per day of trial divided 
by the geometric mean of the average body weights at the sampling 
dates. The body weight ranged from 2.6 to 1160 g and the water tem
perature ranged from 15.5 to 27.6 ºC (Fig. 1).

Due to the limited range of temperatures and fish sizes available in 
the literature for meagre, 16 commercial feeding tables covering 
different life stages (from fry to adult) of meagre were added as auxiliary 
feed intake data. These tables, with a body weight range of 0.05 g to 
4000 g and a temperature range from 9 to 31 ºC, provided essential 
information on recommended feeding rates according to fish body 
weight, feeding rate or feed conversion ratio, water temperature, and 
feed nutritional composition. The indicative feeding guide from each 
feeding table, expressed as kilograms of feed per 100 kg of fish per day, 
was directly extracted from the commercial feeding tables (non-simu
lated data) and used as a proxy for feed intake during this study. It is 
important to note that the values collected from commercial feeding 
tables likely refer to "feed offer" rather than actual "feed intake”. In total, 
the dataset consisted of 4359 entries, covering different life stages, with 
body weights ranging from 0.05 g to 4000 g and temperatures from 9 to 
31 ºC. A summary of the data ranges can be found in Table 1.

2.2. Model design

Mathematically, all feed intake (FI) models followed the same 
generic form, where the effects of body weight (BW), temperature and 
diet properties are considered multiplicatively separable (Eq. 1). 

FI (BW, temperature, diet) = f(BW)×g(temperature)×h(diet)              (1)

For all models, the f(BW) function follows a power-law relationship 
depending on two estimated parameters, α and β: 

f(BW) = α × BWβ 

Table 2 contains a detailed description of the 27 different models 
considered, categorized into 4 different groups of models that differ in 
terms of the structure of the g(temperature) and h(diet) functions: 

1) Simple feed-independent models 
g(temperature) is a simple one-parameter function; 
h(diet) = 1 (i.e., diet is assumed to not affect feed intake rates).

2) Complex feed-independent models 
g(temperature) is a more complex function (2+ parameters); 
h(diet) = 1 (i.e., diet is assumed to not affect feed intake rates).

Fig. 1. Violine plot of the log10-transformed range of body weight (from 4.29 
to 763.32 g) and temperature of the published data sources.
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3) Simple feed-dependent models 
g(temperature) is a simple one-parameter function; 
h(diet) does not have more than one parameter.

4) Complex feed-dependent models 
g(temperature) and h(diet) are too complex to fit any of the previous 

types.

The numbers following each model acronym (e.g., FI1, FI2, EI1, PI3) 
represent the number of parameters considered in the respective model. 
For both simple and complex feed-independent models, a version with 
an acronym containing the letter ’k’ (e.g., ’FI1k’) indicates that the 
model includes the inverse of thermodynamic temperature as a 
predictor.

The abbreviations used are as follows: BW (Body Weight), temp 
(Temperature), GE (Gross Energy) in feed, DE (Digestible Energy) in 
feed, CP (Crude Protein) in feed, DP (Digestible Protein) in feed, CL 
(Crude Lipids) in feed, NFE (Nitrogen-free extract), z (Correction Factor) 
for nutritional components, and fra (Fraction) of the nutritional 
component, other for addition nutritional components such as ash and 
moisture, higher order effects for interactions between the nutritional 
components. Fitted parameters: α, β, γ, δ, ε.

2.3. Model fitting

For each model, different fitting methods were implemented in R 
version 4.2.1. In most cases, the model was linearized (under the 
assumption of multiplicative error) and parameters were determined 
using either least squares regression (“simple” methods, using function 
stats::lm()), Huber loss minimization (“robust” methods, using function 
MASS::rlm()) or mixed-effect modelling (“mixed” methods, source being 
the random effect, using function lme4::lmer()). For Feed Intake Com
plex family models (FIC), the feed-dependent effect was assumed to 
follow a polynomial response defined over the simplex, which considers 
the sum of the feed composition variables equals to one (Cornell, 1984). 
The fitting for this family was performed using elastic net regularization 
(using function glmnet::glmnet()), either considering only first-order 
effects (“basic” variants) or first-order and higher-order effects (“cplx” 
variants).

In some cases, variants of the fitting methods were obtained by: 

• Forcing the body weight exponent to a fixed value of 2/3 (“fixed23” 
variants) as assumed by the Dynamic Energy Budget theory 
(Kooijman, 1986);

• Excluding the auxiliary data from the commercial feeding table 
during fitting process (“i” variants), to assess how the model would 
perform using only the scientific publications data, therefore, mini
mizing potential biases or overfitting that could result from 

Table 1 
Minimum and maximum values of the different variables collected from the 
published data sources and commercial feeding tables, for meagre.

Data source Scientific publications Commercial feeding 
tables

Variable Minimum Maximum Minimum Maximum
Body weight (gram) 4.29 763.32 0.05 4000
Temperature (ºC) 15.45 27.6 9 31
Feed crude protein (% 

diet)
40.50 63.75 40 64

Feed crude lipid (% diet) 10.24 26.66 9 20
Feed fiber (% diet) 0.73 7.70 0.4 3.2
Feed ash (% diet) 3.82 16.24 6.6 13
Feed moisture (% diet) 2.35 13.30 NA NA
Feed gross energy (MJ/kg) 14.86 25.95 19.4 22.4
Feed digestible protein (% 

diet)
35.64 56.10 NA NA

Feed digestible energy 
(MJ/kg)

11.89 20.76 15.8 19.6

Table 2 
The list of the 27 models that were analyzed.

Name Equation Number of 
parameters

Simple feed-independent models
FI1 α × BWβ × e(γ ×temp) 3
FI1k

α × BWβ × e

(

γ ×
1

temp

)
3

Complex feed-independent models
FI2 α × BWβ × e(γ ×temp+ δ ×temp2) 4

FI2k

α × BWβ × e

(

γ ×
1

temp + δ ×
1

temp2

)
4

FI3 α × BWβ × e(γ ×temp+ δ ×temp2+ ε ×temp3) 5

FI3k

α × BWβ × e

(

γ ×
1

temp + δ ×
1

temp2 + ε ×
1

temp3

)
5

Simple feed-dependent models
EI1 α × BWβ × e(γ ×temp)

feedGE

3

DEI1 α × BWβ × e(γ ×temp)

feedDE

3

PI1 α × BWβ × e(γ ×temp)

feedCP

100

3

DPI1 α × BWβ × e(γ ×temp)

feedDP

100

3

LI1 α × BWβ × e(γ ×temp)

feedCL

100

3

Complex feed-dependent models
EI2 α × BWβ × e(γ ×temp+ δ ×temp2)

feedGE

4

DEI2 α × BWβ × e(γ ×temp+ δ ×temp2)

feedDE

4

PI2 α × BWβ × e(γ ×temp+ δ ×temp2)

feedCP

100

4

DPI2 α × BWβ × e(γ ×temp+ δ ×temp2)

feedDP

100

4

LI2 α × BWβ × e(γ ×temp+ δ ×temp2)

feedCL

100

4

EI3 α × BWβ × e(γ ×temp+ δ ×temp2+ ε ×temp3)

feedGE

5

DEI3 α × BWβ × e(γ ×temp+ δ ×temp2+ ε ×temp3)

feedDE

5

PI3 α × BWβ × e(γ ×temp+ δ ×temp2+ ε ×temp3)

feedP

100

5

DPI3 α × BWβ × e(γ ×temp+ δ ×temp2+ ε ×temp3)

feedDP

100

5

LI3 α × BWβ × e(γ ×temp+ δ ×temp2+ ε ×temp3)

feedCL

100

5

FIC1a α × BWβ × e(γ ×temp) ×

e

(
zCP×fracCP+ zCL×fracCL+ zNFE×fracNFE+ zother×fracother+

higher order effects

)
14

FIC2a α × BWβ × e(γ ×temp+ δ ×temp2) ×

e

(
zCP×fracCP+ zCL×fracCL+ zNFE×fracNFE+ zother×fracother+

higher order effects

)
15

FIC3a α × BWβ × e(γ ×temp+ δ ×temp2+ ε ×temp3) ×

e

(
zCP×fracCP+ zCL×fracCL+ zNFE×fracNFE+ zother×fracother+

higher order effects

)
16

FIC1b α × BWβ × e(γ ×temp) ×

e

(
zCP×fracCP+ zCL×fracCL+ zstarch×fracstarch+ zfiber×fracfiber+

z_ash×frac_ash+z_moisture×frac_moisture+higher order effects

)
25

FIC2b α × BWβ × e(γ ×temp+ δ ×temp2) ×

e

(
zCP×fracCP+ zCL×fracCL+ zstarch×fracstarch+ zfiber×fracfiber+

z_ash×frac_ash+z_moisture×frac_moisture+higher order effects

)
26

(continued on next page)
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incorporating commercial feeding data. The dataset size before and 
after exclusion is as follows: 4644 and 285, respectively. This 
approach allows an evaluation of how the inclusion of auxiliary data 
influences model fitting.

• Recalibrating the “α” parameter using only the data from scientific 
publications (“r” variants). For that, all available data (scientific 
publications and feeding tables) was used, followed by a correction 
step for data from scientific publications. The recalibration of the 
parameter “α” was based on the correction adjusted, based on the 
median deviation between predicted and observed feed intake values 
for the scientific population dataset. This approach ensured that the 
recalibrated “α” was more representative of the experimental data 
from scientific publications.

2.4. Model evaluation

To determine the best process to obtain reference models of the four 
described categories, it is important to obtain an estimate of the 
generalization error of the resulting models, that is an estimate of the 
prediction error of the model in future contexts. To do so, a series of 
repeated 5-fold cross-validations (with n = 200 iterations) were per
formed to estimate, for each model and fitting method combination, the 
expected mean absolute percentage error (MAPE; Eq. 2) for unseen 
samples. In each fold of cross-validation, 80 % of the dataset was used 
for training and 20 % for validation. 

MAPE(%) =
100
n

∑n

i=1

⃒
⃒
⃒
⃒
Pi − Oi

Oi

⃒
⃒
⃒
⃒ (2) 

Where n is the number of predicted-observed value pairs, Pi is the pre
dicted value, and Oi is the observed value.

Cross-validation is a popular model selection method focused on its 
predictive effectiveness to future observations. It involves splitting the 
data into a calibration sample that is used to fit the model parameters 
and validation sample applying the fitted equations to predict the model 
output. Then, the difference between the predictions generated using 
the first are checked on the second. 5-fold cross-validation then involved 
splitting the data into 5 equal subsamples, four of which are used for 
independent calibrations and one for validation. The cross-validation is 
conducted 5 times averaging for the final result (Hjorth, 2017).

Additionally, model selection was further supported by using Infor
mation Criteria using Akaike Information Criterion corrected for small 
sample sizes (AICc; Eq. 3) values to assess the relative quality of the 
models, considering both their predictive performance and complexity. 

AICc = nln
(

SEE
n

)

+
2k(k + 1)
n − k − 1

(3) 

Where n is the number of observations, SEE is sum of the square errors, 
and k is the number of parameters in the model

First, this was performed separately for each of the four model cat
egories, to determine the best process (and model) within each category. 
The best models of each category were compared in a final cross- 
validation, to ensure that the test metrics are directly comparable 
(Fig. 2).

2.5. Model analysis

After the final cross-validation, the models with the best perfor
mance were analyzed by extrapolation analysis, residual analysis and 
evaluating predicted performance with different factors; body weight 
and temperature. When performing the extrapolation analysis, each 
model was assessed in terms of how well it performed to predict feed 
intake beyond the range of data used for parameter estimation. For the 
residual analysis, the normality and homogeneity of residuals were 
tested. The evaluation of performance with different factors was used to 
determine if the model performance varies across different conditions 
(body weight and temperature).

3. Results and discussion

3.1. Model evaluation

Overall, our results point to rather large amount of unmodelled 
variation in feed intake rates (30 % < MAPE < 62 % in all cases, see 
Tables 3 to 5). The high value of MAPE can be explained by the high 
variability of the data obtained from the publications. The large dataset, 
which includes significant variation in unmodelled factors affecting feed 
intake, such as daily meals, feeding schedules, and dissolved oxygen, is a 
significant source of uncertainty. In addition, a higher level of prediction 
is hardly attainable because pronounced variability in feed intake is 
inherent to fish feeding, therefore it can justify the high values of MAPE 

Table 2 (continued )

Name Equation Number of 
parameters

FIC3b α × BWβ × e(γ ×temp+ δ ×temp2+ ε ×temp3) ×

e

(
zCP×fracCP+ zCL×fracCL+ zstarch×fracstarch+ zfiber×fracfiber+

z_ash×frac_ash+z_moisture×frac_moisture+higher order effects

)
27

Fig. 2. Each box represents a cross-validation test that was performed to reach 
the model with the best performance.

Table 3 
Overall results of cross-validation and AICc for the simple feed-independent 
model.

Model/Fitting Validation MAPE (%) AICc

FI1/simple_fixed23 35.98 20311.65
FI1k/simple_fixed23 36.03 20262.90
FI1/robust_fixed23 36.08 20249.68
FI1k/robust_fixed23 36.15 20217.67
FI1/mixed_fixed23 37.68 20264.10
FI1/mixed_fixed23_r 38.05 20221.40
FI1k/robust_r 39.39 19034.20
FI1/robust_r 39.41 19068.85
FI1k/robust_fixed23_r 39.89 20648.18
FI1/robust_fixed23_r 39.98 20712.71
FI1k/simple_fixed23_r 40.41 20435.93
FI1/simple_fixed23_r 40.50 20557.81
FI1k/simple_r 40.88 18811.79
FI1/mixed_r 40.89 18857.10
FI1/mixed 40.92 19047.94
FI1k/mixed_r 40.94 19524.94
FI1/simple_r 40.97 19868.98
FI1k/mixed 41.03 18842.02
FI1/simple 41.49 18782.70
FI1k/simple 41.78 18705.54
FI1/robust 41.80 18830.88
FI1k/robust 42.07 18770.32
FI1k/robust_i 47.09 19267.74
FI1/robust_i 47.36 19316.57

M.L. Azevedo et al.                                                                                                                                                                                                                             Aquacultural Engineering 110 (2025) 102526 

4 



(Assan et al., 2021; Martins et al., 2011).

3.1.1. Simple feed-independent models
The overall results of the cross-validation and AICc for the simple 

feed-independent models (Table 3) indicate a relatively high amount of 
unmodelled variation in feed intake rates (MAPE < 48 %). Comparing 
the different models, we can see that model FI1 with fitting method 
simple_fixed23 displayed the best result, with a MAPE of about 36 %, 
with combinations “FI1/robust_fixed23”, “FI1k/simple_fixed23” and 
“FI1k/robust_fixed23” presenting similar performance levels (again, 
with a MAPE on the order of 36 %). As a general pattern, we observe that 
forcing the body weight exponent to a fixed value of 2/3 (methods 
“_fixed23”) has a clear positive effect on model prediction quality, which 
aligns with the principles from the Dynamic Energy Budget theory that 
the energy ingestion rate is proportional to the surface area of the or
ganism {V2/3} (Kooijman, 1986). When analyzing AICc, "FI1/r
obust_fixed23_r" had the highest value (20,712.71), while "FI1k/simple" 
had the lowest value (18,705.54). Additionally, "FI1k/robust_r" showed 
a balanced performance with an AICc of 19,034.2 and a MAPE of about 
39 %, demonstrating a good balance between model fit and complexity. 
On the other hand, models such as "FI1k/robust_fixed23_r" and "FI1/r
obust_fixed23_r", which have similar MAPE values around 39 %, show 

higher AICc values of 20,648.18 and 20,712.71, respectively, providing 
a good fit but are less efficient, as indicated by their higher AICc values.

Using mixed-effects modeling (methods “mixed”) or applying 
rescaling of the “α” parameter (methods “_r”) does not seem to bring 
clear benefits. Similar results were observed in the specific case of 
growth models tailored for salmon farming, in which the inclusion of 
random effects did not improve the model fit (Aunsmo et al., 2014). 
Although feed intake and growth are not the same, there is a strong 
relationship between both parameters, with both being influenced by 
various biotic and abiotic factors (Brett, 1979; Brett and Groves, 1979). 
However, feed intake and growth, while distinct, are related; for 
example, selection for increased growth rate in Atlantic salmon will 
increase feed intake and improve feed utilization (Thodesen et al., 
1999).

Furthermore, we observe that excluding the auxiliary feeding table 
data (methods “_i”) for fitting provides no benefits. Both MAPE and AICc 
values were higher, suggesting a worse model in terms of fit and 
complexity.

Finally, comparisons of the test error metrics for the “FI1” vs. “FI1k” 
models did not reveal any apparent advantage in using the inverse of the 
thermodynamic temperature as a predictor (instead of the temperature).

3.1.2. Complex feed-independent models
The results of the of the cross-validation and AICc of the complex 

feed-independent models (Table 4) show higher prediction errors 
(MAPE < 56 %) compared to the simple feed-independent models. 
Furthermore, the model with a log-quadratic temperature effect had a 
lower prediction error than the one with log-cubic temperature effect. 
This indicates that additional complexity on the temperature effect does 
not seem to improve the capacity of the models to predict meagre feed 
intake. This, at least in part, can be explained by the fact that the 
collected meagre data range between 15.5 and 27.6 ºC. This limited 
temperature range may not provide sufficient variability for the more 
complex models to capture meaningful patterns that improve the pre
diction of measured feed intake. Therefore, a simpler log-quadratic 
temperature effect is more appropriate for the available data. Addi
tionally, studies assessing the thermal tolerance and metabolic scope of 
meagre have demonstrated that at 34 ◦C meagre exhibits a significantly 
reduced feed intake, compared to the optimal range of 24–29 ◦C. This 
suggests that the log-cubic temperature models could have a better 
performance in a data set with a broader temperature variability 
(Stavrakidis-Zachou et al., 2021). In this set of models, we observe that, 
besides being beneficial to fix the body weight exponent to 2/3, the use 
of robust fitting methods seems to be particularly useful. As in the simple 
feed-independent models, we do not observe a clear benefit in using 
mixed-effect modelling or inverse thermodynamic temperature as a 
predictor.

When analyzing AICc, " FI3/mixed" had the highest value 
(17,905.37), while " FI3/simple" had the lowest value (15,466.23). The 
models using the calibration method “robust_fixed23” show a balance 
between complexity and performance, with moderate AICc values in the 
range of 16,828.29–16,945.46.

3.1.3. Simple feed-dependent models
The results of the cross-validation of the simple feed-dependent 

models (Table 5) show a lower prediction error (MAPE < 47 %) 
compared to the simple feed-independent models. Comparing the 
different models, we can see that model LI1 generally had a lower error 
than model PI1, which indicates that the impact of the percentage of 
lipids (and energy) on feed intake is higher than the impact of the per
centage of protein in the feed. Nevertheless, a study conducted with 
juvenile meagre, which investigated the impact of protein and lipid 
levels on growth, showed that the correlation between feed intake and 
protein is higher than that with lipid levels. Moreover, it demonstrated 
an increase in feed intake until lipid levels reached 14 %, followed by a 
subsequent decline as lipid percentages further increased (Chatzifotis 

Table 4 
Overall results of cross-validation and AICc for the complex feed-independent 
model.

Model/Fitting Validation MAPE (%) AICc

FI2k/robust_fixed23 40.00 16828.29
FI2/robust_fixed23 40.23 16837.55
FI3/robust_fixed23 40.98 16928.58
FI3k/robust_fixed23 41.02 16945.46
FI2k/mixed 41.79 17742.32
FI2/mixed 41.95 17738.52
FI3k/mixed 42.77 17734.31
FI3/mixed 42.78 17905.37
FI2k/simple_fixed23 42.87 17421.78
FI2/simple_fixed23 43.23 17428.19
FI3/simple_fixed23 44.52 17559.79
FI3k/simple_fixed23 44.59 17565.66
FI2k/robust 48.75 15762.32
FI2/robust 48.93 15724.44
FI3/robust 49.60 15678.15
FI3k/robust 49.64 15678.32
FI2k/simple 53.22 15576.57
FI2/simple 53.68 15532.28
FI3/simple 55.18 15466.23
FI3k/simple 55.25 15469.23

Table 5 
Overall results of cross-validation and AICc for the simple feed-dependent 
model.

Model/Fitting Validation MAPE (%) AICc

LI1/simple_fixed23 34.88 19619.82
LI1/robust_fixed23 35.11 19579.59
EI1/simple_fixed23 35.16 20139.45
EI1/robust_fixed23 35.28 20073.63
LI1/simple 35.64 19030.89
DEI1/simple_fixed23 37.17 19804.13
DEI1/robust_fixed23 37.21 19801.84
LI1/mixed 37.30 19039.10
DPI1/simple_fixed23 39.27 20716.55
DPI1/robust_fixed23 39.31 20641.35
PI1/simple_fixed23 39.51 20719.53
EI1/simple 39.54 18793.84
PI1/robust_fixed23 39.56 20645.34
EI1/mixed 39.87 20427.11
DEI1/mixed 42.40 18039.60
DEI1/simple 44.31 18514.34
DPI1/mixed 46.28 19824.14
PI1/mixed 46.57 19428.07
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et al., 2010). Again, the fitting methods fixing the body weight to 2/3 
had better results calibrating the models. The least square "simple_
fixed23" method showed a smaller error result than "robust_fixed23." On 
the other hand, the "mixed" method had the highest MAPE values for all 
feed-dependent model variables.

When analyzing AICc, "DPI1/simple_fixed23" had the highest value 
(20,716.55), while "DEI1/mixed" had the lowest value (18,039.60). The 
models using the calibration method "simple_fixed23" and "robust_
fixed23" show a balance between complexity and performance, with 
moderate AICc values in the range of 19,579.59–20,645.34.

3.1.4. Complex feed-dependent models
The cross-validation results for the complex feed-dependent models 

(Table 6) overall showed a lower error compared to other model groups 
(MAPE < 62 %). Consistent with the findings in simple feed-dependent 
models, those focusing on lipid feed intake demonstrate superior per
formance, underscoring the significance of lipid content in feed as a 
crucial variable in feed intake calculations. Notably, FIC1a, incorpo
rating four components in feed intake calculation (“crude protein”, 
“crude fat”, “nitrogen-free extract”, and “rest”), outperforms FIC1b, 
which employs six components (“crude protein”, “crude fat”, “starch”, 
“fiber”, “ash”, and “moisture”). Again, this suggests that the lipid 
composition of the feed predominantly influences feed intake. This 
finding is relevant for the understanding of both feed intake and appetite 
control in this species. In addition, models from the more complex 
family (FIC) with only direct effects of nutrition (basic) had better re
sults than models that also included the effect of the interaction between 
the nutritional composition (cplx). Thus, assuming linear effects pro
vides better prediction capacity for complex FIC models. Models within 
the FIC1 category, utilizing temperature as an exponential function, 
exhibit superior results compared to models employing multiple pa
rameters for temperature (FIC2 and FIC3). That implies that introducing 
additional complexity to the temperature effect did not enhance the 
models’ capacity to predict meagre feed intake. Utilizing fixed body 
weight as 2/3 again improved model quality for complex feed- 
dependent models. Simple and mixed fitting methods resulted in 
higher prediction error than other model groups.

When analyzing AICc, "LI3/robust_fixed23" had the highest value 
(19,883.36), while "DEI3/simple" had the lowest value (15,007.45). The 
models using the calibration method "robust_fixed23" show a balance 
between complexity and performance, with moderate AICc values in the 
range of 16,046.51–18,209.86.

3.2. Model analysis

3.2.1. Fitting of best performing-models
Overall, the best-performing models with the lowest error validation 

(Table 7) were characterized by high amount of unmodelled variation in 
feed intake rates (MAPE < 41 %). All the best performing models had 
the body weight exponent to a fixed value of 2/3, in accordance with the 
Dynamic Energy Budget principles (Kooijman, 1986). The Dynamic 
Energy Budget model has been successfully used to provide robust 
simulation of growth and feed intake in production units in the Euro
pean sea bass (Dicentrarchus labrax) (Stavrakidis-Zachou et al., 2019). 
Lipid-dependent models exhibit better performance than 
feed-independent models in the present study. This contrasts with other 
studies reporting that the dietary lipid level did not affect the daily feed 
intake for meagre juveniles (Chatzifotis et al., 2010). Additionally, it is 
important to emphasize that the model "LI2/robust_fixed23" and 
"LI3/robust_fixed23” demonstrated a marginal difference in MAPE 
values. This indicates that the level of complexity of the temperature for 
this type of model has a relatively minor effect compared to models that 
are feed independent. Simple models calculating energy intake had a 
closer value of MAPE to the simple models calculating lipid intake, 
which shows that energy is also a relevant nutritional factor in the feed, 
and it conditions feeding intake. The complex models (FIC) with more 
than four nutritional parameters as predictors did not improve the 
quality of the model. Therefore, we conclude that the lipid parameter in 
feed intake is the most important. The feed complex independent model 
had the highest value of MAPE. Thus, the additional complexity on the 
temperature effect does not improve the model capacity to predict feed 
intake for meagre. In general, the “robust” fitting method did not show 
any significant advantage over the “simple” fitting. However, from a 
broader perspective, robust fitting models displayed slightly better 
fitting values, with an improvement of almost 2 %. The improvement in 
the use of the “robust” fitting method can be attributed to its approach, 
which is less sensitive to variability and atypical deviations in the feed 

Table 6 
Overall results of cross-validation and AICc for the complex feed-dependent 
model.

Model/Fitting Validation MAPE (%) AICc

LI2/robust_fixed23 33.41 16212.26
LI3/robust_fixed23 33.82 16214.29
FIC1a/simple_basic_fixed23 35.53 19836.28
FIC1a/robust_basic_fixed23 35.64 19883.36
FIC1a/simple_cplx_fixed23 35.88 19805.48
FIC1a/robust_cplx_fixed23 35.99 19852.89
LI2/simple_fixed23 36.25 16575.04
LI2/mixed 36.59 16532.01
EI2/robust_fixed23 36.87 16592.50
LI3/mixed 37.07 16325.10
LI3/simple_fixed23 37.12 16635.53
EI3/robust_fixed23 37.57 16673.91
EI2/simple_fixed23 39.74 17197.32
EI2/mixed 39.87 16426.96
LI2/simple 40.12 16046.51
EI3/mixed 40.71 16836.52
LI3/simple 40.99 16001.56
EI3/simple_fixed23 40.99 17322.92
DEI2/robust_fixed23 42.43 16069.85
DPI2/robust_fixed23 43.02 17449.46
PI2/robust_fixed23 43.19 17455.85
DEI3/robust_fixed23 43.25 16141.76
DEI2/mixed 43.33 17025.15
DPI3/robust_fixed23 44.16 17634.34
PI3/robust_fixed23 44.24 17642.18
DEI3/mixed 44.28 17525.10
FIC1a/simple_basic 44.44 18770.97
FIC1a/simple_cplx 44.78 18740.24
FIC1b/simple_basic 44.98 18809.89
FIC1b/simple_cplx 45.26 18785.12
DPI2/simple_fixed23 45.37 18036.46
PI2/simple_fixed23 45.49 18039.98
FIC1a/robust_basic 45.51 18830.07
FIC1a/robust_cplx 45.84 18800.42
DEI2/simple_fixed23 46.18 16664.06
DPI2/mixed 46.28 16968.71
PI2/mixed 46.28 167034.2
PI3/simple_fixed23 46.89 18209.86
DPI3/simple_fixed23 46.90 18205.44
PI3/mixed 47.30 17258.21
DPI3/mixed 47.38 17286.75
DEI3/simple_fixed23 47.58 16772.97
EI2/simple 48.73 15573.12
EI3/simple 50.21 15504.77
FIC2a/simple_cplx 53.82 15339.94
FIC2a/simple_basic 53.98 15389.53
FIC2b/simple_cplx 54.73 15384.08
FIC2b/simple_basic 54.76 15428.16
FIC3a/simple_cplx 55.12 15293.46
FIC3a/simple_basic 55.28 15343.13
FIC3b/simple_cplx 56.08 15336.79
FIC3b/simple_basic 56.10 15381.57
DEI2/simple 57.17 15093.01
DEI3/simple 58.60 15007.45
PI2/simple 59.97 15143.22
DPI2/simple 60.18 15144.03
PI3/simple 61.55 15050.02
DPI3/simple 61.76 15050.73
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intake data.

3.2.2. Evaluation of best performing models
The best models each category was selected for further performance 

evaluation: — "FI1/simple_fixed23” (simple feed-independent), “FI2k/ 
robust_fixed23” (complex feed-independent), “LI2/robust_fixed23” 
(simple feed-dependent models), and “FIC1a/simple_ basic_fixed23” 
(complex feed-dependent). A set of three simulations using different 
temperatures was conducted to evaluate the selected models to assess 
the feed intake prediction accuracy. The temperature selection was 
based on the thermal tolerance of the species. In natural habitats meagre 
are exposed to temperatures ranging from 14 to 26◦C (Duncan et al., 
2013). In addition, meagre critical maximum thermal tolerance has been 
reported to be 37.5◦C, with a significant decrease in feed intake with 
temperatures above 34◦C (Kır et al., 2017). However, due to the data 
range of temperature of scientific publications and feeding tables it was 
decided to test 30◦C instead of higher temperatures. Therefore, the 
temperatures selected were 15◦C, 25◦C, 30◦C, with the feed variables 
being crude protein 47 %; crude lipids 16 %, gross energy 21 kJ/g; 
nitrogen-free extract 20 %, starch 18 %, fiber 2 %, ash 8.5 %, moisture 
8.5 %; digestible protein 41 %; digestible energy 18 kJ/g.

Evaluating the predictive performance of the models under the 
temperature of 15◦C, which is a low temperature for the species, it is 
possible to notice that all models had similar feed intake predictions 
(Fig. 3). However, it has been reported that broodstock would not 
consume feed below a temperature of 14◦C. (Duncan et al., 2013). 
Therefore, none of the tested models would provide a realistic estimate 
of feed intake for fish weighing above 5.5 kg.

When comparing the predictive performance of the models at a 
temperature of 25 ◦C, which lies in the optimum temperature range of 
higher performance in meagre, similar patterns emerge (Fig. 4). The 
models "FI1/simple_fixed23" and "FIC1a/simple_basic_fixed23" exhibit 
overlap, as do the models "FI2k/robust_fixed23" and "LI2/robust_
fixed23”. Overall, all the models give good fit predictions compared to 
the data from scientific publications.

At 30 ◦C, which is above the optimum for meagre cultivation (Fig. 5), 
both models with temperatures as a log-quadratic function (LI2 and 
FI2k) had a better performance, while "FI1/simple_fixed23” and “FIC1a/ 
simple_basic_fixed23” tended to overestimate the feed intake. This in
dicates that the feed intake of meagre at high temperature is better 
predicted with models adding higher complexity terms for the temper
ature effect. This may, at least in part, be related to the lower water 
oxygen levels, combined with higher metabolic rates which typically 
occur at higher temperatures (Christensen et al., 2020; 
Stavrakidis-Zachou et al., 2021). Feed intake suppression at high tem
peratures due to low water oxygen levels has been described for meagre, 
salmon, and rainbow trout (Glencross, 2009; Remen et al., 2016; 
Stavrakidis-Zachou et al., 2021). Therefore, it may be advisable to 
extend feed intake prediction models with the effect of oxygen levels, for 
species where high temperatures are to be expected during part of the 

Table 7 
Best performing-models, equation with value of variables, and overall results of cross-validation. The abbreviations used are as follows: BW (Body Weight), temp 
(Temperature), GE (Gross Energy) in feed, DE (Digestible Energy) in feed, CP (Crude Protein) in feed, DP (Digestible Protein) in feed, CL (Crude Lipids) in feed, NFE 
(Nitrogen-free extract) in feed, z (Correction Factor) for nutritional components, and fra (Fraction) of the nutritional component.

Model/Fitting Equation with value of variables Validation MAPE (%)

LI2/robust_fixed23 (2.31 × 10− 5)×BW0.67 × e(0.51 ×temp− 0.01 ×temp2)

feedCL

100

33.41

LI3/robust_fixed23
(8.63 × 10− 5) × BW0.67 × e

(
0.29 ×temp+ 2.61 × 10− 4 ×temp2 − 1.70 × 10− 4 ×temp3

)

feedCL

100

33.82

LI1/simple_fixed23 (1.85 × 10− 3) × BW0.67 × e(0.07 ×temp)

feedCL

100

34.93

LI1/robust_fixed23 (1.76 × 10− 3) × BW0.67 × e(0.07 ×temp)

feedCL

100

35.12

EI1/simple_fixed23 (2.52 × 10− 1) × BW0.67 × e(0.06 ×temp)

feedGE

35.15

EI1/robust_fixed23 (2.45 × 10− 1) × BW0.67 × e(0.06 ×temp)

feedGE

35.26

FIC1a/simple_basic_fixed23 (1.20 × 10− 2) × BW0.67 × e(0.06 ×temp) × e(0.50CP − 1.45CL − 1.07NFE + 1.20 other) 35.53
FIC1a/robust_basic_fixed23 (1.19 × 10− 2) × BW0.67 × e(0.06 ×temp) × e(0.51CP − 1.44CL − 1.06NFE + 1.21other) 35.64
FI1/simple_fixed23 (1.20× 10− 2) × BW0.67 × e(0.06 ×temp) 35.95
FI1k/simple_fixed23

(1.07× 10− 2) × BW0.67 × e

(

− 5.76 ×
1

temp

)
36.00

FI1/robust_fixed23 (1.16× 10− 2) × BW0.67 × e(0.06 ×temp) 36.03
FI1k/robust_fixed23

(1.02× 10− 2) × BW0.67 × e

(

− 5.86 ×
1

temp

)
36.09

FI2k/robust_fixed23

(7.99× 10− 5) × BW0.67 × e

(

− 46.1 ×
1

temp − 78.1 ×
1

temp2

)
39.85

FI2/robust_fixed23 (1.45× 10− 4) × BW0.67 × e(0.52 ×temp− 0.01 ×temp2) 40.07

Fig. 3. Evaluation of best performing models for meagre at a temperature of 15 
◦C. The x-axis represents body weight (g), and the y-axis represents feed intake 
rate (g/fish/day), both variables are log-transformed. Black dots are data from 
scientific publications, and grey dots are auxiliary data from the feeding tables. 
The models "FI1/simple_fixed23" and "FIC1a/simple_basic_fixed23" overlap, 
followed by "FI2k/robust_fixed23" in blue and "LI2/robust_fixed23" in green.
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year. This is certainly the case of meagre farmed in the Mediterranean in 
a climate change scenario.

4. Guideline for practical use

Based on the performance evaluation, the flowchart provides a 
guideline for selecting the most appropriate feed intake model for 
meagre based on temperature conditions (Fig. 6). For temperatures 
below the optimal range, simpler models such as "FI1/simple_fixed23" 
and "FIC1a/simple_basic_fixed23" are recommended, as they use fewer 
parameters and offer efficient, reliable predictions. At optimal temper
atures (24–29◦C), these models continue to perform well, maintaining 
accurate predictions (Stavrakidis-Zachou et al., 2021). However, for 
temperatures above the optimal range, models with greater temperature 
complexity, like "FI2k/robust_fixed23" and "LI2/robust_fixed23," are 
advised. The latter models incorporate additional 
temperature-dependent terms to capture the reduced feed intake more 
effectively at high temperatures, offering improved predictive perfor
mance under such conditions.

5. Conclusion

The comprehensive analysis of various feed intake models for 
meagre reveals nuanced insights into their predictive capabilities. The 
evaluation of feed intake models for meagre shows that those with 
simpler temperature terms, such as "FI1/simple_fixed23" and "FIC1a/ 
simple_basic_fixed23," perform well at lower and optimal cultivation 
temperatures (e.g., 15◦C and 25◦C), providing accurate feed intake 
predictions. However, under high-temperature conditions (e.g, 30◦C), 
models with added temperature complexity, particularly those 
employing log-quadratic terms (e.g., "LI2/robust_fixed23" and "FI2k/ 
robust_fixed23"), provide a more accurate feed intake prediction. These 
reference models offer many practical applications: they can estimate 
feed requirements over time for production or experimental trials; they 
can assist to differentiate the effects of key factors, like temperature and 
body weight, and evaluate impact of secondary factors such as diet 
composition and dissolved oxygen on feed intake. When integrated with 
feed-dependent growth models, they enhance the ability to assess fish 
growth under varying temperature conditions, which is especially 
valuable for precision farming and site selection studies. In addition, 
they provide a more robust and more sustainable alternative to feeding 
tables by using continuous functions instead of discrete values and can 

Fig. 4. Evaluation of best performing models for meagre at a temperature of 25 
◦C. The x-axis represents body weight (g), and the y-axis represents feed intake 
rate (g/fish/day), both variables are log-transformed. Black dots are data from 
scientific publications and grey dots are from the auxiliary data from the 
feeding tables. The models "FI1/simple_fixed23" and "FIC1a/simple_ba
sic_fixed23" exhibit overlap, as do the models "FI2k/robust_fixed23" and "LI2/ 
robust_fixed23”.

Fig. 5. Evaluation of best performing models for meagre at 30 ◦C. The x-axis 
represents body weight (g), and the y-axis represents feed intake rate (g/fish/ 
day), both variables are log-transformed. Black dots are data from scientific 
publications and grey dots are from the auxiliary data from the feeding tables. 
The models "FI1/simple_fixed23" and "FIC1a/simple_basic_fixed23" exhibit 
overlap, as do the models "FI2k/robust_fixed23" and "LI2/robust_fixed23”.

Fig. 6. Recommended feed intake model selection for meagre based on temperature condition. BW (Body Weight), temp (Temperature), CP (Crude Protein) in feed, 
DP (Digestible Protein) in feed, CL (Crude Lipids) in feed and NFE (Nitrogen-free extract) in feed.
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help identify overfeeding or underfeeding situations. However, it is 
worth noting that the models developed in this study have the limitation 
of considering only temperature as the environmental factor influencing 
feed intake, which restricts the model’s ability to capture the full range 
of environmental factors on feed intake. Expanding the model to include 
additional factors, such as pH, salinity, or dissolved oxygen, would 
enhance its applicability and provide a more comprehensive under
standing of feed intake dynamics. Despite their simplicity, the models 
presented here effectively capture the impact of a key environmental 
factor (temperature) as well as other relevant nutritional factors on the 
feed intake of meagre. This provides a valuable tool for advancing 
precision aquaculture practices and supporting the efficient and sus
tainable production of meagre.

Funding

This work is part of the NoviFEED project, financed by Iceland, 
Liechtenstein and Norway, through EEA grants, in the scope of the 
program Blue Growth, operated by Directorate-General for Maritime 
Policy (DGPM), Portugal, under reference PT-INNOVATION-0099.

CRediT authorship contribution statement
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Duncan, N., Estévez, A., Fernández-Palacios, H., Gairin, I., Hernández-Cruz, C., Roo, J., 
Schuchardt, D., Vallés, R., 2013. Aquaculture production of meagre (Argyrosomus 
regius): hatchery techniques, ongrowing and market. Elsevier eBooks, pp. 519–541. 
https://doi.org/10.1533/9780857097460.3.519.

Glencross, B., 2009. Reduced water oxygen levels affect maximal feed intake, but not 
protein or energy utilization efficiency of rainbow trout (Oncorhynchus mykiss). 
Aquac. Nutr. https://doi.org/10.1016/s0044-8486(99)00274-4.

Hjorth, J.S.U., 2017. Computer intensive statistical methods: Validation, Model 
Selection, and Bootstrap. Routledge.

Iversen, A., Asche, F., Hermansen, Ø., Nystøyl, R., 2020. Production cost and 
competitiveness in major salmon farming countries 2003–2018. Aquaculture 522, 
735089. https://doi.org/10.1016/j.aquaculture.2020.735089.
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