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Abstract. This work is part of a design science project where the aim
is to develop Machine Learning (ML) tools for analyzing tracks of fishing
vessels. The ML models can potentially be used to automatically analyse
Automatic Identification System (AIS) data for ships to identify fishing
activity. Creating such technology is dependent on having labeled data,
but the vast amounts of AIS data produced every day do not include any
labels about the activities. We propose a labeling method based on veri-
fied heuristics, where we use an auxiliary source of data to label training
data. In an evaluation, a series of tests have been done on the labeled
data using deep learning architectures such as Long Short-Term Memory
(LSTM), Recurrent Neural Network (RNN), 1D Convolutional Neural
Network (1D CNN), and Fully Connected Neural Network (FCNN). The
data consists of AIS data and daily fishing activity reports from Norwe-
gian waters with a focus on bottom trawlers. Accuracy is higher than
or equal to 87% for all deep learning models. Example applications of
the trained models show how they can be used in a practical setting to
identify likely unreported fishing activities.

Keywords: Fishing Activity Detection · Deep Learning Models · Data
Labeling

1 Introduction

One of the Sustainable Development Goals (SDGs) set by the United Nations
focuses on life below water (SDG14)1. As oceans and marine resources play
an important role in different aspects of our life such as economy, food, and
ecosystem functioning, stability, and resilience, using them in a sustainable way
is a must.

Our effort within this context is a design science project [4] in collaboration
with the Norwegian Directorate of Fisheries (NDF). The main goal is to develop
deep learning models to help the sustainable use of fish resources. These models
can potentially support the surveillance of fishing vessels, by exploiting data
about the fishing vessels’ movements combined with their reports on fishing
activities. The data are from Norwegian waters and are provided by NDF.
1 https://www.globalgoals.org/goals/14-life-below-water/.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Nurcan et al. (Eds.): RCIS 2023, LNBIP 476, pp. 105–120, 2023.
https://doi.org/10.1007/978-3-031-33080-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33080-3_7&domain=pdf
http://orcid.org/0009-0000-9117-592X
http://orcid.org/0000-0003-2623-2689
http://orcid.org/0000-0002-0045-7604
https://www.globalgoals.org/goals/14-life-below-water/
https://doi.org/10.1007/978-3-031-33080-3_7


106 A. Ashrafi et al.

1.1 Problem Relevance

There are two approaches towards sustainable fisheries in the real world, and
the best results are achieved when both of them are applied simultaneously.
These two are: setting rules to regulate exploitation, and providing exploiters
with incentives like ownership, for example in the form of quotas. This approach
ensures that the long-term benefits of the resource become the priority of the
exploiters [3].

In order to prevent Illegal, Unreported, and Unregulated (IUU) fishing, spe-
cific quotas are determined and surveillance is done regularly. However, as the
high seas are not easily observable, rules are easily and sometimes violated. At
the same time, the detection of IUU fishing by fishery inspectors is costly to
implement.

Fishery inspectors have access to huge amounts of data about fishing vessels’
movements obtained from Satellite-based Automatic Information Systems (S-
AIS). However, no satisfactory automated approaches to support the detection
of fishing activities are currently in use. While AIS data are mainly used to avoid
collision between ships by tracking them, we envision the use of ML models as
potential candidates to automate the detection of fishing activities from these
data. This enables the inspectors to be aware of when and where fishing has
taken or is taking place, and whether it is correctly reported. As a result, they
would be able to focus their attention on vessels and locations where there is a
higher risk of irregular fishing.

In Fig. 1 AIS data of 27 bottom trawlers on 38 fishing trips are shown. Red
points show non-fishing activities and blue ones show fishing activities, based on
labeling obtained from the fishing vessels’ records.

Fig. 1. AIS data for 27 bottom trawlers on 38 fishing trips, red points are non-fishing
and blue points are fishing activities according to reports by fishermen used our labeling
strategy (Color figure online)
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1.2 The Contribution

AIS data include features such as latitude, longitude, speed, and course over
ground in addition to the vessel’s ID, the so-called Maritime Mobile Service
Identity (MMSI). The normal frequency of reporting AIS data is every 5 min
(with many exceptions). These discrete data points form the vessels’ trajectories.

In our analysis, we segment these trajectories and label each segment as a
fishing or non-fishing activity. Each segment is thus a sequence (time series) of
AIS data and the task is to build a model that is able to classify these segments
into fishing or non-fishing.

A main contribution of our work is a method to provide more labeled training
data for the ML process. This is a significant problem, as it is too time-consuming
for an expert to do the labeling. As an alternative, we label the data by using
the records from fishing vessels’ daily reports on fishing activities. Although this
method is based on the reports by the fishermen, domain experts from NDF have
verified that the obtained labels are accurate on examples, and that the accuracy
is at a level that is sufficient to train a model. The ML models are the second
contribution of this work. They should be seen as specific to the data from this
region and for a particular fishing gear, as the experts believe that the movement
patterns are highly related to these aspects. We focus here on bottom trawlers.
However, the general approach should have validity also in other geographical
areas and other types of fisheries.

In the next section, the research method is discussed. In Sect. 3 we describe
the background for the problem and look into related work on fishery activities.
We continue by describing the original data set used, and then the methods
used to extract labels of the trajectory segments from the auxiliary data source,
ending with a final selection of data (Sect. 4). In Sect. 5 we describe our evaluation
approaches and show the models’ results, as well as give an example of how the
model performs on some interesting cases from the data. Some discussion and
conclusions are presented in Sect. 6.

2 Research Method

The research method we have followed is standard design science as described
by Hevner et al. [4]. We have created methods for labeling vessel tracking data,
used for the further purpose of developing the ML models used to analyse vessel
tracks. Two of the most important guidelines in design science are design as
an artifact and design evaluation. The most significant design choices we have
made for our tools and the sections in which they are explained are indicated in
Table 1.

In the evaluations described in Sect. 5, different tests are done on unseen data
using different ML architectures. Results are reported in the form of traditional
performance metrics from the ML field. As a descriptive evaluation (in the terms
of Hevner et al [4]), we provide visualization of speed and tracks of vessels
combined with the output of the ML models.
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Table 1. Overview of design choices

Design Choice Related Section

Selection of data from bottom trawlers Sect. 4.1

Obtaining labels for AIS data using daily catches Sect. 4.2

Identifying and removing inaccurate data Sect. 4.2

Selecting features for ML Sects. 4.3 and 4.4

Representation of the data as track segments and labeling of segments Sect. 4.5

ML architectures and performance metrics Sect. 5.1

3 Background and Related Work

Commercial fishery is a complex activity dependent on many factors such as the
target species, area of the sea, vessel size, and gear type. In Norwegian waters
cod, haddock, pollock (also called saithe), mackerel, and herring are considered
the most valuable species.

There are mainly two groups of fishing gears: passive gears such as long
line and purse seine, and active gears such as trawl. The species most often
targeted with trawl are cod, haddock, and pollock. Our focus in this paper is on
recognizing fishing activities for vessels doing bottom trawling, which basically
is performed by pulling a bag-formed net along the seafloor to catch the target
fish.

There have been several attempts to classify fishing activities using ML. de
Souza et al. [9] used ML models, i.e., the Hidden Markov Model (HMM) and
data mining to identify fishing activities from AIS data. Three types of fishing
gear were analyzed: trawl, longline and purse seine.

Jiang et al. [6] published the first work applying deep learning models for
detecting the fishing activities of trawlers. A sliding window technique was used
to divide the trajectory into shorter segments. They labeled each window with
the same label as that of the middle point. To reduce the noise, undersampling
was applied. Linear interpolation was utilized to recapture the trajectory which
was then converted to an image matrix. Lastly, an autoencoder was used to detect
fishing activities. According to Jiang et al. [5], AIS data is low-dimensional and
heterogeneous making it hard to work with deep learning models on these data.
They proposed Partition-wise Recurrent Neural Networks (pRNNs) to solve this
issue. Their focused fishing gears were long-liners.

Global Fishing Watch (GFW)2 has provided commercial fisheries datasets
that are used in many studies. Kroodsma et al. [7] developed CNN models for
the recognition of different vessels’ features and also the detection of fishing

2 https://globalfishingwatch.org/.

https://globalfishingwatch.org/
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activities. In a more recent paper [1], they segmented the trajectories into smaller
intervals and used the majority label as the label of each interval. Their proposed
model (FishNET) is based on 1D CNN and new features extracted from main
features are used to make the method independent of changes in gear type, vessel
type, and location.

Shen et al. [8] used a multi-layer Bidirectional LSTM (BiLSTM) model to
test the importance of different features in detecting fishing activities with both
active and passive gear types used around Taiwan.

The most significant challenge in fishing activity detection tasks is the lack
of labeled data [1]. However, the most common open and labeled data sets are
limited, even though they are related to many gear types. Annotation of the
data by experts is labor intensive and also difficult in reality since even experts
are not aware of all fishing patterns.

A work close to ours is by Ferreira et al. [2]. They do not use true labels, but
still classify sub-trajectories into fishing and sailing. k -means clustering based
on speed and course changes is applied to find the labels in an unsupervised
manner. They further use these labels with LSTM and Gated Recurrent Unit
(GRU) units to do the classification task. The clustering method involves many
tuning details and appears to be rather cumbersome.

4 Datasets and Preprosessing

4.1 Data

The data we use is an AIS dataset that provides fishing vessels’ movement data,
and DCA (Daily Catch) reports3 which help to identify fishing activities. The
AIS dataset includes information such as vessels’ ID (MMSI), message time, lat-
itude, longitude, speed over ground, and course over ground. These data are not
labeled. However, DCA reports can be used to extract labels from the fisher-
men’s reporting. DCA data consist of reported fishing intervals (start and stop
time, duration, amount, and location of each catch), plus Call-sign for each vessel
which itself could be matched to MMSI from the AIS dataset through another
data table.

A main difference of our work from earlier studies is our ability to assess the
data with the help of domain experts. According to them, the DCA reporting
data regarding active gears (like bottom trawl) are cleaner and easier to work
with since the patterns are more visible and the duration of fishing activities are
recorded more accurately. Also, different types of active gears lead to different
patterns. That is why, unlike most of the works in the literature, we have chosen
to focus on only one gear type at a time. In this study, we only consider bottom
trawlers. With a quick look at our dataset, we could conclude that there are
enough data for this gear type to train and test the models. We have used more
than 500 different fishing trips of almost 100 vessels between 2015 and 2020.

3 A part of the electronic reporting by NDF: https://www.fiskeridir.no/Tall-og-
analyse/AApne-data/elektronisk-rapportering-ers.

https://www.fiskeridir.no/Tall-og-analyse/AApne-data/elektronisk-rapportering-ers
https://www.fiskeridir.no/Tall-og-analyse/AApne-data/elektronisk-rapportering-ers
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For each vessel, we chose a maximum of 5 fishing trips randomly. This gave
us a subset of the data with complete trajectories from whole fishing trips. The
vessels have provided departure and landing records (see footnote 3) which can
be used to identify fishing trips. Using complete fishing trips allows us to get
a representative data set, but visualizing the trips also helps to get a better
understanding of the activities in a trip.

4.2 Obtaining Labels

We have used the DCA reports delivered by fishermen to label the AIS data.
Some cleaning, however, has been needed. For example, it is immediately mean-
ingless to include fishing activities reported to have zero duration. In addition,
vessels are allowed to send correction messages, which are basically duplicates
that are sent later. After eliminating these kinds of messages, there would be no
overlaps among different records in DCA data.

In the next step, we have labeled the AIS data belonging to the chosen fishing
trips. The labels are not certain to be true labels, as they are based on reports
by fishermen, who are notoriously being inaccurate. But since the annotation
process of AIS data by experts is very time-consuming and the DCA reports can
be used to extract labels with a satisfactory level of trust, we chose to use the
DCA data to obtain labels. This way we benefit from a larger training set and
achieve good performance.

Still, some of the reporting indicated very long or short fishing activities.
Such long or short fishing activities are considered to be most likely inaccurate.
So, to remove noise from the DCA reports we eliminate the catch activities with
a duration of less than 30 min or more than 400 min and define them as irregular
messages. The histogram of duration for the most important species is shown in
Fig. 2. Finally, we check each AIS data point from desired fishing trips to see if
they are located inside any of the fishing intervals. If they are, we label them
as fishing, and if not, they are labeled as non-fishing. The ones excluded due
to them being outside the acceptable intervals will be used later for evaluation
purposes.

4.3 Selecting Features for ML

The normal frequency of sending AIS messages is every 5 min, although this
does not happen all the time. Therefore, we decided to add time difference (ΔT )
which shows the difference between the time of the current message and the
previous one’s as a new feature. Messages with very long time-difference (more
than 200 min) were also removed. Another feature that has been added is the
month of the year that the message has been sent. This is a cyclic attribute and
we believe since this feature is related to environmental factors, it can affect the
patterns of vessels’ movements. The rest of the features are mostly the same as
the ones in [8] such as speed (SOG), average speed (Savg), and change in the
course (ΔCOG). We also consider changes in the speed (ΔSOG). In our work,
instead of distance (distance between the current position and previous position,
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Fig. 2. Duration histogram of catch activities from 2018 for the most important species.

Table 2. definitions of different features used in our method, i is the index of ith data
point in the sequence

feature definition

ΔT time difference: Ti+1 − Ti

Month month of the year coded as Monthsin, Monthcos

SOG Speed over Ground

Savg Average Speed: Si+1 + Si/2

ΔSOG Speed over ground difference: SOGi+1 − SOGi

ΔCOG Course over ground difference: COGi+1 − COGi

P Position which includes latitude and longitude

ΔP ), we have chosen to use latitude and longitude (position, P ). Our focus is
the Norwegian waters and we get a better result if we are more specific about
the location. Furthermore, experts suggest that these patterns are very specific
to regions, hence it is potentially better to build and train the models for each
area separately. The features we used and their definitions are shown in Table 2.

4.4 Choosing Depth as a Feature

In our later sessions with experts, they suggest using depth as a feature to
check for possible improvements plus providing explainability. Depth data is not
part of AIS data and we needed to use publicly available bathymetry data sets
provided by General Bathymetric Chart of the Oceans (GEBCO)4. Considering
the position of each data point in AIS dataset as a center, we form a 0.01× 0.01
latitude-longitude box around it, find the closest point to it using Haversine
distance, and extract the depth value. If there are no points inside the box, we
increase the box to 0.1× 0.1◦. Adding depth in combination with various other

4 https://www.gebco.net/.

https://www.gebco.net/
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features did not help in achieving better performance and in some cases cause
a slight increase in the loss value. The depth data might thus not be useful for
developing models. And we are already considering the location, which obviously
is a proxy for depth. But it is still useful for experts to explore the activities on
depth maps to achieve a better understanding of the data and to evaluate the
model’s performance.

4.5 Segmentation of the Vessel Trajectories

The trajectory of a fishing vessel is the track of its movement in the form of a
time series. Since it is long and includes different fishing patterns and intervals,
it is preferable to divide it into shorter sequences (windows). This process is
needed to prepare the input for LSTM, RNN, and 1D CNN. For FCNN, we
represent the sequences as non-sequential data points.

It is very common in the literature to use the sliding window technique
(Fig. 3) and the window size is mostly between 5 to 15 datapoints [1,6,8]. On
the other hand, they have different approaches to label each sequence, either
choosing the majority vote of the window or the label of the middle point of a
window.

In our work, we tested different alternatives. We trained the model with
sequences of length 8 and chose the label of the last point as the sequence’s
label. We also tried using the middle label and window size 10. No substantial
difference in the performance among these choices has been observed, so we
decided to keep the first setting.

5 Evaluation and Results

5.1 Using Different Architectures

To compare different deep learning architectures, we have used the same set of
hyperparameters. For each of the architectures we trained 10 models, and the
average scores of these 10 models are reported as the score. The hyperparameters
used were

Number of epochs: 20
Neurons in hidden layers: 128
Optimizer: Adam
Activation functions: ReLU and Softmax
Batch size: 32
Loss function: binary cross entropy loss

The first model we tried was FCNN using the sequence data as a flattened
input set. But since the data is in the form of a time series, we assumed that
other architectures such as LSTM, RNN, and 1D CNN, which are designed for
working with sequences, would be more suitable. Besides segmenting trajectories
into sequences to feed into these models, we added the extra hidden specialized
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Table 3. Performance on the test set from 2018 using different models

FCNN Accuracy Loss F1-score Precision Recall

90 0.27 89 87 92

LSTM 92 0.22 91 90 94

BiLSTM 92 0.23 91 90 92

RNN 91 0.23 91 89 93

1D CNN 91 0.25 91 88 93

recurrent or convolutional layer (LSTM, RNN or 1D CNN), as well as a dropout
layer with 0.5 dropout rate for those models. We also tried bidirectional LSTM
(BiLSTM).

We first tried all the candidate models on the 2018 dataset, with both training
and testing data set from that year. All the models except FCNN consider tem-
poral dependency. We, therefore, expected them to perform better than FCNN.
The results were in line with that expectation. However, the difference was not
substantial. Different metrics such as accuracy, loss, precision, recall, and F-score
were calculated. The results are depicted in Table 3.

5.2 Some Observation Related to Overfitting

In our initial tests, the windows were not overlapped. To use the data in the
best possible manner, we decided to extract overlapping windows by using the
sliding window approach (Fig. 3). This way we can provide more sequences from
the same dataset just by shifting the intervals halfway to the right. Adding
these overlapped sequences to the original ones caused an overfit, though. We
also observed that more complex models (more units per layer and more layers),
and more epochs also result in an overfit.

Fig. 3. Overlapped windows

5.3 Using Data from Different Years

To check if there are common fishing patterns among different years and if a
model trained on the data from a specific year can perform reasonably on a test
set from the following year(s), we did further tests using training and test sets
belonging to different years.
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For the rest of the tests, LSTM was chosen. First, the LSTM trained on 2018
data, was tested on data from 2019 and 2020. We also trained an LSTM on 2019
data and tested it on 2020 data. Finally, we trained a third LSTM on the data
from 2015, 2016, 2017, 2018 and 2019 and tested it on 2020 data.

The accuracy of all the models was quite high on the test sets, higher than or
equal to 87%. The scores are shown in Table 4. It seems that the fishing patterns
do not change much over the years as the scores do not vary much. However,
they are a bit lower when using a test set from a different year. The reason for
this may be that the selection of vessels in the data sets is a bit different, and
therefore will give a slightly lower performance.

Table 4. Performance on the test sets from different years using LSTM

train test Accuracy Loss F1-score Precision Recall

2018 2019 91 0.25 91 89 93

2018 2020 88 0.29 87 82 92

2019 2020 89 0.29 88 84 92

2015–2019 2020 87 0.32 86 81 92

5.4 Testing on Outliers

Outliers are, as we use the term, the DCAs which indicate very short or very long
catch intervals. We have removed this data in the labeling step so that the model
would be trained on accurately labeled fishing activities. However, at test time,
we can check this part of the data set to see the difference between the output
of the model and the reports by fishermen. Although fishermen labeled all these
sequences as fishing, according to experts these reports are most likely incorrect.
As expected, our model obtains less accuracy on this part of the data, as the
prediction is probably more correct than the ground truth (labels by fishermen).
The comparison of the LSTM’s performance testing on outliers and non-outliers
from 2018 is demonstrated in Table 5. An interpretation of these results could
be that about 10–15% of the daily catch reports are incorrect.

Table 5. Comparison of performance on non-outliers vs outliers test set from 2018

Accuracy Loss F1-score

Non-outliers 92 0.22 91

Outliers 85 0.45 91
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5.5 Speed Analysis to Test Our Method

According to the experts, vessel speed is one of the most important contributing
factors in detecting the fishing activities of bottom trawlers. The results of our
tests also confirm this argument, the models can achieve comparable results (all
the metrics are less than 1 or 2% below using LSTM) considering speed as the
only feature. Therefore, we provide some visualizations of speed analysis which
could help to see whether the model is learning and doing something reasonable.

Fig. 4. speed analysis over time for a day: prediction (first column) vs truth or reports
(second column)

The model was incorrect in about 10% of the sequences. The visualizations
in Fig. 4 show a selection of those and where the discrepancy occurs. We hope
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that later by combining these graphs with the patterns in the tracks, domain
experts could help us to get labels closer to the true labels. These visualizations
are for the 2018 test set and predictions are the output of FCNN. The ground
truth labels are the labels from using DCA data, not the true labels confirmed
by experts.

Each row in Fig. 4 shows the speed analysis of different vessels on different
days. Time is in minutes with a day being 1440 min. The blue dots are used to
depict non-fishing operations and the red ones are used for fishing activities. The
green and yellow circles illustrate the most visible differences in our prediction
on the left and the labels by fishermen on the right for the same day.

In the first row, our prediction shows two fishing intervals inside green circles
while the yellow circles on the right graph show non-fishing intervals as reported
by fishermen. The second row shows the same situation but with no fishing
reported by fishermen. In the third row, we observe one dense different interval
but this time we predict non-fishing activity for that interval while it is reported
as fishing in the reports. The last row shows an example of outlier data and the
two figures are different at almost all points. In the reports by fishermen, all the
points are reported as fishing which does not seem to be aligned with the rest
of the data on which our models are trained. A quick analysis of the patterns
seems to suggest that fishing activity with bottom trawls normally is performed
at about 5 knots, cresting the discrepancy in row four. Further, there seems to be
an expectation by the model that bottom trawling happens with a more stable
speed than found in row three.

In general, the model seems to make reasonable decisions regarding fishing
activity detection and even has the possibility to correct the reports. We believe
that these differences happen when the fishermen do not report their fishing
activities in time while they are fishing. Either they report activities carelessly
much later, or they report intentionally incorrect intervals. That is why the ML
predictions seem more correct in many cases.

5.6 Tracks Analysis to Test Our Method

In our tests, we consider the position (latitude and longitude) as a feature instead
of the distance traveled (as common in previous works). This is due to the experts
stating that fishing patterns are dependent on the region. This was confirmed
as we also obtained better results using the exact positions. In Fig. 5 we see the
track of a fishing trip that takes 12 days on a map of the Norwegian water. The
trip has been chosen from the test set. The white-colored areas are those with
depths higher than 100 or lower than −700 m.

Figure 6 shows the same track as in Fig. 5 labeled by the output of FCNN.
On the bottom, we focused on two busy areas from the original map. Green
data points are for True Positive (TP), meaning that the model’s prediction for
that data point was fishing and the label by fisherman’s reports was also fishing.
Blue points represent True Negative (TN), i.e., where the model output agrees
on being non-fishing with the reports. As you can see the colors of the tracks
are in line with the 90% accuracy of the model since most of the data points
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Fig. 5. Track of a fishing vessel from the test set on a map including depth data, white
areas have depth lower than -700 or higher than 100m.

Fig. 6. Track of a fishing vessel with the labels by the model on the top, focus on the
busy area on the bottom. Green for TP, blue for TN, red for FP, yellow for FN. (Color
figure online)
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(a) sub-track 1 (b) sub-track 2 (c) sub-track 3 (d) sub-track 4

(e) sub-track 5 (f) sub-track 6 (g) sub-track 7 (h) sub-track 8

(i) sub-track 9 (j) sub-track 10 (k) sub-track 11 (l) sub-track 12

(m) sub-track 13 (n) sub-track 14 (o) sub-track 15 (p) sub-track 16

Fig. 7. 16 sub-tracks from the focused area of Fig. 6 with labels, green: TP, blue: TN,
red: FP, yellow: FN. The horizontal axis shows longitude and the vertical one is latitude.
Starting point is shown with ’s’ and the ending point with ‘e’. (Color figure online)

are in green and blue. Red points represent False Positive (FP) where the model
outputs fishing while the fisherman reported non-fishing activity. Finally, yellow
points are the ones used for False Negative (FN) for which the model suggests
non-fishing whereas the reports show fishing activity. We can observe that most
false predictions belong to FP.

We again split the tracks in this focused area into 16 sub-trajectories of
lengths 53 and 54 to see the patterns better. In Fig. 7, these sub-parts with their
starting (s) and ending (e) points are shown. Some of the sub-tracks are not
placed completely inside the focused area. Figures 7e, 7f, 7g, 7m, 7n, 7o, and
7p are examples in which this situation happens, therefore, the sub-tracks are
cut reaching the borders and come back to the frame again when the position is
inside the focused area again. In some of the sub-tracks such as Figs. 7e, 7f, and
7n some larger red intervals can be observed. This is where the model predicts
fishing activities while they are reported as non-fishing by fishermen. These
intervals most likely include unreported operations and finding them is the main
purpose of our project. In some of the sub-tracks such as Figs. 7a, 7b, and 7c
there are some red data points spread inside blue intervals. These data points
are predicted as fishing by the model while the data points in their neighborhood
are labeled as non-fishing by both the model and the fishermen. These points
are most likely mistakes by the model but even in that case, they are very rare.
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6 Conclusion and Discussion

Sustainable use of fish resources is highly important for the development of
humanity’s future, and the long-term goal is to avoid overfishing. While many
fishing nations are active in the surveillance of fishing vessels’ behavior on the
ocean, there are still unreported activities going on in many areas. In this work,
we tried to automate fishing activity detection.

The most common problem for tools like this is the limited number of labeled
data and the expensive annotation process. We have proposed a method to
extract labels using an auxiliary data source, namely the publicly available daily
catch reports from NDF. Our alternative approach achieves accuracy at par or
better than the works where they use expert labels. The labels are based on
fishermens’ reports and may be incorrect, but by removing outliers, they can be
trusted to be at a sufficiently good level to be used in ML. Thus we can have
significantly more data to train our model than in previous work.

Since the data is spatiotemporal we opted to use different models such as
LSTM, RNN, and 1D CNN, and for that, we segmented data into smaller win-
dows. We also explored the performance of FCNN. The difference was small.
The 1 to 2% difference in accuracy might be due to the importance of temporal
dependency. All the models are fairly simple and using more complex models or
overlapped sequences ended in over-fitting. Testing the models on different years
still gave a high performance. Those parts of the data which were left out during
the training were also used to test the model. In this case, the model showed
fairly good performance and seems to be able to identify irregular reporting.

We have developed models by using different features which were partly
different from previous works. As experts suggested the impact of region on
fishing patterns, we picked the exact position rather than the distance. Depth
was omitted from the feature set, but can still be useful in order to help the
expert get a better interpretation of the model output. Visualizing tracks and
patterns, complemented with depth maps could help experts in the process of
providing labels closer to true labels.

There are some limitations to our work. First, the models we used could
only obtain around 90% accuracy by testing different sets of features, architec-
tures, and hyperparameters. The various tests indicate no promise for substantial
improvements in the performance. We believe this comes from the heuristics for
removing inaccurate data being imperfect, which again created noise in the data
labels. Second, our work is not totally comparable with the previous studies on
the same topic since our focus is narrowed down to Norwegian waters and bottom
trawlers. Although the method could be generalized to other regions and gears
provided there are data, we cannot guarantee generalizability of the results.

In the future, we are going to extend our work to other active gear types and
also to passive gear types. Further, we believe there are more major features such
as seabed surface which can be included to increase the performance. We are also
going to develop an application that presents results of the model, speed, and
track analyses to domain experts. They will be invited to correct the labeling in
an easy way and thus help us to obtain more true labels.
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